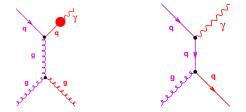
Measurement of photon and photon+jet production cross sections at $\sqrt{s} = 7$ TeV and constraints to PDFs

Josu Cantero

On behalf of the ATLAS collaboration

April 29th, 2014



Isolated prompt photon production

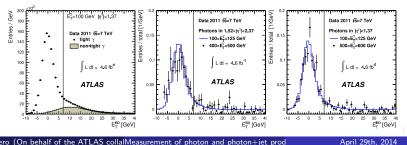
- In proton-proton collisions, high-p_T prompt photons can be produced via two mechanisms:
 - $\rightarrow\,$ fragmentation (F) process $\,\rightarrow\,$ direct photon (DP) process

 $\sigma^{pp \to \gamma + X} \sim \int_0^1 \int_0^1 dx_1 dx_2 f_{i/p}(x_1, \mu_F) f_{j/p}(x_2, \mu_F) \sigma^{ij \to \gamma(l)k} \{ D_l(z, \mu_f) \}$

- \rightarrow "sanity checks" of perturbative QCD (pQCD);
- $\rightarrow\,$ constraint on the gluon PDF in the proton;
- ightarrow constraint on the contribution of photon fragmentation processes;
- $\rightarrow\,$ background to Higgs studies and beyond standard model searches; ____

April 29th, 2014 2 / 23

Inclusive isolated prompt photon production at \sqrt{s} = 7 TeV with \mathcal{L} = 4.7 fb^{-1}

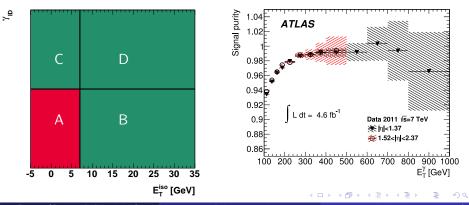

Phys. Rev. D 89, 052004 (2014)

Photon selection

- Photon candidates required to have passed an 80 GeV trigger.
- $E_{\tau}^{\gamma} > 100 \text{ GeV}$ and $0.0 < |\eta^{\gamma}| < 2.37$ (excluding crack region $1.37 < |\eta^{\gamma}| < 1.52$)
- Tight ID criteria based on the electromagnetic shower profiles.
- Photon isolation selection $E_T^{\rm iso} < 7 {\rm GeV}$
 - \rightarrow computed using calorimeter cells in a cone of radius $\Delta R = 0.4$.
 - \rightarrow the contribution from photon cells excluded in the calculations.

 $(\eta \times \phi = 5 \times 7 \text{ second layer ECAL cells})$

 \rightarrow small signal leakage from the photon shower outside the 5×7 region estimated from MC and subtracted.

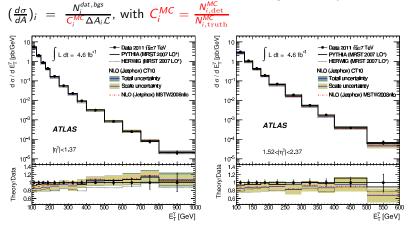


4 / 23

Background estimation

- The backgound $(\pi^0, \eta^0 \to \gamma \gamma)$ is strongly reduced after ID and isolation cuts
- Residual background is estimated using the "two-dimensional side bands" data driven method.
 - $\rightarrow\,$ based on the definition of a "tight-isolated" signal region A and three background control regions B,C,D: "tight-nonisolated",

"nontight-isolated", and "nontight-nonisolated".

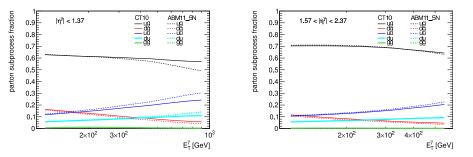

- The largest uncertainties are:
 - Uncertainty on the photon identification efficiency \rightarrow \lesssim 2%
 - Uncertainty on the photon energy scale $\to \sim$ 2% at low E_T^γ and 6% at large E_T^γ
 - Uncertainty on the photon energy resolution $\rightarrow \sim 2\%$
 - Uncertainty on the model dependence $\to \sim 2\%$ at low E_T^γ to 4% at $E_T^\gamma>800~{\rm GeV}$
 - Uncertainty on the background subtraction \rightarrow varies between 2% and 3%
 - Uncertainty on the luminosity value \rightarrow 1.8%. Fully correlated among all E_{T} and η bins
- $\rightarrow\,$ Total systematic uncertainty is estimated by summing in quadrature all the contributions
- → Final systematic uncertainty on the differential and total cross section in the 0.0< $|\eta^{\gamma}| <$ 1.37 (1.52< $|\eta^{\gamma}| <$ 2.37) region is below 6% (7%)

