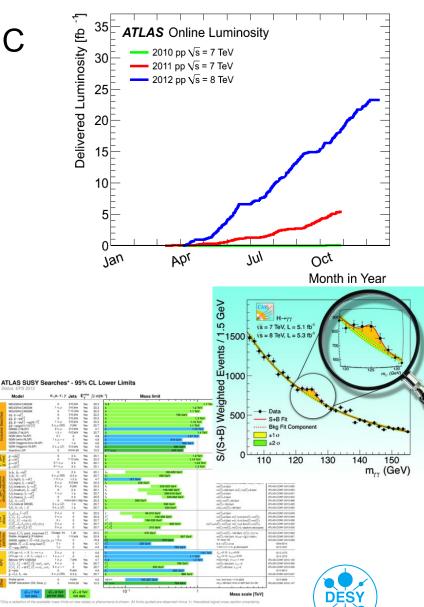

QCD@LHC in Higgs and BSM

Thorsten Kuhl QCD@LHC2013, September, 2th-6th

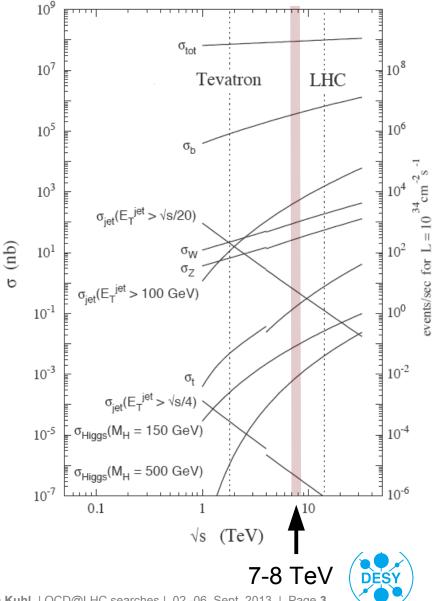
&



LHC excellent tool for searches

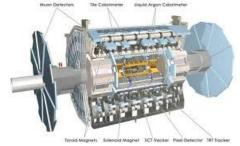
CMS

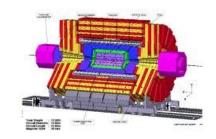
> 2010-12 Successful running of LHC

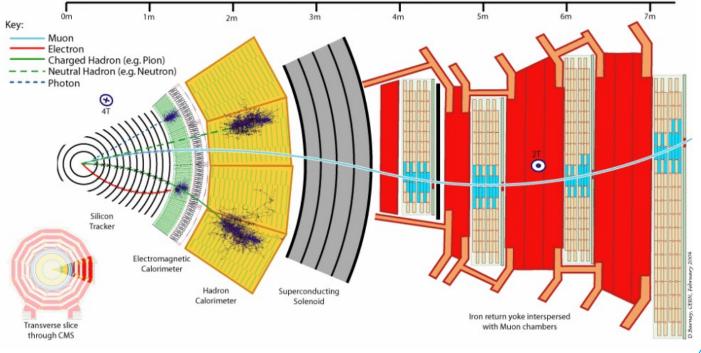

- 5 fb⁻¹ data at 7 TeV
- 23 fb⁻¹ data at 8 TeV
- Discovery machine
 - Discovery of a Higgs Boson
 - Wide range of SUSY searches
 - Test of many exotic models
- Experimental results in Searches
 - Depend on QCD
 - Experimental handle
 - The use of predictions

LHC Cross sections

- Total inelastic cross section is large
 - O(100mb)
 - 10⁷⁻⁹ higher then W/Z and top
 - 10¹⁰ times SM-Higgs
- > Av. Pile-up 20.7 → max. 40 per bunch crossing
- Hard cross sections
 - Still orders of magnitudes bigger than other physics on the same scale
 - Need handle to reduce size and impact of QCD error on background prediction




Capability to separate signal from QCD:


- Lepton identification
- Fine granularity

CMS

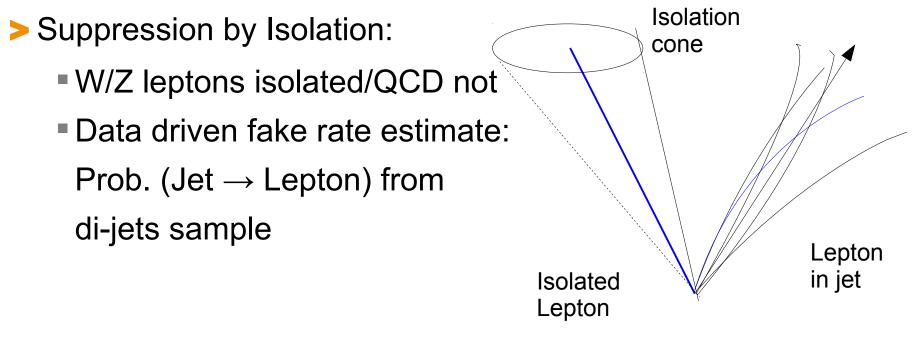
B-tagging capability

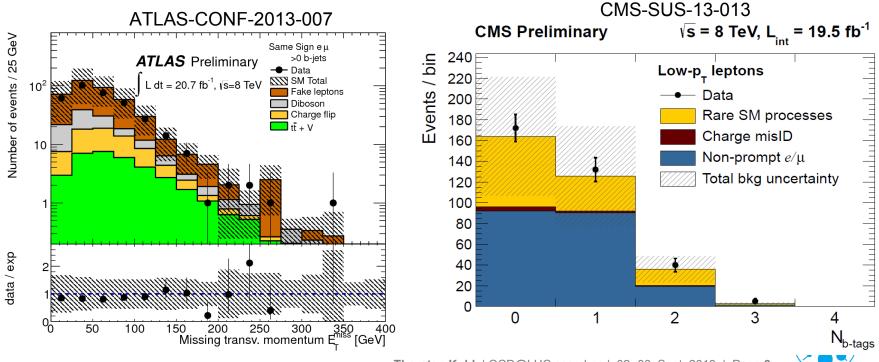
- Most analyses are designed to suppress QCD with non QCD signatures:
 - Use Leptons, Missing E_{T} , photons
 - QCD contribution described by cocktail of MC predictions plus data driven approach:

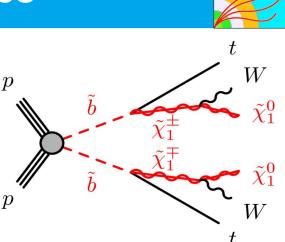
Experimental description of "Fakes"

- > All hadronic searches use different methods:
 - Bump hunting
 - Data driven extrapolations from side band
 - Theoretical predictions (templates for shape, not normalization)
 - Top background from (N)NLO calculation

> QCD in final states with leptons:


- "Lepton fakes"
- QCD in final states with MET
 - Pile up
 - Real Missing ET
- >QCD in all hadronic final states
 - Many Jets
 - Boosted objects
- Top Background
- >QCD and signal acceptance times efficiency
 - ISR/FSR and Scale uncertainties


- Use leptons from EW processes (W and Z) to suppress QCD;
- remaining background are "fakes from QCD":
 - Falsly reconstructed pions identified as electron
 - Decay muons from b/c-quark



QCD in same sign Lepton searches

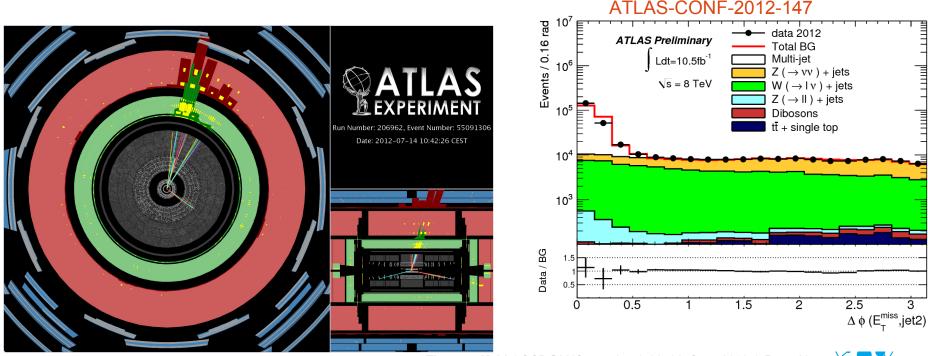
- Search for two same sign Leptons + jets:
 - Many "W's" in final state
- > Clean topology, very rare SM
- QCD Background: isolated heavy flavour leptons without hadronic activity

> QCD in final states with leptons

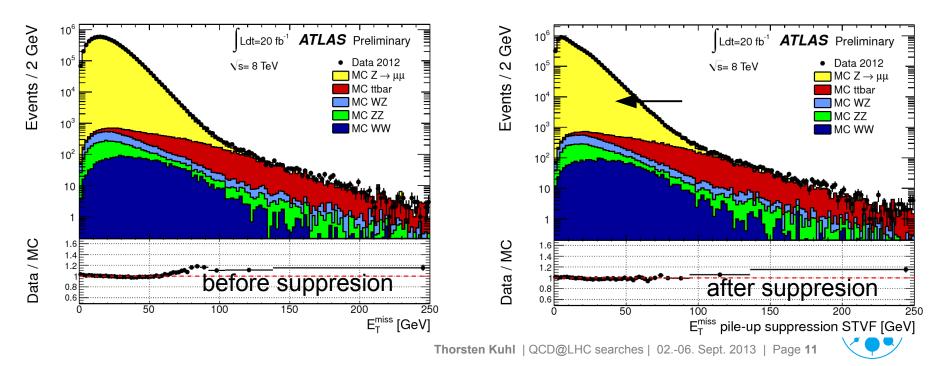
"Lepton fakes"

>QCD in final states with MET

- Pile up
- Real Missing ET
- QCD in all hadronic final states
 - Many Jets
 - Boosted objects
- Top Background
- QCD and signal acceptance times efficiency
 - ISR/FSR and Scale uncertainties



