

CERN-ACC-NOTE-2013-0040

2013-11-14

{ddarvas,bfernand,eblanco}@cern.ch

Transforming PLC programs into formal models for verification purposes

Daniel Darvas, Borja Fernandez Adiego, Enrique Blanco
EN/ICE/PLC, CERN

Keywords: PLC, Formal methods, Program modelling, Verification, UNICOS

Abstract

Most of CERN’s industrial installations rely on PLC-based (Programmable Logic Controller) control
systems developed using the UNICOS framework. This framework contains common, reusable
program modules and their correctness is a high priority. Testing is already applied to find errors, but
this method has limitations. In this work an approach is proposed to transform automatically PLC
programs into formal models, with the goal of applying formal verification to ensure their correctness.
We target model checking which is a precise, mathematical-based method to check formalized
requirements automatically against the system.

This is an internal CERN publication and does not necessarily reflect the views of the CERN management.

Internal Note CERN-ACC-NOTE-2013-0040
Darvas et al.: Transforming PLC programs into formal models for verification purposes

Contents

 Introduction ... 1 1
1.1 CERN .. 1

1.2 UNICOS .. 1

1.2.1 UNICOS applications in real life .. 1

1.3 Motivation ... 2

1.4 NuSMV model format ... 2

 Overview of the workflow .. 2 2
 Parsing ST code ... 3 3

3.1 Xtext .. 3

3.2 Representing the ST grammar in Xtext ... 4

3.3 Current state of the ST grammar ... 5

 Intermediate model .. 5 4
4.1 Advantages of using an intermediate model ... 5

4.2 Development of the intermediate model ... 5

4.3 Transformation between parsed ST code and intermediate model .. 7

 Creating formal models ... 10 5
5.1 NuSMV model .. 10

5.1.1 Representation of the interactions ... 12

5.2 Visualization .. 13

 Further challenges ... 13 6
6.1 Data type representation .. 13

6.2 Value type handling ... 14

6.3 Uninitialized and input variables ... 14

 Additional work ... 15 7
 Future work ... 15 8
 References ... 16 9

Appendix A: Simple transformation example ... 16

A.1 ST code .. 16

A.2 Transformed NuSMV code ... 17

A.3 Visualized intermediate model .. 18

A.4 Source of the visualized intermediate model ... 19

i

Internal Note CERN-ACC-NOTE-2013-0040
Darvas et al.: Transforming PLC programs into formal models for verification purposes

 Introduction 1
This chapter overviews the background and the motivation of the current work. To support the
motivation, CERN and the UNICOS framework are introduced first.

1.1 CERN

CERN is the European Organization for Nuclear Research, founded in 1954. The goal of this particle
physics laboratory is to study and understand the fundamental structure of the universe, as well as
application and transfer of new technologies. For this reason, they use the world’s largest and most
complex scientific instruments [1]. These complex instruments, the particle accelerators and detectors
need accurate and reliable auxiliary systems, like cooling and ventilation, cryogenics, gas systems, etc.

Many of these systems need conventional industrial controllers and for that reason, PLCs
(Programmable Logic Controllers) are widely used. In order to increase the efficiency of the
development of process control systems based on PLCs, the engineers at CERN reinforced the concept
of standardization of the control systems. They developed a framework called UNICOS (Unified
Industrial Control System) that makes possible to reuse common components of the control system by
using standard libraries.

1.2 UNICOS

UNICOS1 is a CERN in-house framework to develop industrial control applications [2]. It mainly
covers the upper two layers of the classical industrial process control systems: the supervision and the
control layers.

This framework consists of a library of generic objects, a development methodology, and
finally, a code generation tool.

UNICOS contains about 20 generic objects, called baseline objects. These objects are
representing I/O objects (e.g. digital and analogue inputs and outputs), interface objects (parameters
and statuses exchanged between the supervision and control layers), field objects (representations of
physical real equipment, e.g. valves, motors, heaters, etc.) and control objects (e.g. alarms, PID
control) [2]. These are the base components of every UNICOS program. Beside the baseline objects,
the UNICOS projects consist of an application-specific specification files and the implementation of
the custom (application-specific) logic. The specification details the instantiation of the baseline
objects and the connections between them. The custom logic contains the application-specific PLC
code. Based on the baseline objects and the application-specific data, the source code for the
supervision and control layers can be generated automatically. This makes the application
development easier and faster, and also reduces the risk of faults by reducing the amount of
handwritten source code.

1.2.1 UNICOS applications in real life

UNICOS-based applications are used widely at CERN in large installations as the LHC (Large Hadron
Collider) , particle physics detectors (e.g., ALICE, CMS, ATLAS) and other experimental facilities
(e.g. ISOLDE) mainly for the industrial control of the auxiliary systems as cooling, gas , cryogenics2
and vacuum systems [3]. UNICOS has also been applied in other areas as interlock based applications
(LHC collimators) or motion systems (e.g. winding machines, ATLAS Big wheels…).

