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Abstract 
 
Most of CERN’s industrial installations rely on PLC-based (Programmable Logic Controller) control 
systems developed using the UNICOS framework. This framework contains common, reusable 
program modules and their correctness is a high priority. Testing is already applied to find errors, but 
this method has limitations. In this work an approach is proposed to transform automatically PLC 
programs into formal models, with the goal of applying formal verification to ensure their correctness. 
We target model checking which is a precise, mathematical-based method to check formalized 
requirements automatically against the system. 
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 Introduction 1
This chapter overviews the background and the motivation of the current work. To support the 
motivation, CERN and the UNICOS framework are introduced first.  

1.1 CERN 

CERN is the European Organization for Nuclear Research, founded in 1954. The goal of this particle 
physics laboratory is to study and understand the fundamental structure of the universe, as well as 
application and transfer of new technologies. For this reason, they use the world’s largest and most 
complex scientific instruments [1]. These complex instruments, the particle accelerators and detectors 
need accurate and reliable auxiliary systems, like cooling and ventilation, cryogenics, gas systems, etc. 

Many of these systems need conventional industrial controllers and for that reason, PLCs 
(Programmable Logic Controllers) are widely used. In order to increase the efficiency of the 
development of process control systems based on PLCs, the engineers at CERN reinforced the concept 
of standardization of the control systems. They developed a framework called UNICOS (Unified 
Industrial Control System) that makes possible to reuse common components of the control system by 
using standard libraries. 

1.2 UNICOS  

UNICOS1 is a CERN in-house framework to develop industrial control applications [2]. It mainly 
covers the upper two layers of the classical industrial process control systems: the supervision and the 
control layers. 

This framework consists of a library of generic objects, a development methodology,  and 
finally, a code generation tool. 

UNICOS contains about 20 generic objects, called baseline objects. These objects are 
representing I/O objects (e.g. digital and analogue inputs and outputs), interface objects (parameters 
and statuses exchanged between the supervision and control layers), field objects (representations of 
physical real equipment, e.g. valves, motors, heaters, etc.) and control objects (e.g. alarms, PID 
control) [2]. These are the base components of every UNICOS program. Beside the baseline objects, 
the UNICOS projects consist of an application-specific specification files and the implementation of 
the custom (application-specific) logic. The specification details the instantiation of the baseline 
objects and the connections between them. The custom logic contains the application-specific PLC 
code. Based on the baseline objects and the application-specific data, the source code for the 
supervision and control layers can be generated automatically. This makes the application 
development easier and faster, and also reduces the risk of faults by reducing the amount of 
handwritten source code. 

1.2.1 UNICOS applications in real life 

UNICOS-based applications are used widely at CERN in large installations as the LHC (Large Hadron 
Collider) , particle physics detectors (e.g., ALICE, CMS, ATLAS) and other experimental facilities 
(e.g. ISOLDE) mainly for the industrial control of the auxiliary systems as cooling, gas , cryogenics2 
and vacuum systems [3]. UNICOS has also been applied in other areas as interlock based applications 
(LHC collimators) or motion systems (e.g. winding machines, ATLAS Big wheels…). 

1 It has no connection to the operating system developed by Cray Research, Inc.for the Cray supercomputers which has the 
same name UNICOS. 
2 Cryogenics is the study of the very low temperature. In the LHC, superconducting magnets are used which are cooled 
below 2 K. 
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1.3 Motivation 

As it was described earlier, every UNICOS application is based on the same baseline objects. The 
source code of these objects has been created manually based on a non-formal specification. As it is a 
common component of every UNICOS application, it is crucial to ensure that the code of these 
components is correct. Indeed, manual and automated testing is already applied for the baseline 
objects, however, no formal verification was used since their development. 

Therefore a project started in the EN-ICE-PLC section of CERN to verify formally the baseline 
objects and the generated PLC code. This work is part of this project and the current goal was to 
create a formal model representation for the baseline objects for verification purposes. 

The source code generated by UNICOS is a manufacturer-dependent ST (Structured Text) code, 
currently producing code for Siemens and Schneider and therefore multiple variants exist. Similarly, 
multiple model checkers exist with different model formats. Because of the similarities and the limited 
resources, this work focuses only on one input and one output language: namely the Siemens SCL 
format as input language and the NuSMV model format as output language. 

