Charm Mixing and CPV at LHCb

Adam Davis On behalf of the LHCb Collaboration

May 6, 2014

Outline

Charm System

Charm System

LHCb

$$D^0 - \overline{D}^0$$
 Mixing/CPV

Muon Tagged ΔA_{CP} NEW!

Conclusions

Mixing in a Nutshell

Charm System

- Mixing in Neutral Mesons: mass≠flavor eigenstates
- Mass Eigenstates:

$$|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle,$$

 $|p|^2 + |q|^2 = 1$

$$x = \frac{m_2 - m_1}{\Gamma}$$
 $y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}$, $\Gamma = \frac{\Gamma_1 + \Gamma_2}{2\Gamma}$

3 Types of CPV

Direct CPV (Charged and Neutral)

$$\mathcal{A}_f = \langle f | \mathcal{H} | D \rangle, \overline{\mathcal{A}}_{\overline{f}} = \langle \overline{f} | \mathcal{H} | \overline{D} \rangle$$

$$\left| rac{\overline{\mathcal{A}}_{\overline{f}}}{\mathcal{A}_{f}}
ight|
eq 1$$

CPV in Mixing (Neutral)

$$\left|\left|rac{q}{p}
ight|
eq 1$$

Weak Phase:
$$\phi = \arg\left(\frac{q}{p}\right)$$

CPV in Interference between Mixing and Decay (Neutral)

$$\arg\left(\frac{q}{p}\frac{\overline{\mathcal{A}}_f}{\mathcal{A}_f}\right)\neq 0$$

Charm System

Charm Mixing in the SM

- Only up-type quark system with mixing/CPV
- Mixing enters at 1 loop level in SM, GIM and CKM suppressed
- Non-perturbative long-range effects may dominate short-range interactions, difficult to calculate
- x, y expected to be small in short and long range limits, CPV expected to be $\mathcal{O}(10^{-3})$ in SM
- ▶ If enhancement of CPV is seen, could be caused by New Physics (NP)

Muon Tagged ΔA_{CP}

Long Range

Charm System

- $\sigma(c\bar{c})_{LHCb, 7TeV} =$ $1419 \pm 133 \mu b$
- Nucl.Phys.B 871(2013), 1
- $\sigma(b\bar{b})_{LHCb, 7TeV} =$ $75.3 \pm 14.1 \mu b$

Phys. Lett. B 694 (2010), 209

> 1B reconstructed charm decays!

- $\sigma(c\bar{c})_{LHCb, 7TeV} =$ $1419 \pm 133 \mu b$
- Nucl.Phys.B 871(2013), 1
- $\sigma(b\bar{b})_{LHCb, 7TeV} =$ $75.3 \pm 14.1 \mu b$

Phys. Lett. B 694 (2010), 209

- > 1B reconstructed charm decays!
- Today: Results from $\sqrt{s} = 7$ and 8 TeV 2011 and 2012 Data. $3 fb^{-1}$

Charm System

 D^0

PRL 111, 251801 (2013) 2011+2012 Dataset

DCS

MIX

$D^0 - \overline{D^0}$ Mixing/CPV

Analysis Strategy • Reconstruct $D^{*+} \rightarrow D^0 \pi_s^+$,

- $\blacktriangleright RS: D^0 \to K^- \pi^+$
- WS: $D^0 \rightarrow K^+\pi^-$
- ▶ WS(t)/RS(t) →Separate mixing, DCS
- ▶ Split into $D^0(D^{*+})$ and $\overline{D}^0(D^{*-})$

CPV Fit Strategy

 \triangleright For small x & y,

$$R(t)^{\pm} = \left(\frac{WS(t)}{RS(t)}\right)^{\pm}$$

$$= R_D^{\pm} + \sqrt{R_D^{\pm}} y'^{\pm} \left(\frac{t}{\tau}\right) + \frac{(x'^{\pm})^2 + (y'^{\pm})^2}{4} \left(\frac{t}{\tau}\right)^2$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \delta & \sin \delta \\ -\sin \delta & \cos \delta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

- ▶ Direct CPV $\rightarrow R_D^+ \neq R_D^-$
- Indirect CPV $\to (x'^{2+}, y'^{+}) \neq (x'^{2-}, y'^{-})$
- $K\pi$ detection asymmetry and secondary decay accounted for in fit