1 It has no connection to the operating system developed by Cray Research, Inc.for the Cray supercomputers which has the
same name UNICOS.
2 Cryogenics is the study of the very low temperature. In the LHC, superconducting magnets are used which are cooled
below 2 K.

1

Internal Note CERN-ACC-NOTE-2013-0040
Darvas et al.: Transforming PLC programs into formal models for verification purposes

1.3 Motivation

As it was described earlier, every UNICOS application is based on the same baseline objects. The
source code of these objects has been created manually based on a non-formal specification. As it is a
common component of every UNICOS application, it is crucial to ensure that the code of these
components is correct. Indeed, manual and automated testing is already applied for the baseline
objects, however, no formal verification was used since their development.

Therefore a project started in the EN-ICE-PLC section of CERN to verify formally the baseline
objects and the generated PLC code. This work is part of this project and the current goal was to
create a formal model representation for the baseline objects for verification purposes.

The source code generated by UNICOS is a manufacturer-dependent ST (Structured Text) code,
currently producing code for Siemens and Schneider and therefore multiple variants exist. Similarly,
multiple model checkers exist with different model formats. Because of the similarities and the limited
resources, this work focuses only on one input and one output language: namely the Siemens SCL
format as input language and the NuSMV model format as output language.

1.4 NuSMV model format

NuSMV is a symbolic model checker developed by FBK-IRST, Carnegie Mellon University,
University of Genova and University of Trento [4]. For this work, NuSMV is considered as a black
box; only the input model format is of our interest. This input language is briefly introduced here.

The input language of NuSMV describes the input model as a Finite State Machine (FSM)
whose states are determined by the current values of variables. The definition of a model consists of
variable declarations and the transition rules between states. There are two possible definition
syntaxes for the transition rules: with the TRANS keyword, (from_state; to_state) pairs can be
declared, with the ASSIGN keyword, the next states of each variable can be declared. If no next state is
defined for a variable, then it will non-deterministically get a value from its range.

This is a very short overview of the NuSMV language. NuSMV is much richer as it supports the
usage of modules and module instances, invariants, initialization statements, special variables,
constants, fairness constraints, etc. For a detailed overview, please refer to [4].

 Overview of the workflow 2
The first part of the work was to propose a workflow for the transformation between the PLC ST
source code (Siemens SCL format) and the formal model (NuSMV format).

The first step of the workflow is to create an easy-to-handle representation of the input
language. It is not needed to create a parser from scratch, because several already existing tools can
help this work. To parse the ST code, more precisely to build the abstract syntax tree from a textual ST
code representation, Xtext [5] is used. Xtext is a well-known Eclipse-based framework for Domain
Specific Languages. It creates an object model (abstract syntax tree, AST), a parser and an editor
based on a given grammar. Therefore a grammar for the Siemens SCL language had to be developed.

After the abstract syntax tree is given, it has to be translated to the NuSMV format. The first
idea was to directly translate the parsed ST code (more precisely, the abstract syntax tree
representation of the ST code) to the output language. A proof-of-concept translator was developed
during the first days, which worked well for the simple constructions (like variable assignments,
conditional statements), but as soon more complex constructions were added (like function calls), it
became complicated and unmaintainable. The problem is that two different transformations are
needed: the program flow has to be represented by automata, and also the automata representation has
to be translated to NuSMV. The first one is a “semantic” transformation, while the second is a

2

Internal Note CERN-ACC-NOTE-2013-0040
Darvas et al.: Transforming PLC programs into formal models for verification purposes

“syntactic” transformation. A related problem is that during the output generation, the order of the
operations is highly influenced by the format of the output, which makes the transformation even more
difficult.

For this reason, a new approach is proposed, which decouples the two translations by
introducing an intermediate model. This intermediate model represents a network of automata, which
is close to the theory of the automata, in this way it can be relatively easily represented in NuSMV, but
in other modelling languages as well. It also contains some features that are useful for the
representation of ST codes (like transition synchronization, which is missing from the NuSMV
language). Furthermore, this intermediate model can be built in an order which is appropriate for the
program flow, the output syntax does not influence it. The intermediate model can make the approach
more flexible, as it will be discussed later.

In this way, the workflow of the transformation between ST code and NuSMV model can be
drawn up, as it can be seen on Fig. 1.

Fig. 1: Overview of the workflow (with examples)

The workflow consists of three main phases:

1. Parsing PLC ST source code (creating in-memory object representation of the source
code).

2. Transforming the parsed ST source code to an intermediate automata model.

3. Creating NuSMV formal models (and visualization) from the intermediate automata
model.

The following sections overview each phase in details.

 Parsing ST code 3

3.1 Xtext

Xtext [5] is an open-source Eclipse-based framework for developing domain specific languages. It
covers all the main needs: it generates an editor, a parser and an abstract syntax tree model from the
given grammar.