1.4 NuSMV model format 

NuSMV is a symbolic model checker developed by FBK-IRST, Carnegie Mellon University, 
University of Genova and University of Trento [4]. For this work, NuSMV is considered as a black 
box; only the input model format is of our interest. This input language is briefly introduced here. 

The input language of NuSMV describes the input model as a Finite State Machine (FSM) 
whose states are determined by the current values of variables. The definition of a model consists of 
variable declarations and the transition rules between states. There are two possible definition 
syntaxes for the transition rules: with the TRANS keyword, (from_state; to_state) pairs can be 
declared, with the ASSIGN keyword, the next states of each variable can be declared. If no next state is 
defined for a variable, then it will non-deterministically get a value from its range. 

This is a very short overview of the NuSMV language. NuSMV is much richer as it supports the 
usage of modules and module instances, invariants, initialization statements, special variables, 
constants, fairness constraints, etc. For a detailed overview, please refer to [4]. 

 Overview of the workflow 2
The first part of the work was to propose a workflow for the transformation between the PLC ST 
source code (Siemens SCL format) and the formal model (NuSMV format). 

The first step of the workflow is to create an easy-to-handle representation of the input 
language. It is not needed to create a parser from scratch, because several already existing tools can 
help this work. To parse the ST code, more precisely to build the abstract syntax tree from a textual ST 
code representation, Xtext [5] is used. Xtext is a well-known Eclipse-based framework for Domain 
Specific Languages. It creates an object model (abstract syntax tree, AST), a parser and an editor 
based on a given grammar. Therefore a grammar for the Siemens SCL language had to be developed. 

After the abstract syntax tree is given, it has to be translated to the NuSMV format. The first 
idea was to directly translate the parsed ST code (more precisely, the abstract syntax tree 
representation of the ST code) to the output language. A proof-of-concept translator was developed 
during the first days, which worked well for the simple constructions (like variable assignments, 
conditional statements), but as soon more complex constructions were added (like function calls), it 
became complicated and unmaintainable. The problem is that two different transformations are 
needed: the program flow has to be represented by automata, and also the automata representation has 
to be translated to NuSMV. The first one is a “semantic” transformation, while the second is a 
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“syntactic” transformation. A related problem is that during the output generation, the order of the 
operations is highly influenced by the format of the output, which makes the transformation even more 
difficult. 

For this reason, a new approach is proposed, which decouples the two translations by 
introducing an intermediate model. This intermediate model represents a network of automata, which 
is close to the theory of the automata, in this way it can be relatively easily represented in NuSMV, but 
in other modelling languages as well. It also contains some features that are useful for the 
representation of ST codes (like transition synchronization, which is missing from the NuSMV 
language). Furthermore, this intermediate model can be built in an order which is appropriate for the 
program flow, the output syntax does not influence it. The intermediate model can make the approach 
more flexible, as it will be discussed later. 

In this way, the workflow of the transformation between ST code and NuSMV model can be 
drawn up, as it can be seen on Fig. 1. 

 
Fig. 1: Overview of the workflow (with examples) 

The workflow consists of three main phases: 

1. Parsing PLC ST source code (creating in-memory object representation of the source 
code). 

2. Transforming the parsed ST source code to an intermediate automata model. 

3. Creating NuSMV formal models (and visualization) from the intermediate automata 
model. 

The following sections overview each phase in details. 

 Parsing ST code 3

3.1 Xtext 

Xtext [5] is an open-source Eclipse-based framework for developing domain specific languages. It 
covers all the main needs: it generates an editor, a parser and an abstract syntax tree model from the 
given grammar. 
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Xtext grammar-
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IF condition = TRUE THEN
   A := FALSE;
END_IF;
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init(loc):=s1;
next(loc):= case
   loc = s1 : s2;
   …
esac;
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As input, Xtext uses a custom grammar format. This format is similar to the widely used BNF 
(Backus–Naur Form), but it has some extensions which enables Xtext to create easy-to-use object 
models. For example, let’s see the next small grammar in BNF: 

<Variable> ::= <ID> ‘:’ (‘INT’ | ‘BOOL’) ‘;’ 
<VariableAssignment> ::= <ID> ‘:=’ (<IntLiteral> | <BoolLiteral>) ‘;’ 

The same grammar would be represented in Xtext format like this:  

Variable: name=ID ':' type=('INT'|'BOOL') ';' ; 
VariableAssignment: variable=[Variable] ':=' value=(IntLiteral|BoolLiteral) ';'; 

The first difference between the BNF and the Xtext form is that the elements of the rules can be 
named. From these named parts, fields will be generated in the corresponding (generated) classes. For 
example, the Variable class will have a name and a type field, as it can be seen on Fig. 2 which shows 
the corresponding part of the generated EMF metamodel. The name property is a special property in 
Xtext, it is used to identify objects. 