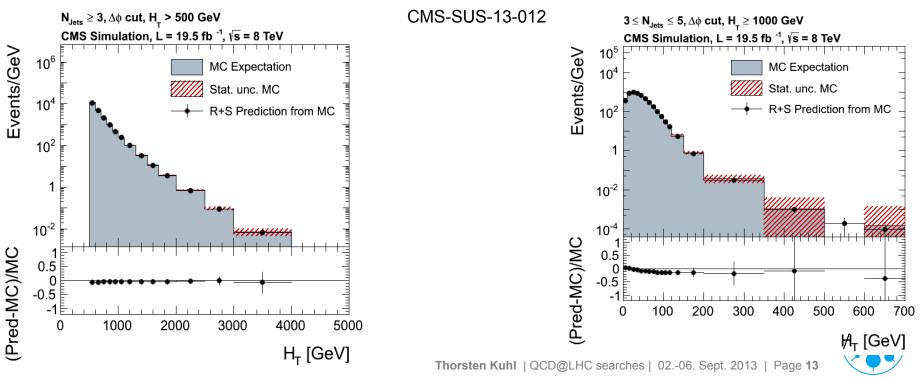
CMS


- Monojet-searches in exotics
- >QCD MET resolution proportional to square-root of visible hadronic energy
- > MET in QCD: from decays or miss-reconstruction
 - \rightarrow often in direction of one jet

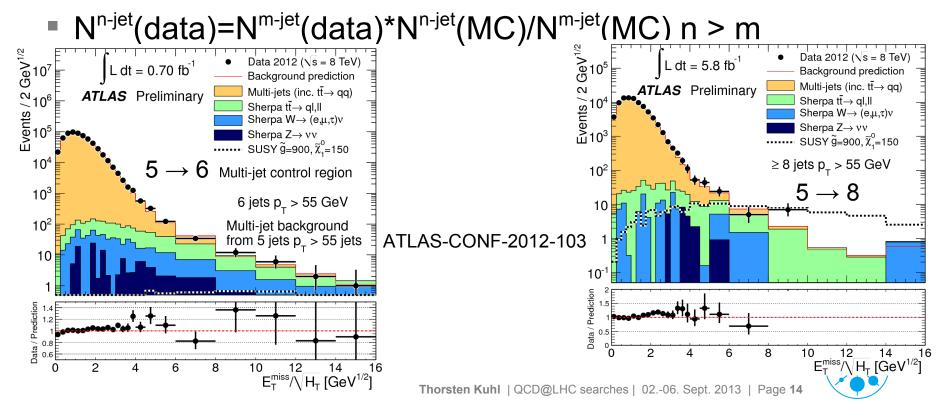
Impact of QCD pile up on MET

- Pile-up spoils MET
 - Experimental tails
- >Clean control sample Z->μμ
- Decent description of MET
- Future: Pile up from data overlay (→ D0 Experiment) ATLAS-CONF-2013-082