PLC ST
code

ST Abstract
Syntax Tree

object model

Xtext grammar-
based parser Automata Network

object model

Hand-written
Java

NuSMV model

Graphical
representation

(GraphViz)

Xtend template-based
transformation

Xtend template-based
transformation

IF condition = TRUE THEN
 A := FALSE;
END_IF;

StateState

StateState

TransitionTransition

IfStatementIfStatement

Assignment
Statement

Assignment
Statement

ConditionCondition

Defined by Xtext
grammar

Defined by EMF
metamodel

init(loc):=s1;
next(loc):= case
 loc = s1 : s2;
 …
esac;

3

Internal Note CERN-ACC-NOTE-2013-0040
Darvas et al.: Transforming PLC programs into formal models for verification purposes

As input, Xtext uses a custom grammar format. This format is similar to the widely used BNF
(Backus–Naur Form), but it has some extensions which enables Xtext to create easy-to-use object
models. For example, let’s see the next small grammar in BNF:

<Variable> ::= <ID> ‘:’ (‘INT’ | ‘BOOL’) ‘;’
<VariableAssignment> ::= <ID> ‘:=’ (<IntLiteral> | <BoolLiteral>) ‘;’

The same grammar would be represented in Xtext format like this:

Variable: name=ID ':' type=('INT'|'BOOL') ';' ;
VariableAssignment: variable=[Variable] ':=' value=(IntLiteral|BoolLiteral) ';';

The first difference between the BNF and the Xtext form is that the elements of the rules can be
named. From these named parts, fields will be generated in the corresponding (generated) classes. For
example, the Variable class will have a name and a type field, as it can be seen on Fig. 2 which shows
the corresponding part of the generated EMF metamodel. The name property is a special property in
Xtext, it is used to identify objects.

Fig. 2: Example EMF metamodel generated from an Xtext grammar

Further difference is that object references can be expressed with the grammar. In the
VariableAssignment rule, the type of the variable field will be Variable, which is identified by the
name value of the Variable. These references will be parsed by Xtext automatically.

The following example input can be successfully parsed with the given example grammar
(assuming that the missing referenced parts are implemented too):

v1 : INT;
v2 : BOOL;
v1 := 123;

This is just a short introduction to Xtext. For a detailed introduction, see the Xtext
documentation [6].

3.2 Representing the ST grammar in Xtext

To use Xtext, the grammar of ST language has to be created in Xtext format. As it was mentioned
before, the standard ST language has many “dialects”. Slightly different ST language is used for
Siemens, Schneider and Beckhoff PLCs. Because it seems to be the most wide-spread and most
complex language, we used the Siemens dialect of the ST language (Siemens SCL) as the base of the
grammar.

To build this grammar, there are two possible approaches:

– Create a full grammar first. The IEC 61131-3 standard [7] contains a grammar for the full ST
language. However, even if this grammar is given, creating an Xtext grammar is non-trivial
because Xtext has some additional needs (naming fields, object references) and limitations (the
grammar cannot be left-recursive, the terminal symbols have to be “deterministic”, the object
references have to be unambiguous, etc.). Therefore creating a full grammar would be a huge
effort. Also, Siemens SCL is slightly different from the standard ST format, these differences
have to be handled too.

4

Internal Note CERN-ACC-NOTE-2013-0040
Darvas et al.: Transforming PLC programs into formal models for verification purposes

– Build the grammar incrementally. In this case, a new grammar can be built based on the real
needs. The advantage of this approach that it will produce a proof-of-concept tool and results
earlier, then the grammar can be extended by the real needs. The disadvantage is that the
incremental grammar building can impose need for code restructuration and this approach
makes the planning more difficult.

To be able to produce early results, the second approach was chosen and the grammar was
developed incrementally.

3.3 Current state of the ST grammar

Currently a simplified ST grammar is implemented. It covers a big part of the ST grammar declared in
the IEC 61131-3 standard. It supports simple variables (with Boolean, integer or real types), arrays
and structures (but structures can only contains simple variables); input, output and input-output
variables; variable assignments, logic and arithmetic expressions, conditional statements, FOR and
WHILE loops, function block and function definition, function calls. Some advanced parts are also
covered, among others, the timed expressions, time value types, pointers and nested structures.
However, some other parts are missing and their implementation is foreseen to be done in the near
future.

 Intermediate model 4
This chapter introduces the intermediate model that is used for representing the formal model on an
abstract level.

4.1 Advantages of using an intermediate model

The first important question is whether it is appropriate to use a new model and then introduce more
transformation steps. This section overviews the reasons.

– By introducing a new abstraction level, the intermediate model hides some difficulties from the
developer of the transformation tool. The intermediate model decouples the ST specialities and
the NuSMV specialities. For example, NuSMV supports using modules, but there is no built-in
support for synchronizing transitions in two different modules3 (which means two transitions
can fire together only).

– The transformation is easily extendable. Adding a new input language (for example the
Schneider syntax of the ST code) or extending the input language (for example adding a new
type of loop) does not modify the generation of the formal models, if there is no need to extend
the intermediate model. Similarly, to add a new output (for example UPPAAL model), there is
no need to modify the input parsing and the automata representation part. In this way, the
intermediate model provides independence between the inputs and the outputs.