 $D^0 - \overline{D}^0$ Mixing/CPV Charm System Muon Tagged ΔA_{CP} Conclusions

PRL 111, 251801 (2013) 2011+2012 Dataset

Results

Direct and indirect CPV		No direct CPV		No CPV		
$R_D^+[10^{-3}]$	$3.545 \pm 0.082 \pm 0.048$	$R_D[10^{-3}]$	$3.568 \pm 0.058 \pm 0.033$	$R_D[10^{-3}]$	$3.568 \pm 0.058 \pm 0.033$	
$y^{'+}[10^{-3}]$	$5.1\pm1.2\pm0.7$	$y'^{+}[10^{-3}]$	$4.8\pm0.9\pm0.6$	$y'[10^{-3}]$	$4.8\pm0.8\pm0.5$	
$x'^{2+}[10^{-5}]$	$4.9\pm6.0\pm3.6$	$x'^{2+}[10^{-5}]$	$6.4\pm4.7\pm3.0$	$x'^{2}[10^{-5}]$	$5.5\pm4.2\pm2.6$	
$R_D^-[10^{-3}]$	$3.591 \pm 0.081 \pm 0.048$	$y'^{-}[10^{-3}]$	$4.8\pm0.9\pm0.6$	χ^2/ndf	86.4/101	
$y^{'-}[10^{-3}]$	$4.5\pm1.2\pm0.7$	$x'^{2-}[10^{-5}]$	$4.6\pm4.6\pm3.0$			
$x'^{2-}[10^{-5}]$	$6.0\pm5.8\pm3.6$	χ^2/ndf	86.0/99			
χ^2/ndf	85.9/98					
20						

BaBar: PRL 98 (2007) 211802 Belle: arXiv:1401.3402 CDF: PRL 111 (2013) 231802

Results consistent with CP Conservation

World Average, All-CPV allowed

April 2013

LHCb 2011 1 fb $^{-1}$ $D^0 o K\pi$

$$|q/p| = 0.69 \pm 0.16$$

November 2013

LHCb 2011+2012, 3 fb $^{-1}$ $D^0 o K\pi$

$$|q/p| = 0.91 \pm 0.10$$

Indirect CPV

▶ In the case of no Direct CPV, ϕ and |q/p| are related (superweak constraint)

$$\tan \phi = \left(1 - \frac{q}{p}\right) \frac{x}{y}$$

Dataset	q/p [%]	φ[°]
HFAG April 2013	100.4 ± 6.5	-1.6 ± 2.5
HFAG Nov. 2013	100.8 ± 1.4	-0.3 ± 0.5

NEW LHCb-PAPER-2014-013 (in prep.) 2011+2012 Dataset

Muon Tagged ΔA_{CP} and A_{CP} Review

Define

Charm System

$$A_{\mathsf{raw}} = \frac{N(D \to f) - N(\overline{D} \to \overline{f})}{N(D \to f) + N(\overline{D} \to \overline{f})}$$

▶ Use $B o D^0 \mu X$, with SCS $D^0 o KK$ and $D^0 o \pi \pi$

$$A_{\mathsf{raw}} = A_{CP} + A_{D}(\mu) + A_{P}(B) + \mathcal{O}(A^{3})$$

What we want

Cancel in difference

$$\Delta A_{CP} = A_{\mathsf{raw}}(KK) - A_{\mathsf{raw}}(\pi\pi) = A_{CP}(KK) - A_{CP}(\pi\pi)$$

lacktriangle Can also get $A_{CP}(K^-K^+)$ using $B o (D^0 o K^-\pi^+)\mu X$

$$A_{CP}(K^{-}K^{+}) = A_{raw}(K^{-}K^{+}) - A_{raw}(K^{-}\pi^{+}) + A_{D}(K^{-}\pi^{+})$$

► And $A_{CP}(\pi^-\pi^+)$, derived using

$$A_{CP}(\pi^{-}\pi^{+}) = A_{CP}(K^{-}K^{+}) - \Delta A_{CP}$$

Charm Mixing and CPV at LHCb

Analysis: Yields

Signal: Gaussian + Crystal Ball. Background: Exponential

Nuisance Asymmetries

- CP asymmetries do not depend on kinematics
- Must remove nuisance asymmetries (kinematic dependent)
 - ▶ Control modes not needed for ΔA_{CP}

Reweight
$$D^0(p_T,\eta)$$
 from $D^0 \to KK$ to match $D^0 \to \pi\pi$

$$A_D(\mu), A_P(B)$$

$$\Delta A_{CP} = A_{\mathsf{raw}}(KK) - A_{\mathsf{raw}}(\pi\pi) = A_{CP}(KK) - A_{CP}(\pi\pi)$$