 
Fig. 2: Example EMF metamodel generated from an Xtext grammar 

Further difference is that object references can be expressed with the grammar. In the 
VariableAssignment rule, the type of the variable field will be Variable, which is identified by the 
name value of the Variable. These references will be parsed by Xtext automatically. 

The following example input can be successfully parsed with the given example grammar 
(assuming that the missing referenced parts are implemented too): 

v1 : INT; 
v2 : BOOL; 
v1 := 123; 

This is just a short introduction to Xtext. For a detailed introduction, see the Xtext 
documentation [6]. 

3.2 Representing the ST grammar in Xtext 

To use Xtext, the grammar of ST language has to be created in Xtext format. As it was mentioned 
before, the standard ST language has many “dialects”. Slightly different ST language is used for 
Siemens, Schneider and Beckhoff PLCs. Because it seems to be the most wide-spread and most 
complex language, we used the Siemens dialect of the ST language (Siemens SCL) as the base of the 
grammar. 

To build this grammar, there are two possible approaches: 

– Create a full grammar first. The IEC 61131-3 standard [7] contains a grammar for the full ST 
language. However, even if this grammar is given, creating an Xtext grammar is non-trivial 
because Xtext has some additional needs (naming fields, object references) and limitations (the 
grammar cannot be left-recursive, the terminal symbols have to be “deterministic”, the object 
references have to be unambiguous, etc.). Therefore creating a full grammar would be a huge 
effort. Also, Siemens SCL is slightly different from the standard ST format, these differences 
have to be handled too. 

4 
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– Build the grammar incrementally. In this case, a new grammar can be built based on the real 
needs. The advantage of this approach that it will produce a proof-of-concept tool and results 
earlier, then the grammar can be extended by the real needs. The disadvantage is that the 
incremental grammar building can impose need for code restructuration and this approach 
makes the planning more difficult. 

To be able to produce early results, the second approach was chosen and the grammar was 
developed incrementally. 

3.3 Current state of the ST grammar 

Currently a simplified ST grammar is implemented. It covers a big part of the ST grammar declared in 
the IEC 61131-3 standard. It supports simple variables (with Boolean, integer or real types), arrays 
and structures (but structures can only contains simple variables); input, output and input-output 
variables; variable assignments, logic and arithmetic expressions, conditional statements, FOR and 
WHILE loops, function block and function definition, function calls. Some advanced parts are also 
covered, among others, the timed expressions, time value types, pointers and nested structures. 
However, some other parts are missing and their implementation is foreseen to be done in the near 
future. 

 Intermediate model 4
This chapter introduces the intermediate model that is used for representing the formal model on an 
abstract level.  

4.1 Advantages of using an intermediate model 

The first important question is whether it is appropriate to use a new model and then introduce more 
transformation steps. This section overviews the reasons. 

– By introducing a new abstraction level, the intermediate model hides some difficulties from the 
developer of the transformation tool. The intermediate model decouples the ST specialities and 
the NuSMV specialities. For example, NuSMV supports using modules, but there is no built-in 
support for synchronizing transitions in two different modules3 (which means two transitions 
can fire together only).  

– The transformation is easily extendable. Adding a new input language (for example the 
Schneider syntax of the ST code) or extending the input language (for example adding a new 
type of loop) does not modify the generation of the formal models, if there is no need to extend 
the intermediate model. Similarly, to add a new output (for example UPPAAL model), there is 
no need to modify the input parsing and the automata representation part. In this way, the 
intermediate model provides independence between the inputs and the outputs. 

– This approach makes possible to perform other operations during the transformation. For 
example, reduction and abstraction techniques can be applied on the intermediate model. As it is 
an in-memory object model, these techniques can be easily applied (e.g., there is no need to 
parse the model). Also, if the reductions are performed on the intermediate model, all the 
outputs can benefit from this operation. 