– This approach makes possible to perform other operations during the transformation. For
example, reduction and abstraction techniques can be applied on the intermediate model. As it is
an in-memory object model, these techniques can be easily applied (e.g., there is no need to
parse the model). Also, if the reductions are performed on the intermediate model, all the
outputs can benefit from this operation.

4.2 Development of the intermediate model

The intermediate model should comply with three different requirements:

3 It can be expressed with TRANS blocks, but it cannot be expressed with ASSIGN blocks. The usage of these two
constructions cannot be mixed, and ASSIGN blocks provide a better model which is easier to understand and validate.

5

Internal Note CERN-ACC-NOTE-2013-0040
Darvas et al.: Transforming PLC programs into formal models for verification purposes

– The intermediate model should be close to the theory of automata. This guarantees that the
models represented by the intermediate model can be transformed easily to any automaton-
based language. As many model checking tools use an automaton-like input language, this will
allow us to use different model checkers.

– The intermediate model should be easy-to-use, it should hide the difficulties of representation of
the common tasks. For example, it should hide that the synchronization between two automata
cannot be expressed easily in NuSMV.

– The intermediate model should be able to represent all the features of the PLC control systems,
that we want to represent.

As a compromise, an intermediate model close to the automata network model used in
UPPAAL [11] was developed, but without its logic clock representation. Its main components are the
following:

– Automata system: represents the whole system, which may contain several (1 or more)
automata.

– Automaton (automaton template): represents an automaton template (the same as module in
NuSMV or template in UPPAAL). It can have multiple instances and it contains states and
variables.

– Automaton instance: instance of an automaton template.

– State: a state (location) in an automaton. (It means just the location of the represented
automaton, without the variable valuations.)

– Transition: state transition between two states (locations) in an automaton. Interactions and
variable assignments can be attached to it.

– Interaction: synchronization constraint between two transitions in two automaton instance.
(Similar to the synchronization in UPPAAL or connector in BIP.)

– Variable assignment: assigns a given value to an instance of a variable.

– Automata Expression: an expression used as value or condition. Can be a constant, a variable
instance or an arithmetic or logic operation.

Important to notice, that this automata model is deterministic, as the execution of the subset of
PLC programs aim to be modelled is deterministic too. Therefore it is not enabled to have two
different interactions enabled at the same time.

The intermediate model was created using EMF (Eclipse Modelling Framework). The diagram
of the metamodel can be seen on Fig. 3.

6

Internal Note CERN-ACC-NOTE-2013-0040
Darvas et al.: Transforming PLC programs into formal models for verification purposes

Fig. 3: Structure of intermediate model (extract)

4.3 Transformation between parsed ST code and intermediate model

The basic idea of this transformation is that we assign “labels” to every location where the program
counter (instruction pointer) can point. In the automaton for every location there is a corresponding
state. The transitions correspond to the possible modifications of the program counter. It can be
conditional (for example in the case of the IF statement). The variable assignments are assigned also to
the transitions.

The PLC programs have a cyclic behaviour. In every execution cycle (called PLC cycle or scan
cycle), they (1) read the input values from the real inputs and store them, (2) execute the program and
calculates the output values, (3) write the computed output values to the real outputs. This cyclic
behaviour should be represented in the automata too. Therefore every automaton will be a loop,
starting from the state initial, which is followed by the defined computation path. After the
computation, the state end will be active, followed by the state initial again.

The transformation between the parsed ST code and the intermediate model is implemented in
pure Java.

The main transformation rules are given in an intuitive format. (The “labels” (used as states in
the automata) are shown in parentheses with italic font, like this: (s0). The transformation rules are
recursive, the rule names between < > signs means that this rule should be applied recursively.)
Interactions are marked using the UPPAAL notation, i.e. with ‘?’ and ‘!’ signs. In this intermediate
model, the two parties of the interaction are equivalent, therefore the ‘?’ and ‘!’ signs can be
exchanged without the modification of the meaning.

7

Internal Note CERN-ACC-NOTE-2013-0040
Darvas et al.: Transforming PLC programs into formal models for verification purposes

Rule name ST structure Automata model
Program (init)

<StatementList>
(end)

StatementList (s1) <Statement1>;

(s2) <Statement2>;
…
(sn) <Statementn>;

IfStmt (s0) IF <c : condition> THEN

 (s1) <StatementList>
ELSE
 (s2) <StatementList>
END_IF

AssignmentStmt (s0) X := <Y : constant or

variable>;

init

end

Statement1

s1

Statement2

s2

...

[c]

Statement
List

s1

Statement
List

s2

[not c]

s0

/ X:=Y

following

s0

8

Internal Note CERN-ACC-NOTE-2013-0040
Darvas et al.: Transforming PLC programs into formal models for verification purposes

FuncDeclaration FUNCTION name : type
 …
END_FUNCTION

–

FuncReturnVal <in the declaration of function
func>
…
(s’) func := X;
…

FunctionStmt (s0) X :=

FUNC(F1 := X1, F2 := X2, …);

It has to be noticed, that the current representation only supports finite function call chains, i.e.
recursion is not allowed. However, it is not a real limitation, as PLC programs should not use
recursion according to the standard [7].