QCD background many jets plus MET


> CMS overview: Many Jets plus Missing ET CMS-SUS-13-012

		•			-	-	-		
		Selection		$Z \rightarrow \nu \bar{\nu}$	tī/W	tī/W	QCD	Total	Obs.
$> \widetilde{g}\widetilde{g} - 2q^n \chi^0 \chi^0$	$N_{\rm jets}$	H_{T}	₽ _T	from γ +jets	\rightarrow e, μ +X	$ ightarrow au_{ m h} + X$		background	data
	3-5	500-800	200-300	1821.3 ± 326.5	2210.7±447.8	1683.7 ± 171.4	307.4 ± 219.4	6023.1±620.2	6159
	3-5	500-800	300-450	993.6±177.9	660.1±133.3	591.9 ± 62.5	34.5 ± 23.8	2280.0 ± 232.1	2305
	3-5	500-800	450-600	273.2 ± 51.1	77.3 ± 17.9	67.6 ± 9.5	1.3 ± 1.5	419.5 ± 55.0	454
> QCD important,	3-5	500-800	> 600	42.0 ± 8.7	9.5 ± 4.0	6.0±1.9	0.1 ± 0.3	57.6 ± 9.7	62
	3-5	800-1000	200-300	215.8 ± 40.0	277.5 ± 62.4	191.6 ± 23.2	91.7 ± 65.5	776.7±101.6	808
if Missing UT	3-5	800-1000	300-450	124.1 ± 23.7	112.8 ± 26.9	83.3±11.2	9.9 ± 7.4	330.1 ± 38.3	305
if Missing-HT	3-5	800-1000	450-600	46.9 ± 9.8	36.1 ± 9.9	23.6 ± 3.9	0.8 ± 1.3	107.5 ± 14.5	124
•	3-5	800-1000	> 600	35.3 ± 7.5	9.0±3.7	11.4 ± 3.2	0.1 ± 0.4	55.8 ± 9.0	52
small vs HT	3-5	1000-1250	200-300	76.3 ± 14.8	103.5 ± 25.9	66.8 ± 10.0	59.0 ± 24.7	305.6 ± 40.1	335
	3-5	1000-1250	300-450	39.3 ± 8.2	52.4 ± 13.6	35.7 ± 6.2	5.1 ± 2.7	132.6 ± 17.3	129
	3-5 2 F	1000-1250	450-600	18.1 ± 4.4	6.9 ± 3.2	6.6 ± 2.1	0.5 ± 0.7	32.1 ± 5.9	34
	3-5 3-5	1000-1250 1250-1500	> 600 200-300	17.8 ± 4.3	2.4 ± 1.8 31.0 ± 9.5	2.5 ± 1.0 22.2 ± 3.9	0.1 ± 0.3 31.2 ± 13.1	22.8 ± 4.7 109.7 ± 17.5	32 98
	3-5 3-5	1250-1500	200-300 300-450	25.3 ± 5.5 16.7 ± 4.0	10.1 ± 4.4	22.2 ± 3.9 11.1 ± 3.6	31.2 ± 13.1 2.3 ± 1.6	109.7 ± 17.5 40.2 ± 7.1	98 38
	3-5	1250-1500	> 450	10.7 ± 4.0 12.3 ± 3.2	10.1 ± 4.4 2.3 ± 1.7	11.1 ± 3.0 2.8 ± 1.5	2.3 ± 1.0 0.2 ± 0.5	17.6 ± 4.0	23
	3-5	>1500	200-300	12.5 ± 3.2 10.5 ± 2.8	16.7 ± 6.2	15.2 ± 3.4	35.1 ± 14.1	77.6 ± 16.1	94
	3-5	>1500	> 300	10.9 ± 2.9 10.9 ± 2.9	9.7 ± 4.3	6.5 ± 2.0	2.4 ± 2.0	29.6 ± 5.8	39
	6-7	500-800	200-300	22.7 ± 6.1	132.5 ± 58.6	127.1 ± 21.5	18.2 ± 9.2	300.5 ± 63.4	266
	6-7	500-800	200-300 300-450	22.7 ± 0.1 9.9 ± 3.1	132.3 ± 38.0 22.0 ± 10.8	127.1 ± 21.3 18.6 ± 4.3	10.2 ± 9.2 1.9 ± 1.7	500.5 ± 03.4 52.3 ± 12.1	62
	6-7	500-800	> 450	0.7 ± 0.6	0.0 ± 1.6	0.1 ± 0.3	1.9 ± 1.7 0.0 ± 0.1	0.8 ± 1.7	9
	6-7	800-1000	200-300	9.1 ± 2.8	55.8 ± 25.4	44.6 ± 8.2	13.1 ± 6.6	122.6 ± 27.7	111
	6-7	800-1000	300-450	4.2 ± 1.6	10.4 ± 5.5	12.8 ± 3.1	1.9 ± 1.4	29.3 ± 6.6	35
	6-7	800-1000	> 450	1.8 ± 1.0	2.9 ± 2.5	1.3 ± 0.5	0.1 ± 0.4	6.1 ± 2.7	4
	6-7	1000-1250	200-300	4.4 ± 1.6	24.1 ± 12.0	24.0 ± 5.5	11.9 ± 6.0	64.4 ± 14.6	67
	6-7	1000-1250	300-450	3.5 ± 1.4	8.0 ± 4.7	9.6 ± 2.5	1.5 ± 1.5	22.6 ± 5.7	20
	6-7	1000-1250	> 450	1.4 ± 0.8	0.0 ± 1.8	0.8 ± 0.5	0.1 ± 0.3	2.3 ± 2.1	4
×	6-7	1250-1500	200-300	3.3 ± 1.3	11.5 ± 6.5	6.1 ± 2.5	6.8 ± 3.9	27.7 ± 8.1	24
	6-7	1250-1500	300-450	1.4 ± 0.8	3.5 ± 2.6	2.9 ± 1.5	0.9 ± 1.3	8.8 ± 3.4	5
	6-7	1250-1500	> 450	0.4 ± 0.4	0.0 ± 1.2	0.1 ± 0.2	0.1 ± 0.3	0.5 ± 1.3	2
	6-7	>1500	200-300	1.3 ± 0.8	10.0 ± 6.9	2.3 ± 1.3	7.8 ± 4.0	21.5 ± 8.1	18
	6-7	>1500	> 300	1.1 ± 0.7	3.2 ± 2.8	2.9 ± 1.2	0.8 ± 1.1	8.0 ± 3.3	3
	≥ 8	500-800	> 200	0.0 ± 0.6	1.9 ± 1.5	2.8 ± 1.3	0.1 ± 0.4	4.8 ± 2.1	8
	≥ 8	800-1000	> 200	0.6 ± 0.5	4.8 ± 2.9	2.7 ± 1.1	0.5 ± 0.9	8.7± 3.3	9
F	≥ 8	1000-1250	> 200	0.6 ± 0.5	1.4 ± 1.5	3.1 ± 1.2	0.7 ± 0.9	5.8 ± 2.2	8
	≥ 8	1250-1500	> 200	0.0 ± 0.7	5.1 ± 3.5	1.3 ± 0.8	0.5 ± 0.9	6.9 ± 3.7	5
MET	≥ 8	1500-	> 200	0.0 ± 0.6	0.0 ± 2.1	1.5 ± 1.0	0.9 ± 1.3	2.4 ± 2.8	2
					RODELLO SEC	uches 0200.	σεμι. Ζυτο Τ Γ	aye 12	



- CMS analyses: smearing approach
 - Veto events with MET aligned to jets
 - Rebalance events by kinematic fit
 - Smear with jet response functions from simulation
 - Comparison of MC with this prediction

- >Atlas analysis: scaling
 - Missing- E_{T} proportional to (ΣE_{T})
 - Estimate QCD-shape (jet-p₁) in low jet bin data driven
 - Then scale to higher jet bins with help of prediction:

> QCD in final states with leptons

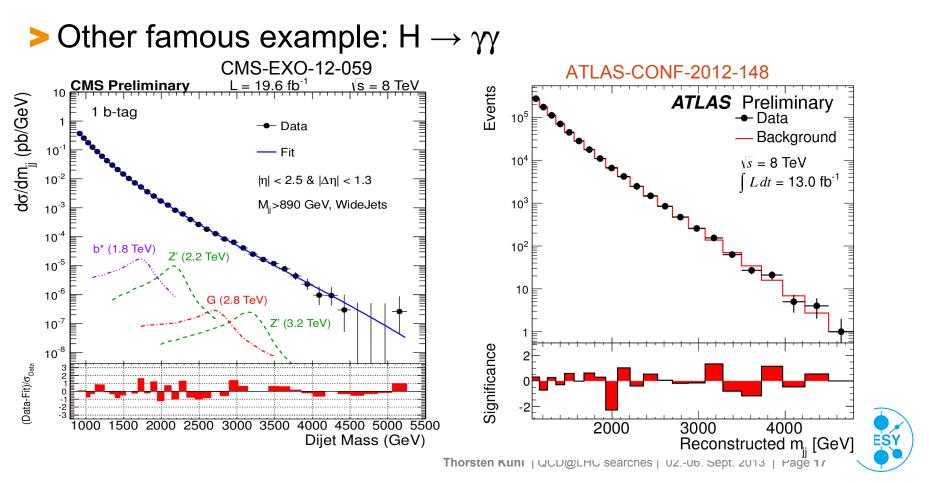
- "Lepton fakes"
- QCD in final states with MET
 - Pile up
 - Real Missing ET

>QCD in all hadronic final states

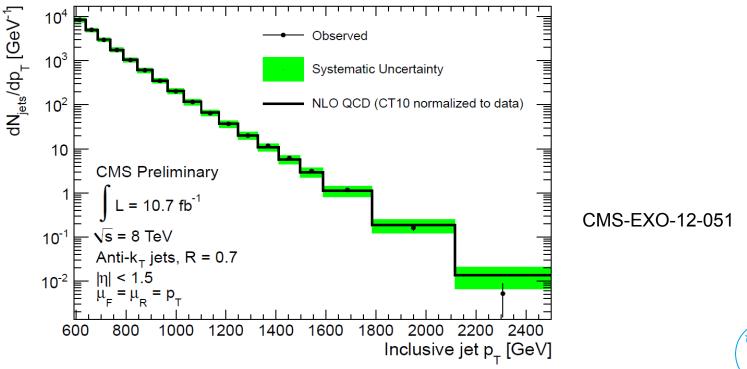
- Many Jets
- Boosted objects
- Top Background
- QCD and signal acceptance times efficiency
 - ISR/FSR and Scale uncertainties

CMS

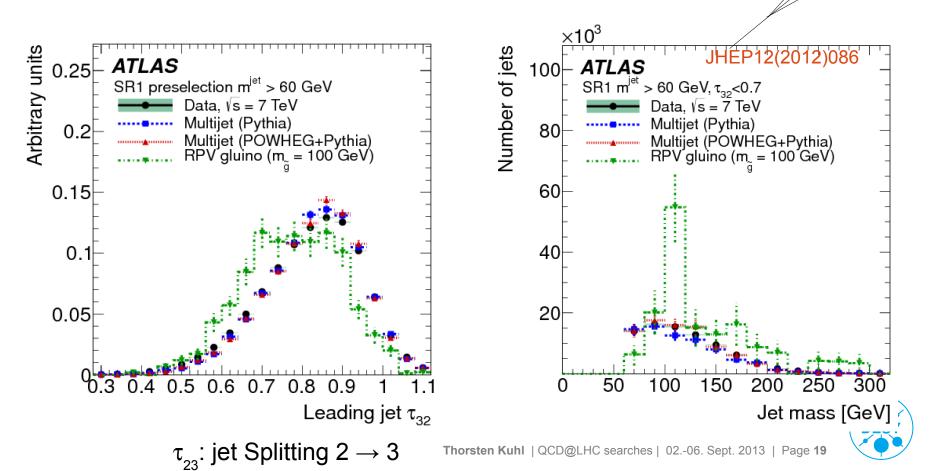
- Most difficult case of QCD background:
 - All hadronic decaying resonances (di-jet and ttbar)
 - SUSY particles decaying into many jets
 - Black hole searches
- Dedicated search approaches:
 - Bump hunting
 - Use of Monte Carlo with data driven normalisation
 - Extrapolation of data driven estimate using theory input
 - Top-pair and single-Top from Monte Carlo with/wo data normalisation