4.2 Development of the intermediate model 

The intermediate model should comply with three different requirements: 

3 It can be expressed with TRANS blocks, but it cannot be expressed with ASSIGN blocks. The usage of these two 
constructions cannot be mixed, and ASSIGN blocks provide a better model which is easier to understand and validate. 
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– The intermediate model should be close to the theory of automata. This guarantees that the 
models represented by the intermediate model can be transformed easily to any automaton-
based language. As many model checking tools use an automaton-like input language, this will 
allow us to use different model checkers. 

– The intermediate model should be easy-to-use, it should hide the difficulties of representation of 
the common tasks. For example, it should hide that the synchronization between two automata 
cannot be expressed easily in NuSMV. 

– The intermediate model should be able to represent all the features of the PLC control systems, 
that we want to represent. 

As a compromise, an intermediate model close to the automata network model used in 
UPPAAL [11] was developed, but without its logic clock representation. Its main components are the 
following: 

– Automata system: represents the whole system, which may contain several (1 or more) 
automata. 

– Automaton (automaton template): represents an automaton template (the same as module in 
NuSMV or template in UPPAAL). It can have multiple instances and it contains states and 
variables. 

– Automaton instance: instance of an automaton template. 

– State: a state (location) in an automaton. (It means just the location of the represented 
automaton, without the variable valuations.) 

– Transition: state transition between two states (locations) in an automaton. Interactions and 
variable assignments can be attached to it. 

– Interaction: synchronization constraint between two transitions in two automaton instance. 
(Similar to the synchronization in UPPAAL or connector in BIP.) 

– Variable assignment: assigns a given value to an instance of a variable. 

– Automata Expression: an expression used as value or condition. Can be a constant, a variable 
instance or an arithmetic or logic operation. 

Important to notice, that this automata model is deterministic, as the execution of the subset of 
PLC programs aim to be modelled is deterministic too. Therefore it is not enabled to have two 
different interactions enabled at the same time. 

The intermediate model was created using EMF (Eclipse Modelling Framework). The diagram 
of the metamodel can be seen on Fig. 3. 

6 
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Fig. 3: Structure of intermediate model (extract) 

4.3 Transformation between parsed ST code and intermediate model 

The basic idea of this transformation is that we assign “labels” to every location where the program 
counter (instruction pointer) can point. In the automaton for every location there is a corresponding 
state. The transitions correspond to the possible modifications of the program counter. It can be 
conditional (for example in the case of the IF statement). The variable assignments are assigned also to 
the transitions. 

The PLC programs have a cyclic behaviour. In every execution cycle (called PLC cycle or scan 
cycle), they (1) read the input values from the real inputs and store them, (2) execute the program and 
calculates the output values, (3) write the computed output values to the real outputs. This cyclic 
behaviour should be represented in the automata too. Therefore every automaton will be a loop, 
starting from the state initial, which is followed by the defined computation path. After the 
computation, the state end will be active, followed by the state initial again. 

The transformation between the parsed ST code and the intermediate model is implemented in 
pure Java. 

The main transformation rules are given in an intuitive format. (The “labels” (used as states in 
the automata) are shown in parentheses with italic font, like this: (s0). The transformation rules are 
recursive, the rule names between < > signs means that this rule should be applied recursively.) 
Interactions are marked using the UPPAAL notation, i.e. with ‘?’ and ‘!’ signs. In this intermediate 
model, the two parties of the interaction are equivalent, therefore the ‘?’ and ‘!’ signs can be 
exchanged without the modification of the meaning. 

7 
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Rule name ST structure Automata model 
Program (init) 

<StatementList> 
(end) 

 
StatementList (s1) <Statement1>; 

(s2) <Statement2>; 
… 
(sn) <Statementn>; 

 
IfStmt (s0) IF <c : condition> THEN 

 (s1) <StatementList> 
ELSE 
 (s2) <StatementList> 
END_IF 

 
AssignmentStmt (s0) X := <Y : constant or 

variable>; 

 

init

end

Statement1

s1

Statement2

s2

...