Theoretical predictions

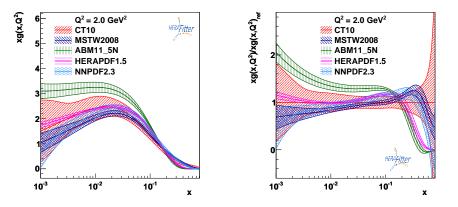
- The NLO QCD $(O(\alpha \alpha_s^2))$ calculations were computed using the program JETPHOX.
 - ightarrow parton-level isolation: total E_T from partons inside a cone $\Delta R=0.4$
 - $\rightarrow\,$ calculation uses BFG set II photon fragmentation function
 - $\rightarrow\,$ calculation done using CT10 and MSTW2008NLO proton PDFs
 - $\rightarrow \mu_R = \mu_F = \mu_f = E_T^{\gamma}$
 - \rightarrow hadronization + UE correction estimated using PYTHIA and HERWIG with different UE tunes \rightarrow effect of \pm 1%
- Theoretical uncertainties:
 - → scale uncertainty evaluated by varying the three scales $[\frac{E_T^{\gamma}}{2}, 2E_T^{\gamma}]$ → between 12% and 20%
 - → PDFs uncertainty evaluated by repeating the JETPHOX calculation for 52 eigenvector sets of the CT10 PDF → 5% at $E_T^{\gamma} = 100$ GeV and 15% at $E_T^{\gamma} \approx 900$ GeV
 - → uncertainty on the value of the α_s evaluated using different CT10 PDF sets with α_s value varied by ±0.002 around $\alpha_s = 0.118 \rightarrow 4.5\%$ with small dependence on E_T^{γ}

Results

 \rightarrow Cross sections corrected for detector effects using the bin-by-bin method:



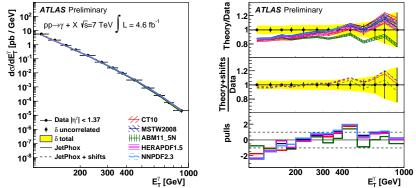
 $\rightarrow\,$ NLO lower than data for low E_T^γ but in agreement within theoretical uncertainties


- \rightarrow PYTHIA model describes fairly well the data.
- \rightarrow HERWIG falls below the data by 10%-20%

Sensitivity to the proton parton distributions

- Inclusive prompt photon production dominated by u-g process.
 - $\rightarrow\,$ larger charge of u-type quark and their prevalence in the proton.
 - \rightarrow sensitive to the gluon pdf.

Sensitivity to the proton parton distributions


ABM11_5N PDF has a softer gluon distribution at high-x

 \rightarrow contribution from processes with gluons in the initial state is smaller at high E_T^{γ} than that obtained using CT10.

April 29th, 2014 10 / 23

Sensitivity to the proton parton distributions

• Comparison between JETPHOX prediction with different PDF sets and data.

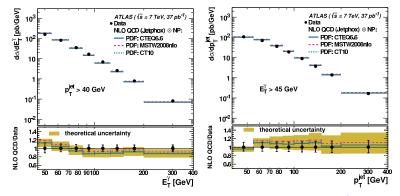
- Tension between data and the predictions of the current PDF sets
- At intermediate E_T^{γ} where data are most precise \rightarrow scale uncertainty is dominant
 - \rightarrow NNLO calculations (currently unavailable) may be necessary to fully exploit the measurement.

Dynamics of isolated-photon and jet production at $\sqrt{s} = 7$ TeV with $\mathcal{L} = 37 \ pb^{-1}$

Nucl. Phys, B 875 (2013) 483-535

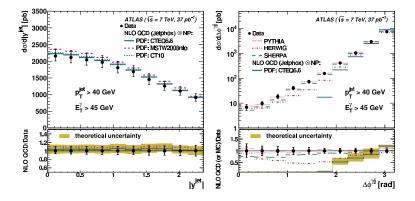
Dynamics of isolated-photon and jet production: measurements

- The kinematics and dynamics of isolated photon plus jet production was studied by measuring the following cross sections:
 - photon and jet properties: $d\sigma/dE_T^{\gamma}$, $d\sigma/dP_T^{\text{jet}}$, $d\sigma/d|y^{\text{jet}}|$
 - photon plus jet properties: $d\sigma/d\Delta\phi^{\gamma j}$, $d\sigma/dM^{\gamma j}$, $d\sigma/d|\cos \theta^{\gamma j}|$
- Cuts $|\eta^{\gamma} + y^{\text{jet}}| < 2.37$, $|\cos \theta^{\gamma j}| < 0.83$ and $M^{\gamma j} > 161$ GeV were applied for unbiased measurements of $d\sigma/dM^{\gamma j}$ and $d\sigma/d|\cos \theta^{\gamma j}|$
 - → angular distribution $d\sigma/d | \cos \theta^{\gamma j} |$ sensitive to the spin of the exchange (virtual) particle: quark (1/2) vs gluon(1).

