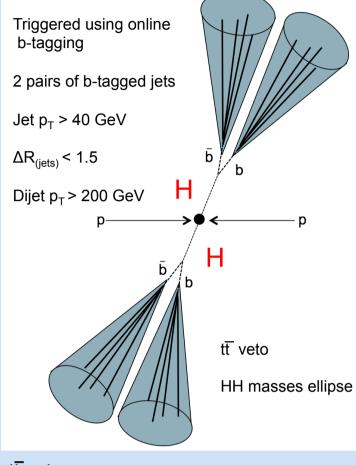
LHCC Poster Session - CERN, 5 March 2014

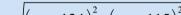

A Search for Resonant Higgs-Pair Production in the bbbb Final State with ATLAS

Introduction

Searching for TeV-scale resonances that decay via two SM Higgs to 4 b-jets

X→HH→bbbb

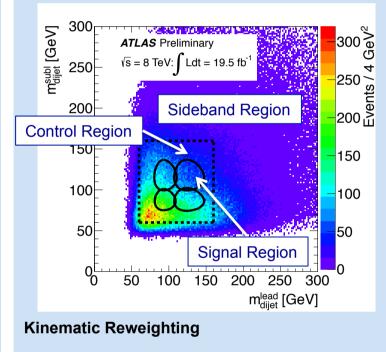
Event Selection


tt veto:

Applied to events with an extra jet close to a dijet

$$X_{tt} = \sqrt{\left(\frac{m_W - 80.4}{0.1m_W}\right)^2 + \left(\frac{m_t - 172.5}{0.1m_t}\right)^2} > 3.2$$

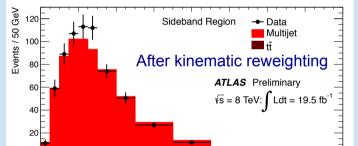
 m_W is the mass of the extra jet and the jet in the dijet with the lowest probability of being a b-jet m_t is the mass of the dijet + extra jet


HH Masses ellipse:

- This final state is promising for higher mass resonance searches due to:
 - Large expected branching ratio of $H \rightarrow b\overline{b}$
 - High p_{T} with which the b-quarks are produced
- Backgrounds: multijet events (90%) and tt events (10%)

Multijet Background

- The multijet background is modelled using data that pass a modified "2-tag" selection
- The 2-tag sample is 98% multijet events
- This is the same selection as in the signal region except only one of the dijets has to be b-tagged
- Regions in the dijet mass plane are defined to normalise, reweight, and test this model
- The Control Region is used for testing the m_{4j} shape and estimating the uncertainty on the multijet background in the signal region


Normalisation

- The Sideband Region of the data sample is 97% pure in multijet events so it can be used for the normalisation
- The event yield in the 2-tag sample is scaled using $\mu_{multijet}$:

$$U_{multijet} = rac{N_{4tag}^{Sideband} - N_{tt,4tag}^{Sideband} - N_{zj,4tag}^{Sideband}}{N_{2tag}^{Sideband}}$$

Where N_{sample} is the number of events in the sideband region of that sample, "4-tag" refers to the usual event selection of 4 b-tagged jets

 From this scaling of the multijet prediction, in the Sideband Region the total number of background events exactly equals the number of events in the data sample

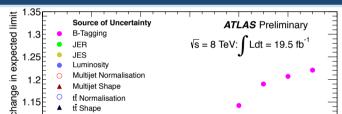
Signal Model

- The baseline signal model used is a first Kaluza Klein excitation of the graviton (G*) in a Randall-Sundrum model, with $k/M_{pl} = 1.0$
- The RS model features a warped extra dimension
- The G* decays to a pair of Higgs bosons with a branching fraction of ~7%
- 11 MC samples spaced 100 GeV apart from 500 GeV – 1.5 TeV were used

tt Background

Normalisation

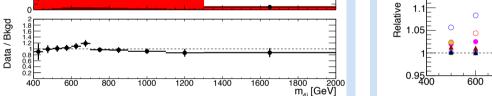
- "tt Control Region" defined as data which pass the 4-tag selection but either one or both dijets fail the tt veto
- Multijet contribution in this region is modelled by a 2-tag sample that also fails the $t\bar{t}$ veto, scaled by $\mu_{multijet}$
- The yield in the tt-bar Signal Region is extrapolated from:

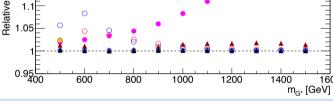

$$\mathbf{V}_{t\bar{t}}^{Bkg} = \frac{\boldsymbol{\mathcal{E}}_{t\bar{t}}}{1 - \boldsymbol{\mathcal{E}}_{t\bar{t}}^{2}} \times N_{t\bar{t}}^{CR}$$

Where ε_{tt} is the efficiency for a dijet in tt-bar event to pass the tt veto, measured from a "lepton+jets tt" data sample.