[c]

Statement
List

s1

Statement
List

s2

[not c]

s0

/ X:=Y

following

s0

8 
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FuncDeclaration FUNCTION name : type 
 … 
END_FUNCTION 

– 

FuncReturnVal <in the declaration of function 
func> 
… 
(s’) func := X; 
… 

 
FunctionStmt (s0) X :=  

FUNC(F1 := X1, F2 := X2, …); 

 

 

It has to be noticed, that the current representation only supports finite function call chains, i.e. 
recursion is not allowed. However, it is not a real limitation, as PLC programs should not use 
recursion according to the standard [7]. 

A basic example can be seen in Appendix A. 

/ returnVal:=X

following

s’

/ X:=main.iFUNC1.returnVal;
…
FUNC1_ret?

following

s0_
ret

/ main.iFUNC1.F1:=X1;
…
FUNC1_call!

s0

init

end

FUNC1_call?

FUNC1_ret!
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 Creating formal models 5
This chapter introduces the transformation between the intermediate model and the outputs. In the 
frame of this work, the intermediate model was converted to two different output formats: the NuSMV 
model format and a format needed for visualization. 

As both output formats are textual, the Xtend technology [8] was used for this transformation. 
Basically, Xtend is a Java-based, higher level programming language (a “Java dialect”). Its main 
advantage is the support of templates which enables the programmer to create maintainable output 
generators easily. To illustrate this feature, a small example is shown on Table 1. The example Java 
and Xtend code is equivalent, i.e. the value of the variable str will be the same. 

Table 1: Example of differences between Java and Xtend syntax 

Java str = "MODULE " + name + "\nVAR " + vname + " : " + vtype + ";\nEND"; 

Xtend str = ''' MODULE «name» 
    VAR «vname» : «vtype»;  
  END'''; 

Example str :  MODULE modulename 
    VAR v1 : integer;  
  END'''; 

5.1 NuSMV model 

Creating NuSMV model from the intermediate state is relatively easy as for most of the elements there 
is a straightforward mapping. 

For every automaton template, a new NuSMV module will be created. Each NuSMV module 
has a location variable which stores the current state (location) of the corresponding automaton. The 
domain of this variable is the set of possible states of the automaton. The NuSMV modules have also 
variables corresponding to the variables declared in the source automaton in the intermediate model. 

The following table summarizes the transformation from the intermediate model to the NuSMV 
model. 

 
Intermediate model element NuSMV model element 

AutomataSystem The whole NuSMV model, including a main module. 
The main module contains a variable interaction, which is 
described in Section 5.1.1. 

MODULE main 
VAR 
 interaction : {NONE, i1, i2, …}; 

Automaton (template) Module (MODULE) +  
location variable that represents the current state of the 
automaton. 

MODULE automaton_name(main, interaction) 
VAR 
 location : {s0, s1, s2, …}; 

10 
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Intermediate model element NuSMV model element 

AutomatonInstance  Instance of the corresponding module in module main 

MODULE main 
VAR 
 inst_automaton : automaton(self, interaction); 

Variable Variable (VAR) in the corresponding module. The variable will 
have a next-state statement in this module, and if it is not 
modified by an assignment explicitly, it will keep its value. 

MODULE automaton_name 
VAR 
 var_name : var_type; 
 … 
ASSIGN 
 next(var_name) := case 
  … 
  TRUE: var_name; 
 esac; 

State A value of the corresponding location variable 

Transition ASSIGN rule for the corresponding location variable. 
 
If transition t goes from s1 to s2 with a guard g, the location 
variable of the corresponding automaton will be extended as 
follows: 

next(loc) := case 
 … 
 loc = s1 & g : s2; 
 … 
esac; 

If an interaction is also connected to the transition, it is also added 
as a condition, as it is described in Section 5.1.1. 

Variable assignment ASSIGN rule for the corresponding variable 
 
If transition t goes from s1 to s2 with a guard g, and assigns Expr 
to the variable v, the next-state definition of the variable v will be 
extended as follows: 

next(v) := case 
 … 
 loc = s1 & g : Expr; 
 … 
esac; 

Note that currently it is not allowed to have two transitions from 
the same location with the same guards. 

Interaction Complex representation, see Section 5.1.1 

11 
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5.1.1 Representation of the interactions 

As NuSMV does not support synchronization, the interactions have to be represented in other way.4 
The main transformation rules are the following: 

– The main module contains an interaction variable. Its possible values are the possible 
interactions and the “NONE” value. 