 \rightarrow $A_{CP}(KK)$: 3 modes for full cancellation

$$D^0(p_T,\eta)$$
 from $D^0 o K\pi$ to match $D^0 o KK$ $A_D(\mu),A_P(B)$

$$K, \pi_{notTrigger}(p_T, \eta)$$
 from prompt $D^+ \to K\pi\pi$ to match $D^0 \to K\pi$ $A(K\pi)$

$$D^+, \pi_{Trigger}(p_T, \eta)$$
 from prompt $D^+ \to \overline{K}^0\pi$ to match $D^+ \to K\pi\pi$ $A(D^+), A(\pi)$

$$A_{CP}(KK) = A_{\mathsf{raw}}(KK) - A_{\mathsf{raw}}(K^{-}\pi^{+}) + A_{\mathsf{raw}}(K^{-}\pi^{+}\pi^{+}) - A_{\mathsf{raw}}(\overline{K}^{0}\pi^{+}) - A_{D}(K^{0})$$

Measure detection asymmetries $A_D(K^0) = (0.054 \pm 0.014)\%, A_D(K^-\pi^+) = (-1.17 \pm 0.12)\%$

Charm System

NEW LHCb-PAPER-2014-013 (in prep.) 2011+2012 Dataset

(Preliminary) Results

Source of Uncertainty	ΔA_{CP}	$A_{CP}(K^-K^+)$	
Production Asymmetry:		Ci ()	
Difference in b-hadron mixture	0.02%	0.02%	
Difference in B decay time acceptance	0.02%	0.02%	
Production and Detection Asymmetry:			
Different weighting	0.02%	0.05%	
Non-cancellation	-	0.03%	
Neutral kaon asymmetry	-	0.01%	
Background from real D^0 mesons:			
Mistag asymmetry	0.03%	0.03%	
Background from fake D^0 mesons:			
D^0 mass fit model	0.06%	0.06%	
Wrong background modeling	0.03%	0.03%	
Quadratic Sum	0.08%	0.10%	

$$A_{CP}(\pi^-\pi^+) = (-0.20 \pm 0.19 \pm 0.10)\%$$

Consistent with CP Symmetry

World Averages

Conclusions

Charm System

- ▶ With 3 fb⁻¹, LHCb has
 - ▶ Searched for CPV in $D^0 \overline{D}^0$ system
 - Given tight constraints on ΔA_{CP} , $A_{CP}(KK)$ and $A_{CP}(\pi\pi)$
 - No sign of CPV yet
 - and much more
- \blacktriangleright Many analyses in progress on full 3 fb⁻¹ sample
- ▶ 2015 is just around the corner! Stay tuned!

Backup Slides

Results consistent with CP Conservation

$\Delta A_{CD} \rightarrow A_{CD}$

▶ Can get $A_D(\mu)$ and $A_P(B)$ from μ -tagged $D^0 \to K^-\pi^+$ $A_{\text{raw}}(K^-\pi^+) = A_D(\mu) + A_P(B) + A_D(K^-\pi^+)$

$$A_D(K^-\pi^+) = A_{raw}(K^-\pi^+\pi^+) - A_{raw}(\overline{K}^0\pi^+) - A_D(K^0)$$

From Prompt
$$D^{+} \to K^{-}\pi^{+}\pi^{+}$$

$$D^{+} \to \overline{K}^{0}\pi^{+}$$

Measure in this analysis.

Test removal by splitting by magnet polarity

$$\Delta A_{CP} = A_{\mathsf{raw}}(KK) - A_{\mathsf{raw}}(\pi\pi) = A_{CP}(KK) - A_{CP}(\pi\pi)$$

$$A_{CP}(KK) = A_{\mathsf{raw}}(KK) - A_{\mathsf{raw}}(K^{-}\pi^{+}) + A_{D}(K^{-}\pi^{+})$$

$$A_{CP}(\pi\pi) = A_{CP}(KK) - \Delta A_{CP}$$
, Accounting for Correlation

Final Result: Weighted Average of 2011+2012

Neutral Kaon Asymmetry, $A_D(K^0)$

- ▶ Detect K_S^0 , dominated by decay to $\pi\pi$
- Need to describe mixing, CPV and absorption in detector
- Calculate by dividing into steps using LHCb Material Map and

- ▶ VELO+T+TT, 2011+2012: result, 2012 T+TT: systematic
- ▶ Includes overall shift to account for $A_P(D^+)$ and $A_{Tracking}(\pi)$

$$A_D(K^0) = (0.054 \pm 0.014(syst))\%$$

$$A_D(K^-\pi^+)$$

▶ Have all the info to calculate $A_D(K^-\pi^+)$

Asymmetry	Magnet Up [%]	Magnet Down [%]	Mean [%]
$A_D(\overline{K}^0)$	-0.054 ± 0.014	-0.054 ± 0.014	-0.054 ± 0.014
$A_{\sf raw}(K^-\pi^+\pi^+)$	-1.969 ± 0.033	-1.672 ± 0.032	-1.827 ± 0.023
$A_{\sf raw}(\overline{K}^0\pi^+)$	-0.94 ± 0.17	-0.51 ± 0.16	-0.71 ± 0.12
$A_D(K^-\pi^+)$	-1.08 ± 0.17	-1.22 ± 0.16	-1.17 ± 0.12