A basic example can be seen in Appendix A.

/ returnVal:=X

following

s’

/ X:=main.iFUNC1.returnVal;
…
FUNC1_ret?

following

s0_
ret

/ main.iFUNC1.F1:=X1;
…
FUNC1_call!

s0

init

end

FUNC1_call?

FUNC1_ret!

9

Internal Note CERN-ACC-NOTE-2013-0040
Darvas et al.: Transforming PLC programs into formal models for verification purposes

 Creating formal models 5
This chapter introduces the transformation between the intermediate model and the outputs. In the
frame of this work, the intermediate model was converted to two different output formats: the NuSMV
model format and a format needed for visualization.

As both output formats are textual, the Xtend technology [8] was used for this transformation.
Basically, Xtend is a Java-based, higher level programming language (a “Java dialect”). Its main
advantage is the support of templates which enables the programmer to create maintainable output
generators easily. To illustrate this feature, a small example is shown on Table 1. The example Java
and Xtend code is equivalent, i.e. the value of the variable str will be the same.

Table 1: Example of differences between Java and Xtend syntax

Java str = "MODULE " + name + "\nVAR " + vname + " : " + vtype + ";\nEND";

Xtend str = ''' MODULE «name»
 VAR «vname» : «vtype»;
 END''';

Example str : MODULE modulename
 VAR v1 : integer;
 END''';

5.1 NuSMV model

Creating NuSMV model from the intermediate state is relatively easy as for most of the elements there
is a straightforward mapping.

For every automaton template, a new NuSMV module will be created. Each NuSMV module
has a location variable which stores the current state (location) of the corresponding automaton. The
domain of this variable is the set of possible states of the automaton. The NuSMV modules have also
variables corresponding to the variables declared in the source automaton in the intermediate model.

The following table summarizes the transformation from the intermediate model to the NuSMV
model.

Intermediate model element NuSMV model element

AutomataSystem The whole NuSMV model, including a main module.
The main module contains a variable interaction, which is
described in Section 5.1.1.

MODULE main
VAR
 interaction : {NONE, i1, i2, …};

Automaton (template) Module (MODULE) +
location variable that represents the current state of the
automaton.

MODULE automaton_name(main, interaction)
VAR
 location : {s0, s1, s2, …};

10

Internal Note CERN-ACC-NOTE-2013-0040
Darvas et al.: Transforming PLC programs into formal models for verification purposes

Intermediate model element NuSMV model element

AutomatonInstance Instance of the corresponding module in module main

MODULE main
VAR
 inst_automaton : automaton(self, interaction);

Variable Variable (VAR) in the corresponding module. The variable will
have a next-state statement in this module, and if it is not
modified by an assignment explicitly, it will keep its value.

MODULE automaton_name
VAR
 var_name : var_type;
 …
ASSIGN
 next(var_name) := case
 …
 TRUE: var_name;
 esac;

State A value of the corresponding location variable

Transition ASSIGN rule for the corresponding location variable.

If transition t goes from s1 to s2 with a guard g, the location
variable of the corresponding automaton will be extended as
follows:

next(loc) := case
 …
 loc = s1 & g : s2;
 …
esac;

If an interaction is also connected to the transition, it is also added
as a condition, as it is described in Section 5.1.1.

Variable assignment ASSIGN rule for the corresponding variable

If transition t goes from s1 to s2 with a guard g, and assigns Expr
to the variable v, the next-state definition of the variable v will be
extended as follows:

next(v) := case
 …
 loc = s1 & g : Expr;
 …
esac;

Note that currently it is not allowed to have two transitions from
the same location with the same guards.

Interaction Complex representation, see Section 5.1.1

11

Internal Note CERN-ACC-NOTE-2013-0040
Darvas et al.: Transforming PLC programs into formal models for verification purposes

5.1.1 Representation of the interactions

As NuSMV does not support synchronization, the interactions have to be represented in other way.4
The main transformation rules are the following:

– The main module contains an interaction variable. Its possible values are the possible
interactions and the “NONE” value.

– Every module instance is instantiated in the main module. Every module has two parameters:
the interaction variable and the main variable. The latter provides a reference for the main
module to every instance. In this way, every module can access every variable.

– The model is deterministic, therefore if an interaction is enabled, it has to fire. This necessity is
expressed by invariants (in INVAR block) in the main module. The invariant contains the
source locations of the connected transitions and their guards.

– If a transition has an attached interaction, this is added as an additional condition in the
corresponding part of the ASSIGN block of the location variable.

The following example shows a model with one interaction defined.