– Every module instance is instantiated in the main module. Every module has two parameters: 
the interaction variable and the main variable. The latter provides a reference for the main 
module to every instance. In this way, every module can access every variable. 

– The model is deterministic, therefore if an interaction is enabled, it has to fire. This necessity is 
expressed by invariants (in INVAR block) in the main module. The invariant contains the 
source locations of the connected transitions and their guards. 

– If a transition has an attached interaction, this is added as an additional condition in the 
corresponding part of the ASSIGN block of the location variable. 

The following example shows a model with one interaction defined. 

MODULE M1(interaction, main) 
 VAR 
  location : {initial, s0, s1, end}; 
 ASSIGN 
  init(location):=initial; 
  next(location):=case 
   location = initial : s0; 
   location = s0 & interaction = i1 : s1; 
   location = s1 : end; 
   location = end : initial; 
   TRUE : location; 
  esac; 
END; 
MODULE M2(interaction, main) 
 VAR 
  location : {initial, s0, end}; 
 ASSIGN 
  init(location):=initial; 
  next(location):=case 
   location = initial : s0; 
   location = s0 & interaction = i1 : end;  
   location = end : initial; 
   TRUE : location; 
  esac; 
END; 
MODULE main 
 VAR 
  interaction : {NONE, i1}; 
  instM1 : M1(interaction, self); 
  instM2 : M2(interaction, self); 
 INVAR 
  (instM1.location = s0 & instM2.location = s0  

4 The idea is influenced by the BIP translation of Wang Qiang. 

12 
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   <-> interaction = i1); 
END; 

5.2 Visualization 

It was not a primary goal, but for demonstration and debugging purposes it was useful to create a 
graphical representation for the intermediate automata model. For this subtask, we used Graphviz [9], 
as it provides visualization for graph-like models. The input of GraphViz is a simple text file which 
describes the nodes and the edges of the graph. Also, there is a possibility to create clusters in the 
graph. 

The mapping between the intermediate model and the Graphviz model is straightforward. Every 
automaton instance became a cluster in Graphviz. The states are nodes and the transitions are edges 
between the corresponding nodes. The variable assignments and the interactions are expressed by 
labels attached to edges. 

A simple visual output example (the graphical output and the corresponding source) can be seen 
in Appendix A.3. 

 Further challenges 6
This section overviews some additional challenges about the transformation. 

6.1 Data type representation 

Every data type defined in ST has to be represented in NuSMV too. In this work, only a reduced set of 
base types were used: Boolean types, integer types and real types. (Time types, like TIME, 
TIME_OF_DAY, etc. and the type CHAR are also implemented, but they are not discussed here.) 

Boolean types are easy to represent in NuSMV, as NuSMV have Boolean type too. 

– For the integers, NuSMV have two possibilities: intervals (like 0..255) or words (which are 
fixed length bit arrays). First, intervals seemed to be better, because it is easier to handle later. 
However, when we tried to represent larger types, like INT which is a 16-bit signed integer 
type, a dramatic performance dropdown was experienced. Inspecting the pre-processed NuSMV 
model (so-called flatted model that can be written to a separate file using NuSMV) it was 
observed that the interval types are converted to enumerations internally, which is not practical 
for large types. Therefore we represented the integer values as words. The consequences are 
discussed in the next chapter. 

– NuSMV does not support floating-point values, but in the UNICOS baseline objects, there are 
real values. Simply rounding (or truncation) them to integers could produce an inacceptable 
inaccuracy. For example, the expression X<0.05 could mean “a value is less than 5%”, while its 
truncated equivalent X<0 would mean “a value is negative”. If X represents a percentage, the 
first is a valid expression, while the second is impossible. Therefore we used another 
“abstraction”: all the floating-point values are represented as fixed-point values with 
preconfigured precision. For example, if the precision is configured to 1000, the floating-point 
value 3.14159265 will be represented as integer 3141 in NuSMV. This provides better accuracy 
than the simple rounding, but there are still two problems: 

• The operations in fixed-point arithmetic are different from the simple integer 
arithmetic. The addition is the same, but the multiplication and division is slightly 
different because the precision constant. If the original real values are 𝑋 and 𝑌, their 
NuSMV representation is 𝑋′ = 𝑋 ⋅ 𝑃𝑅𝐸𝐶 and 𝑌′ = 𝑌 ⋅ 𝑃𝑅𝐸𝐶. Their product 𝑋 ⋅ 𝑌 
should be 𝑋 ⋅ 𝑌 ⋅ 𝑃𝑅𝐸𝐶 in NuSMV, but 𝑋′ ⋅ 𝑌′ = 𝑋 ⋅ 𝑌 ⋅ 𝑃𝑅𝐸𝐶2. Therefore at each 
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multiplication, the result has to be divided by the precision constant. Similar applies to 
the division too. 