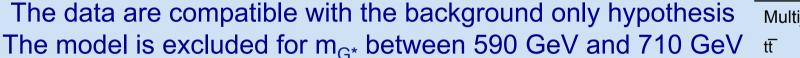
M₄_i Shape

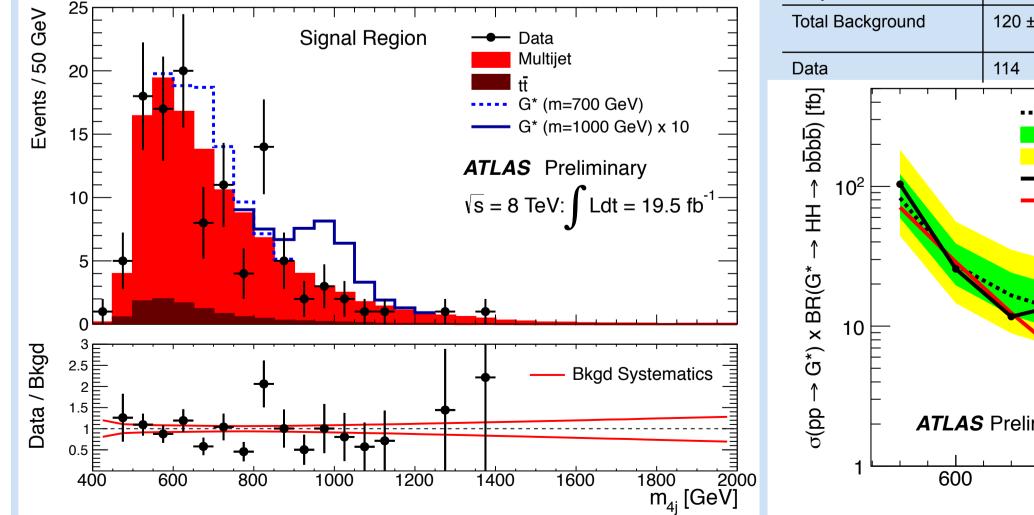
- Derived from MC simulation using the "2-tag" selection
- Systematic uncertainty is derived by comparing the 2-tag and 4-tag m_{4j} distributions in MC


Systematic Uncertainties



$$X_{HH} = \sqrt{\left(\frac{m_1 - 124}{0.1m_1}\right) + \left(\frac{m_2 - 115}{0.1m_2}\right)} < 1.6$$


 $m_{1(2)}$ is the leading (sub-leading) dijet


- The data sample in the Sideband Region was used to reweight the kinematics of the multijet background prediction
- This was done to remove biases introduced from the loosened b-tagging requirements

Results

Sample **Signal Region** Multijet 109 ± 5 For local p_0 , 10 ± 6 maximum significance of 1σ at 0.7 ± 0.2 Z + jets m_{G^*} = 500 GeV and m_{G^*} = 800 GeV 120 ± 8 Expected Limit (95% CL) Expected $\pm 1\sigma$ Expected $\pm 2\sigma$ Observed Limit (95% CL) RS Graviton, $k/\overline{M}_{Planck} = 1.0$ $\sqrt{s} = 8 \text{ TeV}: \int Ldt = 19.5 \text{ fb}^{-1}$ **ATLAS** Preliminary 1000 1200 800 1400 m_{G*} [GeV]

Conclusions

- Searching for TeV-scale resonances that decay via two SM-like Higgs to four b-jets, X→HH→bbbb, in the mass range 500 GeV 1.5 TeV
- Used spin-2 KK graviton decaying this way in the bulk RS model, with $k/\overline{M_{pl}} = 1.0$ as benchmark signal model
- The observed data is compatible with the background only hypothesis
- The model is excluded for m_{G}^{*} between 590 GeV and 710 GeV

For more information, see the conference note:

ATLAS-CONF-2014-005

Rebecca Falla (UCL), for the ATLAS Collaboration