MODULE M1(interaction, main)
 VAR
 location : {initial, s0, s1, end};
 ASSIGN
 init(location):=initial;
 next(location):=case
 location = initial : s0;
 location = s0 & interaction = i1 : s1;
 location = s1 : end;
 location = end : initial;
 TRUE : location;
 esac;
END;
MODULE M2(interaction, main)
 VAR
 location : {initial, s0, end};
 ASSIGN
 init(location):=initial;
 next(location):=case
 location = initial : s0;
 location = s0 & interaction = i1 : end;
 location = end : initial;
 TRUE : location;
 esac;
END;
MODULE main
 VAR
 interaction : {NONE, i1};
 instM1 : M1(interaction, self);
 instM2 : M2(interaction, self);
 INVAR
 (instM1.location = s0 & instM2.location = s0

4 The idea is influenced by the BIP translation of Wang Qiang.

12

Internal Note CERN-ACC-NOTE-2013-0040
Darvas et al.: Transforming PLC programs into formal models for verification purposes

 <-> interaction = i1);
END;

5.2 Visualization

It was not a primary goal, but for demonstration and debugging purposes it was useful to create a
graphical representation for the intermediate automata model. For this subtask, we used Graphviz [9],
as it provides visualization for graph-like models. The input of GraphViz is a simple text file which
describes the nodes and the edges of the graph. Also, there is a possibility to create clusters in the
graph.

The mapping between the intermediate model and the Graphviz model is straightforward. Every
automaton instance became a cluster in Graphviz. The states are nodes and the transitions are edges
between the corresponding nodes. The variable assignments and the interactions are expressed by
labels attached to edges.

A simple visual output example (the graphical output and the corresponding source) can be seen
in Appendix A.3.

 Further challenges 6
This section overviews some additional challenges about the transformation.

6.1 Data type representation

Every data type defined in ST has to be represented in NuSMV too. In this work, only a reduced set of
base types were used: Boolean types, integer types and real types. (Time types, like TIME,
TIME_OF_DAY, etc. and the type CHAR are also implemented, but they are not discussed here.)

Boolean types are easy to represent in NuSMV, as NuSMV have Boolean type too.

– For the integers, NuSMV have two possibilities: intervals (like 0..255) or words (which are
fixed length bit arrays). First, intervals seemed to be better, because it is easier to handle later.
However, when we tried to represent larger types, like INT which is a 16-bit signed integer
type, a dramatic performance dropdown was experienced. Inspecting the pre-processed NuSMV
model (so-called flatted model that can be written to a separate file using NuSMV) it was
observed that the interval types are converted to enumerations internally, which is not practical
for large types. Therefore we represented the integer values as words. The consequences are
discussed in the next chapter.

– NuSMV does not support floating-point values, but in the UNICOS baseline objects, there are
real values. Simply rounding (or truncation) them to integers could produce an inacceptable
inaccuracy. For example, the expression X<0.05 could mean “a value is less than 5%”, while its
truncated equivalent X<0 would mean “a value is negative”. If X represents a percentage, the
first is a valid expression, while the second is impossible. Therefore we used another
“abstraction”: all the floating-point values are represented as fixed-point values with
preconfigured precision. For example, if the precision is configured to 1000, the floating-point
value 3.14159265 will be represented as integer 3141 in NuSMV. This provides better accuracy
than the simple rounding, but there are still two problems:

• The operations in fixed-point arithmetic are different from the simple integer
arithmetic. The addition is the same, but the multiplication and division is slightly
different because the precision constant. If the original real values are 𝑋 and 𝑌, their
NuSMV representation is 𝑋′ = 𝑋 ⋅ 𝑃𝑅𝐸𝐶 and 𝑌′ = 𝑌 ⋅ 𝑃𝑅𝐸𝐶. Their product 𝑋 ⋅ 𝑌
should be 𝑋 ⋅ 𝑌 ⋅ 𝑃𝑅𝐸𝐶 in NuSMV, but 𝑋′ ⋅ 𝑌′ = 𝑋 ⋅ 𝑌 ⋅ 𝑃𝑅𝐸𝐶2. Therefore at each

13

Internal Note CERN-ACC-NOTE-2013-0040
Darvas et al.: Transforming PLC programs into formal models for verification purposes

multiplication, the result has to be divided by the precision constant. Similar applies to
the division too.

• The floating-point representation does not have as strict value limits as the integer
types. (For example, the value range of the 32-bit floating-point type used in SCL is
approximately −3.4 ⋅ 1038. . 3.4 ⋅ 1038, while the 32-bit integer value should be
between –2147483648 and 2147483647.) As the fixed-point values are stored as
integers, these limits apply to them also. Therefore the size of variables storing the
fixed-point values have to be chosen carefully, and the user has to be informed about
the restrictions imposed to the possible values, who can decide if it is an acceptable
restriction or not.

6.2 Value type handling

NuSMV uses a strong typing system meaning that every variable has a type and every constant is also
typed. There is no implicit type conversion, that means the X:=Y statement is forbidden, if X and Y
have different types. For variables, the same applies to the ST language, but there is no such restriction
in ST for the constants. Therefore it has to be handled during the transformation.