• The floating-point representation does not have as strict value limits as the integer 
types. (For example, the value range of the 32-bit floating-point type used in SCL is 
approximately −3.4 ⋅ 1038. . 3.4 ⋅ 1038, while the 32-bit integer value should be 
between –2147483648 and 2147483647.) As the fixed-point values are stored as 
integers, these limits apply to them also. Therefore the size of variables storing the 
fixed-point values have to be chosen carefully, and the user has to be informed about 
the restrictions imposed to the possible values, who can decide if it is an acceptable 
restriction or not.  

6.2 Value type handling 

NuSMV uses a strong typing system meaning that every variable has a type and every constant is also 
typed. There is no implicit type conversion, that means the X:=Y statement is forbidden, if X and Y 
have different types. For variables, the same applies to the ST language, but there is no such restriction 
in ST for the constants. Therefore it has to be handled during the transformation. 

For example, the variable assignment in ST “X:=1” should be transformed to NuSMV in the 
following way: 

– if X is BOOL in ST: X:=TRUE; 

– if X is INT in ST: X:=0sd16_1; (it means signed decimal 1 represented on 16 bits)  

– if X is UDINT in ST: X:=0ud32_1; (it means unsigned decimal 1 represented on 32 bits) 

– if X is REAL in ST: X:=0sd32_1000; (it means signed decimal 1000 represented on 32 
bits, if the precision constant is 1000, see Section 6.1) 

– … 

Therefore it is not enough to simply transform the ST expressions into NuSMV, first the type of 
every expression element has to be identified. 

6.3 Uninitialized and input variables 

According to the standard [7], the value of the uninitialized variables is implementation-specific; 
therefore we cannot have assumptions about that. The same applies to the input variables: we does not 
have assumptions about the input values, therefore we have to handle them as random values. For this 
reason, every uninitialized and input variable are initialized to a random value at the beginning of 
every PLC cycle. This is easy for the Boolean types: 

next(B) := case 
 loc = initial : {TRUE, FALSE}; 
 … 
esac; 

But the same approach does not work for the integer types, as it is syntactically forbidden to 
create a non-deterministic value assignment. However, NuSMV assigns random value to each 
variable, if no assignment was made for the next value. But in the assignment block, the case should 
cover all possibilities (practically it has to have a last statement which is always true). Therefore for 
every integer values without explicit initial value, we added a random variable in the main module, 
whose next state is not restricted; therefore it always contains a random value. This value can be used 
for the explicitly not initialized variables. It has to be noticed, that it can have negative impact on the 
performance of the model checking, as it largely increases the reachable state space. 
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In the UNICOS framework, a special kind of variable exists, called parameter. The parameters 
are used to specialize the general objects for their specific role. For example, the same object is used 
to control a valve, a heater or a motor, and the parameters make possible to adapt the object to the 
particularities. In the ST code, parameter is an input variable, therefore in the model its value is 
unknown (can be chosen non-deterministically), but it is known, that during the execution its value is 
not changed. These variables can be handled easily in NuSMV: they do not have initial assignment, 
but after they will keep their values. 

 Additional work 7
To have a usable editor produced by Xtext, some additional work was needed, as the default scoping 
rules had to be modified. By default, Xtext uses fully qualified names internally to identify the named 
elements (in this context it means variables, functions, structures, etc.). This allows for example to 
have variables in different functions with the same name. If it is not modified, every variable is 
resolved in the scope of its container. But consider the following function call: FOO(X1 := F1, X2 := 
F2);. In this case, the scope of variables F1 and F2 are the same, as the scope of the function call 
itself. But the X1 and X2 variables are typically non-existing in this scope, as they are defined in the 
definition if the function FOO. Therefore we modified the default scoping method to provide the 
appropriate scope for the function call parameters. The same applies the variables defined inside 
structures. 