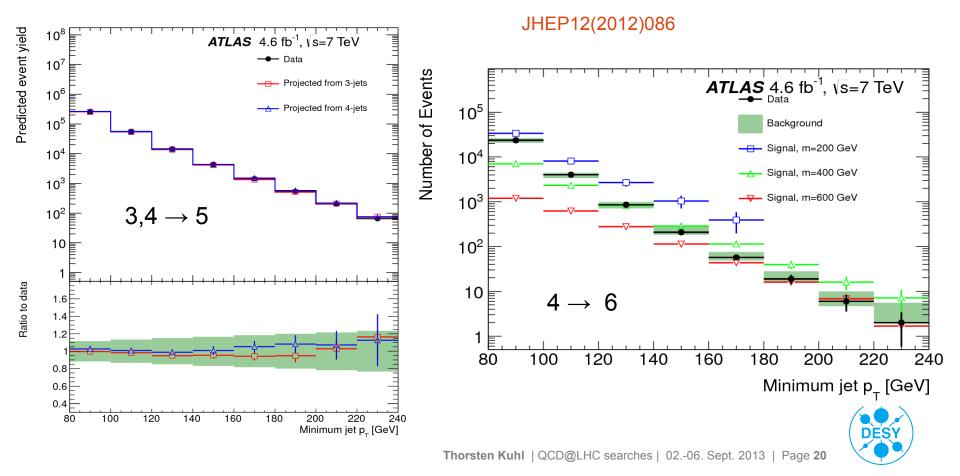


Data only method

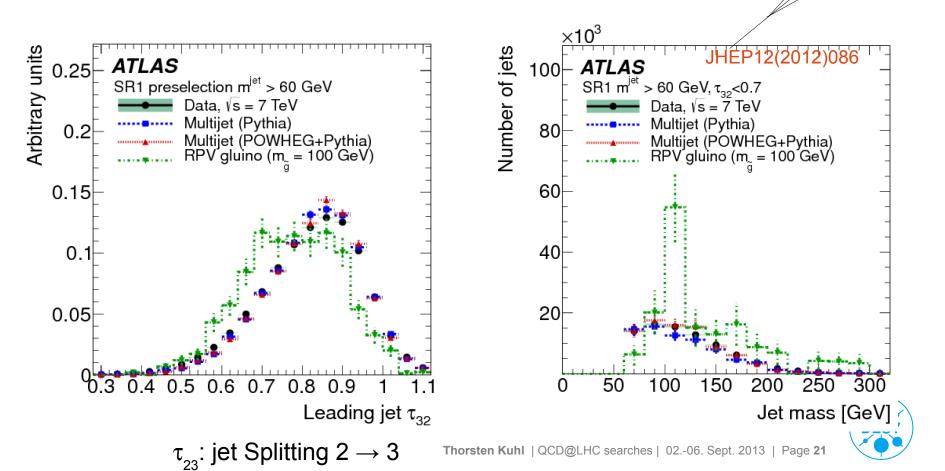

- > Fit data distribution and try to find a bump above the QCD fit
- > Used for di-jet resonances in both experiments

- Have to rely on predictions for inclusive jet pt spectrum
 Inclusive QCD jet-p₁ spectrum from NLO-calculation:
 - Using data driven normalisation at low p₁
 - Good agreement but big systematic errors O (50%)




- Small gluino mass: partons merge into big jet (anti-k^T dR=1.0)
 - MC comparisons for large jet properties
 - Very sensitive to final state modelling

All hadronic with many jets


- Atlas: Search for gluinos decaying into three jets
- Scaling to higher number of jets using prediction :
 - N^{n-jet}(data)=N^{m-jet}(data)*N^{n-jet}(MC)/N^{m-jet}(MC); n>m

- Small gluino mass: partons merge into big jet (anti-k^T dR=1.0)
 - MC comparisons for large jet properties
 - Very sensitive to final state modelling

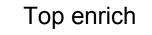
> QCD in final states with leptons

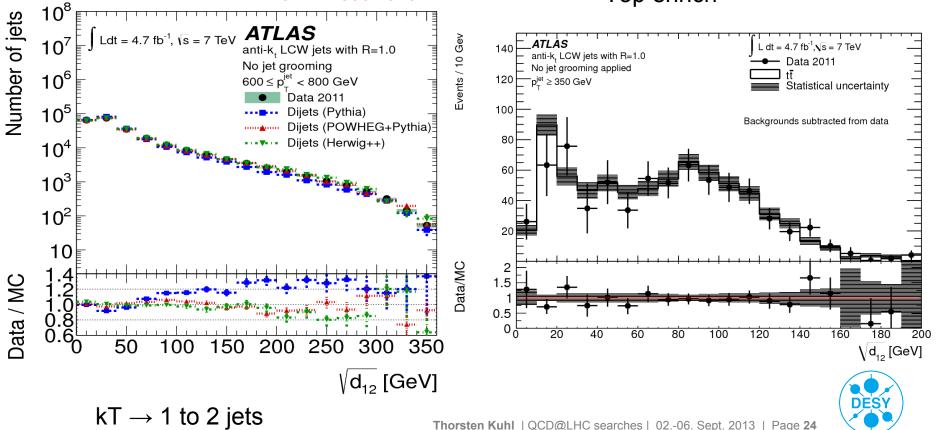
- "Lepton fakes"
- QCD in final states with MET
 - Pile up
 - Real Missing ET
- QCD in all hadronic final states
 - Many Jets
 - Boosted objects