- Driven by different σ_{Interaction}(K) in matter
- ▶ Decreases with increasing p(K), as expected

μ Mistag Probability

- ▶ No handle on m(B) → possible μ mis-id
- ▶ Dilutes observed asymmetry $\Delta A_{CP} = (1 + 2\omega)[A_{raw}(KK) A_{raw}(\pi\pi)]$

$$A_{CP}(KK) = (1+2\omega)[A_{raw}(KK) - A_{raw}(K\pi)] + (1-2R)A_D(K\pi)$$

- ▶ $R = (R^+ + R^-)/2$ = (0.389 ± 0.003)%, from Mixing/CPV, time integrated
- ► Extract with $D^0 \to K^-\pi^+$, take CPV/Mixing into account
- ► Cross Check with $B \to \mu(D^* \to D^0\pi_s)X$ subsample

$$\omega(\Delta A_{CP}) = (0.988 \pm 0.006)\%$$

$$\omega(A_{CP}(K^-K^+)) = (0.791 \pm 0.006)\%$$

(Preliminary) Results

	Magnet Up[%]	Magnet Down[%]	Mean[%]
$A_{\text{raw}}(K^-K^+)$	-0.46 ± 0.11	-0.43 ± 0.11	-0.44 ± 0.08
$A_{raw}(\pi^-\pi^+)$	-0.45 ± 0.20	-0.66 ± 0.19	-0.58 ± 0.14
ΔA_{CP}	-0.01 ± 0.23	$+0.24 \pm 0.22$	0.14 ± 0.16
$A_{\text{raw}}(K^-K^+)$	-0.45 ± 0.12	-0.41 ± 0.12	-0.43 ± 0.08
$A_{\text{raw}}(K^-\pi^+)$	-1.41 ± 0.05	-1.59 ± 0.05	-1.51 ± 0.04
$A_D(K^-\pi^+)$	-1.08 ± 0.07	-1.22 ± 0.16	-1.17 ± 0.12
$A_{CP}(K^-K^+)$	-0.09 ± 0.21	-0.01 ± 0.21	-0.06 ± 0.15

Source of Uncertainty	ΔA_{CP}	$A_{CP}(K^-K^+)$		
Production Asymmetry:				
Difference in b-hadron mixture	0.02%	0.02%		
Difference in B decay time acceptance	0.02%	0.02%		
Production and Detection Asymmetry:				
Different weighting	0.02%	0.05%		
Non-cancellation	-	0.03%		
Neutral kaon asymmetry	-	0.01%		
Background from real D^0 mesons:				
Mistag asymmetry	0.03%	0.03%		
Background from fake D ⁰ mesons:				
D ⁰ mass fit model	0.06%	0.06%		
Wrong background modeling	0.03%	0.03%		
Quadratic Sum	0.08%	0.10%		

$$\Delta A_{CP} = (+0.14 \pm 0.16 \pm 0.08)\%$$

$$A_{CP}(K^-K^+) = (-0.06 \pm 0.15 \pm 0.10)\%$$

$$\rho = 0.28$$

$$A_{CP}(\pi^-\pi^+) = (-0.20 \pm 0.19 \pm 0.10)\%$$

Consistent with CP Conservation

Semileptonic ΔA_{CP} Calculation of Asymmetries

- ► All production/detector asymmetries must cancel
- Reweight Kinematic distributions to remove residual production/detector asymmetries
 - Weight D^0 (p_T and η) distributions of KK to match $\pi\pi \to 8\%$ reduction in statistical power
- ▶ Additional reweighting for $A_{CP}(KK)$ to cancel D^+ asymmetries
 - ► $A_D(\mu), A_P(B):D^0 \to K\pi$ (p_T, η) reweighted to match $D^0 \to KK$ $\to 3\%$ further reduction
 - ▶ $A(K\pi):D^+ \to K\pi\pi$ (p_T, η) reweighted to match $D^0 \to K\pi$ \to No loss of power due to high stats
 - ► Residual $A(D^+)$, $A(\pi)$: $D^+ \to \overline{K}^0 \pi^+$, D^+ and π^+ (p_T, η) reweighted to match $D^+ \to K^- \pi^+ \pi^+$ $\to 77\%$ reduction in statistical power
- Needed to ensure full cancellation of detector/production asymmetries