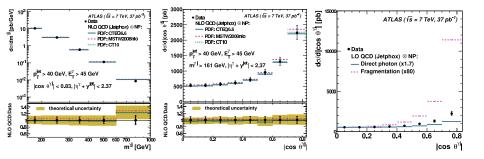

Photon/jet selection and background subtraction

- Photon:
- $\rightarrow\,$ Photon candidates required to have passed an 40 GeV trigger.
- \to $E_T^\gamma>$ 45 GeV and 0.0 $<|\eta^\gamma|<$ 2.37 (excluding crack region 1.37 $<|\eta^\gamma|<$ 1.52)
- $\rightarrow\,$ Tight ID criteria based on the electromagnetic shower profiles.
- \rightarrow Photon isolation selection $E_T^{iso}(reco) < 3 \text{ GeV}$
 - Jet:
- \rightarrow jets reconstructed with Anti-kt algorithm with R = 0.6 $\rightarrow p_T^{\rm jet} > 40$ GeV and 0.0 $< |y^{\rm jet}| < 2.37$ $\rightarrow \Delta R^{\gamma-\rm jet} > 1.0$
- ightarrow Background subtracted using 2D side-band method (\sim 10%)

Systematic uncertainties


- Main sources of systematic uncertainty (uncertainty quoted for |cosθ^{γ-jet}| cross section):
 - \rightarrow jet energy scale: $\approx 5.0\%$
 - $\rightarrow\,$ jet energy resolution: $\approx 1.0\%$
 - $\rightarrow\,$ photon energy scale: $\approx 1.0\%$
 - $\rightarrow\,$ photon energy resolution: $\approx 0.2\%$
 - $\rightarrow\,$ background subtraction: $\approx 3.6\%$
 - $\rightarrow\,$ detector material uncertainty: $\approx 5.0\%$
 - $\rightarrow\,$ jet efficiency uncertainty: $\approx 2.0\%$
 - ightarrow fudge factor uncertainty:pprox 2.0%
 - ightarrow model dependence (HERWIG vs PYTHIA): \approx 1.0%
 - \rightarrow Brem/Hard admixture dependence: \approx 2.0%
 - \rightarrow luminosity uncertainty (37.1 \pm 1.3 pb⁻¹): 3.4%
- $\rightarrow\,$ Total systematic uncertainty is estimated by summing in quadrature all the contributions
- \rightarrow Final systematic uncertainty on the differential cross sections varies between 8% and 15% depending on the phase space region of the measurements.

- $\rightarrow\,$ "sanity checks" of perturbative QCD (pQCD)
- \rightarrow theoretical calculation estimated with JETPHOX (corrected by the effect of hadronization and UE)

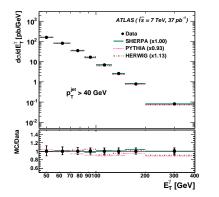

ightarrow Good description of data by NLO pQCD for $d\sigma/dE_T^\gamma$, $d\sigma/dP_T^{
m jet}$

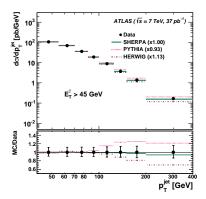
→ Similar prediction for CTEQ6.6 and CT10 proton PDFs; MSTW2008nlo 5% higher

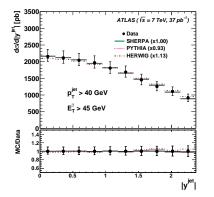
ightarrow Good description of data by NLO pQCD for $d\sigma/d|y^{
m jet}|$

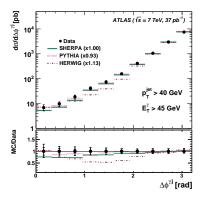
- → Bad description for $d\sigma/d\Delta\phi^{\gamma-\text{jet}}$ (expected, in NLO pQCD calculation $\Delta\phi^{\gamma-\text{jet}} > \pi/2$ due to transverse momentum conservation).
- \rightarrow Good description of $d\sigma/d\Delta\phi^{\gamma-\text{jet}}$ by PYTHIA.

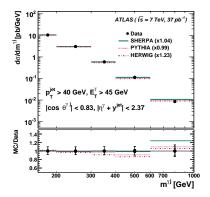
- Good description of data by NLO pQCD for $d\sigma/dM^{\gamma j}$, $d\sigma/d|\cos \theta^{\gamma j}|$
- The shape of the measured $d\sigma/d|\cos \theta^{\gamma-jet}|$ is much closer to that of DP than that of F processes which is consistent with dominance of processes in which the exchanged particle is a quark.
- Useful for tuning the relative contributions of the DP and F components.


Conclusions


- Measurements of inclusive isolated prompt-photon production have the potencial to constrain the gluon density in the proton.
 - $\rightarrow\,$ NNLO calculations may be necessary to fully exploit the measurements.
- NLO pQCD calculations give an adequate description of data in a wide range of the phase-space.
 - $\rightarrow\,$ regions of the phase space have been identified which are particularly sensitive to the contributions from fragmentation
 - \rightarrow the measured dependence with $|\cos\theta^{\gamma-\rm jet}|$ is consistent with the dominance of processes in which a quark is being exchanged.
- An understanding of isolated photon production at LHC in terms of the SM has been achieved
 - ightarrow Useful for Higgs studies ($H
 ightarrow \gamma \gamma$) and BSM searches.


BACKUP


Josu Cantero (On behalf of the ATLAS collalMeasurement of photon and photon+jet prod


크