> Top Background

QCD and signal acceptance times efficiency

ISR/FSR and Scale uncertainties

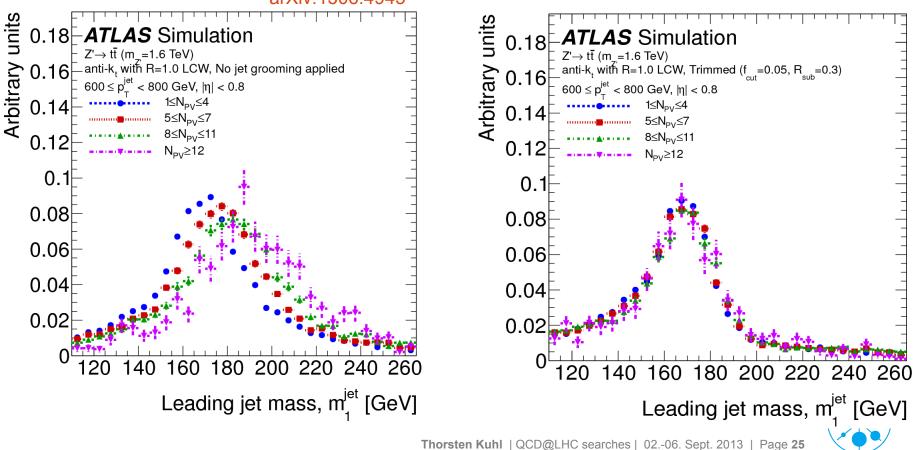


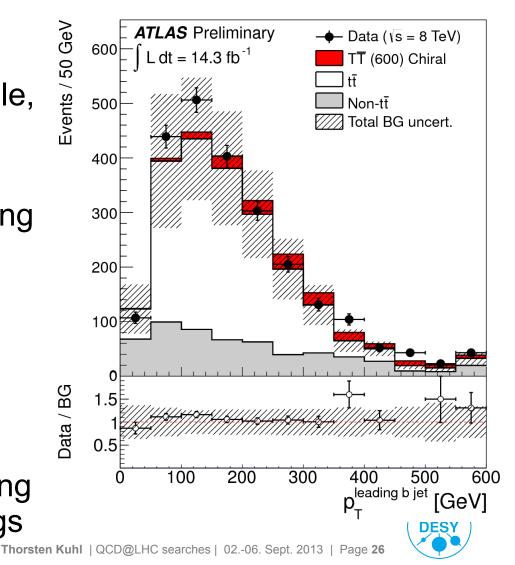


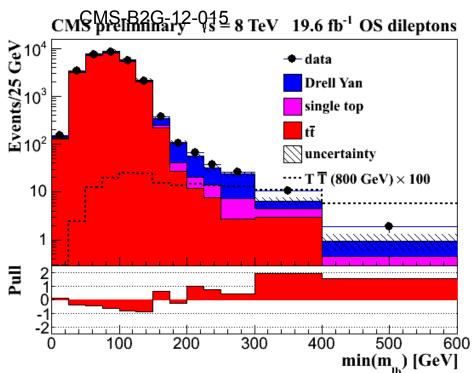
- > Boosted tops: all decay products are in one fat jet
- > Test of top-performance: lepton+jet events

arXiv:1306.4945

QCD Background by cut inversions QCD enrich




- > Large jet area \rightarrow large pile up influence
- Pile-up removal via trimming (removal of soft subjets)
- Top mass for different number of pile up (vertices): N_{PV} arXiv:1306.4945


- Top-pair and single top cross section often taken from NNLO calculation
 - Full uncertainty from scale, fragmentation/ hadronisation/PDF
- Try to constrain top modelling from data:
 - Rapidity gap fraction (ISR/FSR)
 - Jet shapes
 - N-Jet spectrum
- Possible handling: comparing data with one and two b-tags

- Searches are very often sensitive to tails of ttbar Monte Carlo:
 - High mass tails
 - HT tails
 - Large MET tails
- Often new developments on NLO:
 - Off-shell tops (single-top Wt has only one "off-shell")
 - ttZ, ttW
 - ttbb, ttcc (see also ttH)

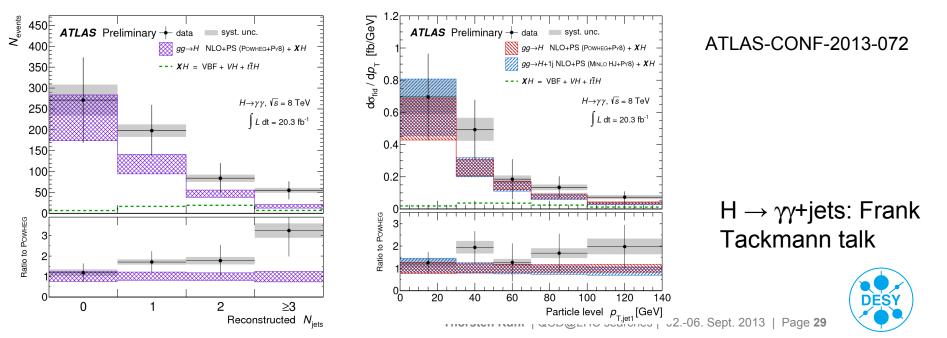
Heavy top like production: $TT \rightarrow WbWb$