Also, some constraints existing in SCL cannot be expressed by the grammar. The editor 
generated by Xtext can be extended by additional validators. Some new validators were created, for 
example for validating that no return value is given in a void function, variable names are unique in a 
function or function block, no value is assigned to a constant value, etc. A screenshot of the editor can 
be seen on Fig. 4. 

 
Fig. 4: Example ST code editor 

 Future work 8
The work presented in this report will be continued. The first goal is to extend the grammar to cover 
all features necessary to parse and translate the UNICOS baseline objects. Later, the translation of 
more complex PLC programs is planned (e.g. analysis of the TSPP – Time Stamp Push Protocol). 
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As the last stage, it will be possible to formalize the requirements and verify them on the 
formalized models. If necessary, translation to other modelling languages will be developed, e.g. to the 
input language of UPPAAL [12], BIP [13] or PetriDotNet [10]. Similarly, new input languages, like 
SFC or IL can be developed. 
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Appendix A: Simple transformation example 
In this section, a simple example is given: the source ST code, the automatically generated NuSMV 
code and the visualization of the intermediate model. 

A.1 ST code 
 FUNCTION_BLOCK Test 
 VAR_INPUT 
  x : BOOL; 
  y : REAL; 
 END_VAR  
  
 VAR_OUTPUT 
  out : BOOL; 
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 END_VAR  
  
 BEGIN 
  out := x;  
  IF y > 0.1 THEN 
   out := FALSE;  
  END_IF; 
 END_FUNCTION_BLOCK 

A.2 Transformed NuSMV code 

 MODULE TEST(interaction, main, instNo) 
  VAR 
   loc : {initial, end, s0, s1, s2}; 
   X# : boolean; 
   Y# : signed word[32]; 
   OUT : boolean; 
   
  ASSIGN 
   init(loc) := initial; 
   next(loc) := case 
    loc = end : initial;  
    loc = initial : s0;  
    loc = s0 : s1;  
    loc = s1 & ((Y# > 0sd32_10)) : s2;  
    loc = s1 & (!((Y# > 0sd32_10))) : end;  
    loc = s2 : end;  
    TRUE: loc; 
   esac; 
    
   next(X#) := case 
    loc = initial : {TRUE, FALSE}; 
    TRUE : X#; 
   esac; 
   next(Y#) := case 
    loc = initial : main.random_r2; 
    TRUE : Y#; 
   esac; 
   next(OUT) := case 
    loc = s0 : X#; 
    loc = s2 : FALSE; 
    TRUE : OUT; 
   esac; 
  
 MODULE main 
  VAR 
   interaction : {NONE }; 
   inst_Test : TEST(interaction, self, 0); 
   -- Randoms 
   random_r2 : signed word[32]; 
 
  -- INVAR block omitted. There is no interaction. 
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A.3 Visualized intermediate model 
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A.4 Source of the visualized intermediate model 

digraph G { 
 fontsize=11; 
 subgraph clusterinst_Test { 
  node [shape=ellipse, style=filled]; 
  color = black; 
  fontsize=10; 
  ranksep = 0.4; 
  label = "inst_Test : Test"; 
  inst_Test_initial [label = "initial", color=red, fillcolor="white"]; 
  inst_Test_end [label = "end", color=black, fillcolor="white"]; 
  inst_Test_s0 [label = "s0", color=black, fillcolor="white"]; 
  inst_Test_s1 [label = "s1", color=black, fillcolor="white"]; 
  inst_Test_s2 [label = "s2", color=black, fillcolor="white"]; 
   
  inst_Test_end -> inst_Test_initial [label = ""]; 
  inst_Test_initial -> inst_Test_s0  
  [label = "xx:=<RANDOM>;\ly:=<RANDOM>;\l"]; 
  inst_Test_s0 -> inst_Test_s1 [label = "x:=xx;\l"]; 
  inst_Test_s1 -> inst_Test_s2 [label = "[(y > 0.1)] \l"]; 
  inst_Test_s1 -> inst_Test_end [label = "[!((y > 0.1))] \l "]; 
  inst_Test_s2 -> inst_Test_end [label = "x:=FALSE;\l"]; 
 } 
} 
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