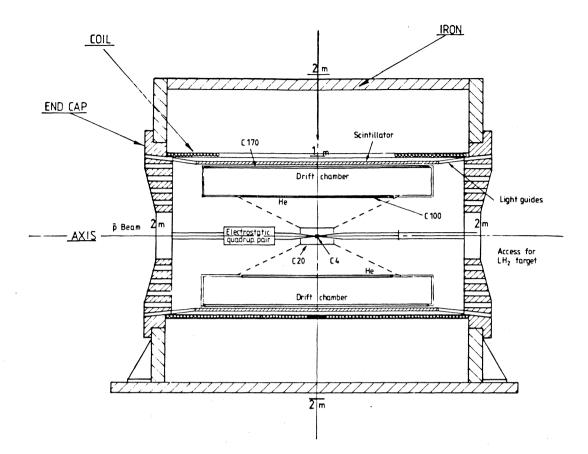
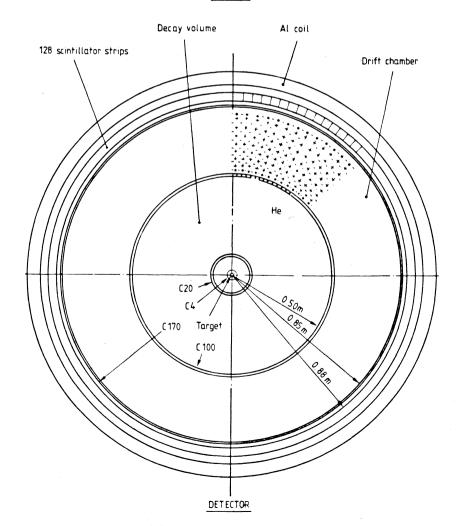
A Proposal for

Tests of Time Reversal and CPT Invariance at LEAR.

Zurich:	H.K.Walter, Inst. f. Mittelenergiephysik der E.T.H. A.v.d.Schaaf plus student, Phys. Inst. d. Univ. N.Lordong and W.Bertl, SIN.	
C. of William and Mary:	R.Winter and R.Welsh, Dept. of Physics.	
U. of Oxford:	N.W.Tanner and E.G.Michaelis, Nuclear Physics, R.H.Dalitz, Theoretical Physics, (theoretical advisor).	
U. of New Mexico:	D.Wolfe, N.Komnino, B.Bassaleck, plus two post-doctoral fellows, Dept. of Physics and Astronomy.	
Ljubljana:	D.Zavrtanik, A.Stanovnik, M.Mikuz, P.Krizan and G.Kernel, Univ. and Jozef Stefan Inst	
Delft:	H.Postma, H.C.Meijer, W.Lourens, R.W.Hollander and C.W.E.v.Eijk, Technische Hogeschool.	
U. of Coimbra:	A.J.P.L.Policarpo and R.Ferreira Marques, Dept. of Physics.	
Birmingham:	J.M.Nelson, J.Lowe, S.Hoath and J.D.Davies, Dept. of Physics.	


Abstract

Experimentally it is known that the symmetry principles of charge conjugation, C, and parity, P, are grossly violated by ordinary β -decay, and that the combined operation CP is violated at the level of 0.1% of the ($\Delta S = 1$) weak interaction. No experiments have yet shown that time reversal invariance T or CPT invariance, which is seen as a corner stone of relativistic field theories, are violated, or are valid at the level of 0.1% of the weak interaction.


Tests of sufficient sensitivity and freedom from bias have been made possible by the high quality anti-proton beam available from LEAR. The annihilation $\bar{p}p$ at rest provides accurately equal numbers of K and \bar{K} , and it is the comparison of the various decays of these particles which directly tests the validity of the symmetry principles CPand CPT, and T in the form of detailed balance. The apparatus shown in the figure consists of two groups of cylindrical detectors separated by a decay volume. The central region (chambers C_4 and C_{20}) identifies the annihilation. The outer detectors (C_{100} , drift chamber, C_{170} , scintillators) locate any charged decay products. All detectors are contained in a solenoidal magnetic field of 0.3 T.

It is proposed to make these K/\bar{K} comparison-tests of symmetry principles using $\sim 10^{12}\bar{p}$ to obtain the statistical accuracy indicated.

CPT	:	$(M_{K^\circ}-M_{\bar{K}^\circ})/(M_{K_L}-M_{K_S}),$	$\sigma \simeq 6 \times 10^{-4}$
CPT	:	$(\tau_{K^+} - \tau_{K^-})/(\tau_{K^+} + \tau_{K^-}),$ c.f. the present limit < 15 × 10 ⁻⁴	$\sigma \simeq 1 \times 10^{-4}$
T	:	$K^{\circ} \rightarrow \bar{K}^{\circ} v. \bar{K}^{\circ} \rightarrow K^{\circ},$ c.f. the result of 65×10^{-4} expec	$\sigma \simeq 4 \times 10^{-4}$ ted from <i>CPT</i> invariance
CP and $CPTin K_{L3} decays:$		$K^{\circ} \rightarrow \pi^{-}e^{+}\nu \ v. \ \bar{K}^{\circ} \rightarrow \pi^{+}e^{-}\bar{\nu},$ c.f. the present limit $< 3 \times 10^{-2}$	$\sigma \simeq 2 \times 10^{-4}$

MAGNET