For example, the variable assignment in ST “X:=1” should be transformed to NuSMV in the
following way:

– if X is BOOL in ST: X:=TRUE;

– if X is INT in ST: X:=0sd16_1; (it means signed decimal 1 represented on 16 bits)

– if X is UDINT in ST: X:=0ud32_1; (it means unsigned decimal 1 represented on 32 bits)

– if X is REAL in ST: X:=0sd32_1000; (it means signed decimal 1000 represented on 32
bits, if the precision constant is 1000, see Section 6.1)

– …

Therefore it is not enough to simply transform the ST expressions into NuSMV, first the type of
every expression element has to be identified.

6.3 Uninitialized and input variables

According to the standard [7], the value of the uninitialized variables is implementation-specific;
therefore we cannot have assumptions about that. The same applies to the input variables: we does not
have assumptions about the input values, therefore we have to handle them as random values. For this
reason, every uninitialized and input variable are initialized to a random value at the beginning of
every PLC cycle. This is easy for the Boolean types:

next(B) := case
 loc = initial : {TRUE, FALSE};
 …
esac;

But the same approach does not work for the integer types, as it is syntactically forbidden to
create a non-deterministic value assignment. However, NuSMV assigns random value to each
variable, if no assignment was made for the next value. But in the assignment block, the case should
cover all possibilities (practically it has to have a last statement which is always true). Therefore for
every integer values without explicit initial value, we added a random variable in the main module,
whose next state is not restricted; therefore it always contains a random value. This value can be used
for the explicitly not initialized variables. It has to be noticed, that it can have negative impact on the
performance of the model checking, as it largely increases the reachable state space.

14

Internal Note CERN-ACC-NOTE-2013-0040
Darvas et al.: Transforming PLC programs into formal models for verification purposes

In the UNICOS framework, a special kind of variable exists, called parameter. The parameters
are used to specialize the general objects for their specific role. For example, the same object is used
to control a valve, a heater or a motor, and the parameters make possible to adapt the object to the
particularities. In the ST code, parameter is an input variable, therefore in the model its value is
unknown (can be chosen non-deterministically), but it is known, that during the execution its value is
not changed. These variables can be handled easily in NuSMV: they do not have initial assignment,
but after they will keep their values.

 Additional work 7
To have a usable editor produced by Xtext, some additional work was needed, as the default scoping
rules had to be modified. By default, Xtext uses fully qualified names internally to identify the named
elements (in this context it means variables, functions, structures, etc.). This allows for example to
have variables in different functions with the same name. If it is not modified, every variable is
resolved in the scope of its container. But consider the following function call: FOO(X1 := F1, X2 :=
F2);. In this case, the scope of variables F1 and F2 are the same, as the scope of the function call
itself. But the X1 and X2 variables are typically non-existing in this scope, as they are defined in the
definition if the function FOO. Therefore we modified the default scoping method to provide the
appropriate scope for the function call parameters. The same applies the variables defined inside
structures.

Also, some constraints existing in SCL cannot be expressed by the grammar. The editor
generated by Xtext can be extended by additional validators. Some new validators were created, for
example for validating that no return value is given in a void function, variable names are unique in a
function or function block, no value is assigned to a constant value, etc. A screenshot of the editor can
be seen on Fig. 4.

Fig. 4: Example ST code editor

 Future work 8
The work presented in this report will be continued. The first goal is to extend the grammar to cover
all features necessary to parse and translate the UNICOS baseline objects. Later, the translation of
more complex PLC programs is planned (e.g. analysis of the TSPP – Time Stamp Push Protocol).

15

Internal Note CERN-ACC-NOTE-2013-0040
Darvas et al.: Transforming PLC programs into formal models for verification purposes

As the last stage, it will be possible to formalize the requirements and verify them on the
formalized models. If necessary, translation to other modelling languages will be developed, e.g. to the
input language of UPPAAL [12], BIP [13] or PetriDotNet [10]. Similarly, new input languages, like
SFC or IL can be developed.

 References 9
[1] CERN website, About CERN section.

http://home.web.cern.ch/about
[2] UNICOS website.

https://j2eeps.cern.ch/wikis/display/EN/UNICOS
[3] UNICOS website, applications subpage.

https://j2eeps.cern.ch/wikis/display/EN/UNICOS+Applications
[4] NuSMV website.

http://nusmv.fbk.eu/
[5] Xtext website.

http://www.eclipse.org/Xtext/
[6] Xtext documentation.

http://www.eclipse.org/Xtext/documentation/2.4.0/Documentation.pdf
[7] IEC 61131-3:2013 standard. Programmable controllers - Part 3: Programming languages
[8] Xtend website.

http://www.eclipse.org/xtend/
[9] Graphviz website.

http://www.graphviz.org/
[10] PetriDotNet website

http://petridotnet.inf.mit.bme.hu/
[11] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on UPPAAL,” in International School on

Formal Methods for the Design of Computer, Communication, and Software Systems, SFM-RT
2004. Revised Lectures, ser. LNCS, M. Bernardo and F. Corradini, Eds., vol. 3185. Springer
Verlag, 2004, pp. 200–237.