> QCD in final states with leptons

- "Lepton fakes"
- QCD in final states with MET
 - Pile up
 - Real Missing ET
- QCD in all hadronic final states
 - Many Jets
 - Boosted objects
- Top Background

>QCD and signal acceptance times efficiency

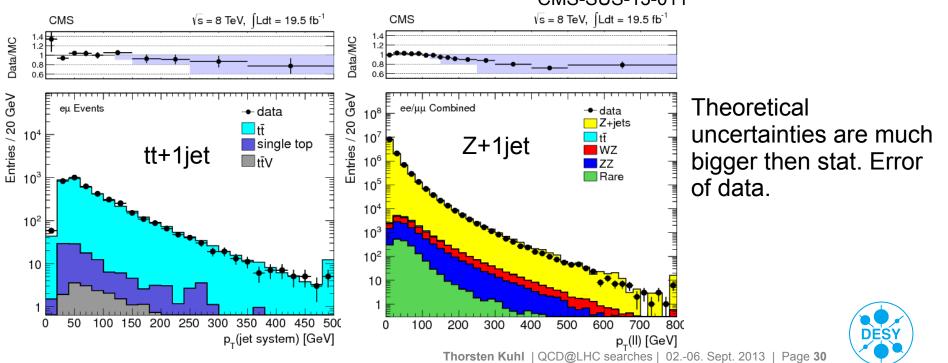
ISR/FSR and Scale uncertainties



QCD effects and signal acceptance

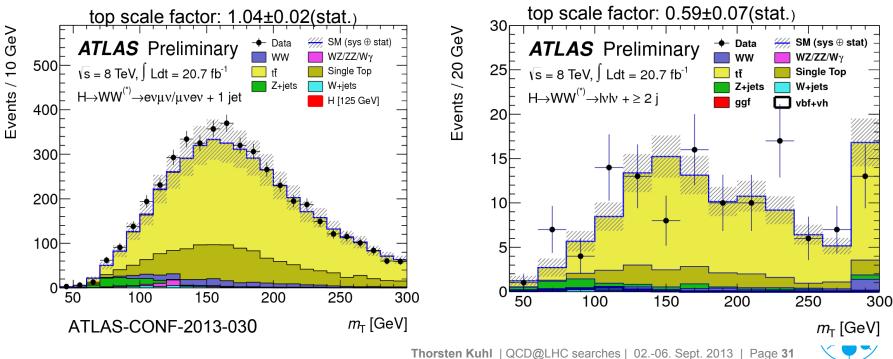
> Higgs area of precision measurement started:

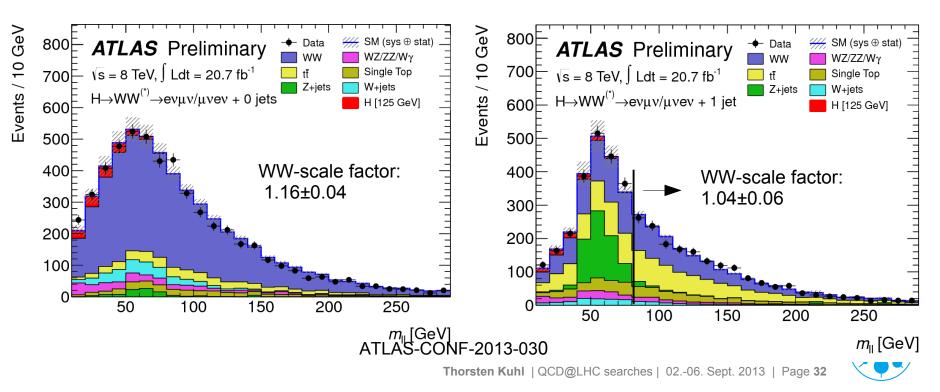
- Most analyses in fixed number of jets bin
- Many analyses using multivariate methods, need to describe distribution in exclusive jet bins good
- Need calculations of of H+0,1,2 jets plus VBF
- Start to constrain by measurements:



jet

QCD effects and signal acceptance


- Signal efficiency/acceptance: Monte Carlo prediction
- ISR very important for efficiency and acceptance correction
- > Test of NLO generators with SM processes
- Powheg: Z and ttbar p_T of add. radiation including all theory and simulation uncertainties CMS-SUS-13-011


- > H \rightarrow WW+1jet: signal with hard ISR
- > 2jets: VBF, rapidity gap |Y_i| > 2.8
- Control region using b-tag
- >NLO-ttbar Monte Carlo does not describe VBF-like events well (system variation between generators ~15%)

Background composition depends on QCD radiation (ISR)

- $H \rightarrow WW+0$ jet: WW 70% of background
- $H \rightarrow WW+1$ jet: WW 40% of background
- Rate off WW depends on rate of ISR radiation, data driven normalization

- QCD effects and background are a topic with large diversity in Searches for Higgs Bosons and BSM at the LHC
- Most analyses use data driven approach for QCD estimate
 - Side bands
 - Templates from Monte Carlo plus data driven normalisation
- Predictions are used for shapes, normalization from data
 - Shapes well described by predictions
- Many searches rely on precise descriptions of tails
- QCD uncertainties for Higgs and BSM signal processes:
 - QCD predictions are important for signal acceptance/cross sections
 - Migration between different jet bins via ISR