[12] UPPAAL website
http://www.uppaal.org/

[13] BIP website
http://www-verimag.imag.fr/Rigorous-Design-of-Component-Based.html

Appendix A: Simple transformation example
In this section, a simple example is given: the source ST code, the automatically generated NuSMV
code and the visualization of the intermediate model.

A.1 ST code
 FUNCTION_BLOCK Test
 VAR_INPUT
 x : BOOL;
 y : REAL;
 END_VAR

 VAR_OUTPUT
 out : BOOL;

16

http://home.web.cern.ch/about
https://j2eeps.cern.ch/wikis/display/EN/UNICOS
https://j2eeps.cern.ch/wikis/display/EN/UNICOS+Applications
http://nusmv.fbk.eu/
http://www.eclipse.org/Xtext/
http://www.eclipse.org/Xtext/documentation/2.4.0/Documentation.pdf
http://www.eclipse.org/xtend/
http://www.graphviz.org/
http://petridotnet.inf.mit.bme.hu/
http://www.uppaal.org/
http://www-verimag.imag.fr/Rigorous-Design-of-Component-Based.html

Internal Note CERN-ACC-NOTE-2013-0040
Darvas et al.: Transforming PLC programs into formal models for verification purposes

 END_VAR

 BEGIN
 out := x;
 IF y > 0.1 THEN
 out := FALSE;
 END_IF;
 END_FUNCTION_BLOCK

A.2 Transformed NuSMV code

 MODULE TEST(interaction, main, instNo)
 VAR
 loc : {initial, end, s0, s1, s2};
 X# : boolean;
 Y# : signed word[32];
 OUT : boolean;

 ASSIGN
 init(loc) := initial;
 next(loc) := case
 loc = end : initial;
 loc = initial : s0;
 loc = s0 : s1;
 loc = s1 & ((Y# > 0sd32_10)) : s2;
 loc = s1 & (!((Y# > 0sd32_10))) : end;
 loc = s2 : end;
 TRUE: loc;
 esac;

 next(X#) := case
 loc = initial : {TRUE, FALSE};
 TRUE : X#;
 esac;
 next(Y#) := case
 loc = initial : main.random_r2;
 TRUE : Y#;
 esac;
 next(OUT) := case
 loc = s0 : X#;
 loc = s2 : FALSE;
 TRUE : OUT;
 esac;

 MODULE main
 VAR
 interaction : {NONE };
 inst_Test : TEST(interaction, self, 0);
 -- Randoms
 random_r2 : signed word[32];

 -- INVAR block omitted. There is no interaction.

17

Internal Note CERN-ACC-NOTE-2013-0040
Darvas et al.: Transforming PLC programs into formal models for verification purposes

A.3 Visualized intermediate model

18

Internal Note CERN-ACC-NOTE-2013-0040
Darvas et al.: Transforming PLC programs into formal models for verification purposes

A.4 Source of the visualized intermediate model

digraph G {
 fontsize=11;
 subgraph clusterinst_Test {
 node [shape=ellipse, style=filled];
 color = black;
 fontsize=10;
 ranksep = 0.4;
 label = "inst_Test : Test";
 inst_Test_initial [label = "initial", color=red, fillcolor="white"];
 inst_Test_end [label = "end", color=black, fillcolor="white"];
 inst_Test_s0 [label = "s0", color=black, fillcolor="white"];
 inst_Test_s1 [label = "s1", color=black, fillcolor="white"];
 inst_Test_s2 [label = "s2", color=black, fillcolor="white"];

 inst_Test_end -> inst_Test_initial [label = ""];
 inst_Test_initial -> inst_Test_s0
 [label = "xx:=<RANDOM>;\ly:=<RANDOM>;\l"];
 inst_Test_s0 -> inst_Test_s1 [label = "x:=xx;\l"];
 inst_Test_s1 -> inst_Test_s2 [label = "[(y > 0.1)] \l"];
 inst_Test_s1 -> inst_Test_end [label = "[!((y > 0.1))] \l "];
 inst_Test_s2 -> inst_Test_end [label = "x:=FALSE;\l"];
 }
}

19

	1 Introduction
	1.1 CERN
	1.2 UNICOS
	1.2.1 UNICOS applications in real life

	1.3 Motivation
	1.4 NuSMV model format

	2 Overview of the workflow
	3 Parsing ST code
	3.1 Xtext
	3.2 Representing the ST grammar in Xtext
	3.3 Current state of the ST grammar

	4 Intermediate model
	4.1 Advantages of using an intermediate model
	4.2 Development of the intermediate model
	4.3 Transformation between parsed ST code and intermediate model

	5 Creating formal models
	5.1 NuSMV model
	5.1.1 Representation of the interactions

	5.2 Visualization

	6 Further challenges
	6.1 Data type representation
	6.2 Value type handling
	6.3 Uninitialized and input variables

	7 Additional work
	8 Future work
	9 References
	Appendix A: Simple transformation example
	A.1 ST code
	A.2 Transformed NuSMV code
	A.3 Visualized intermediate model
	A.4 Source of the visualized intermediate model

