

Charmless B decays

Marc Grabalosa
On behalf of the LHCb Collaboration

LPC - ClermontFerrand

- Motivation/LHCb
- 2-body charmless decays
- 3-body charmless decays
- VV charmless decays

Charmless B decays motivation

Motivation

• Tree processes (b \rightarrow u) can be used to test SM looking for deviation in the CKM structure

• Loop processes (b \rightarrow s, b \rightarrow d) are FCNC and new particle may appear in the

loops

Fair agreement between (loop) mixing and tree processes

Mainly meson mixing observables

LHCb

Single arm spectrometer ~3fb-1 data

37 pb⁻¹ 2010

1 fb⁻¹ 2011

2 fb⁻¹ 2012

High trigger efficiency Excellent tracking system

Time, impact parameter resolution Mass resolution

Excellent Particle Identification Flavour Tagging

Charmless 2 body decays (neutral B decays)

Mixed induced CPV (non flavour specific decays)

LHCb-CONF-2012-007

0.69 fb⁻¹

- Some tensions between Belle and BaBar in $\pi\pi$ channel

- LHCb: Time-dependent analysis on:
 - $> B^0 \rightarrow \pi\pi$
 - $> B_0 \hookrightarrow KK$
 - > Tagged time-dependent analysis Calibrated with $B^0 \rightarrow K^+\pi^-$
 - $-\Delta m_d = 0.484 \pm 0.019 \text{ ps}^{-1}$
 - Tagging power ε_{eff} = (2.3±0.1)% (OS only)

See Katharina Kreplin talk

Charmless 2 body decays ($B^0 \rightarrow \pi^+\pi^-$)

• Time-dependent $B^0 \rightarrow \pi^+\pi^-$

0.69 fb⁻¹

LHCb-CONF-2012-007

Preliminary results

 $\Delta m_d = 0.499 \pm 0.032 \pm 0.003 \text{ ps}^{-1}$ (from LHCb-CONF-2011-010)

 $A_{\pi\pi}^{\text{dir}} = 0.11 \pm 0.21(\text{stat}) \pm 0.03(\text{syst})$ $A_{\pi\pi}^{\text{mix}} = -0.56 \pm 0.17(\text{stat}) \pm 0.03(\text{syst})$ (3.2 σ) $\rho(A_{\pi\pi}^{\text{dir}}, A_{\pi\pi}^{\text{mix}}) = -0.34$ (stat only)

First $B^0 \rightarrow \pi^+\pi^-$ CP asymmetry measurement at hadron collider

Charmless 2 body decays (neutral B decays)

• $B^0 \rightarrow \pi^+\pi^-$ and $B^0_s \rightarrow K^+K^-$

0.69 fb⁻¹

LHCb-CONF-2012-007

First evidence (3.2 σ) time-dependent CPV at hadron colider

Preliminary LHCb results favours BaBar

Statistically limited but already contributing to constrain CKM angle $\boldsymbol{\alpha}$

CP asymmetry in $B_s \rightarrow K^+K^-$ measured for first time

Improvements expected: 3fb⁻¹ recorded SS tagging

Charmless 2 body decays $(B_{d,s} \rightarrow K\pi)$

- Direct CP violation ($B^0 \rightarrow K\pi$)
- Compare the decay rates of self-tagged modes
- $A_{CP}(B_s^0 \to \pi K) = \frac{\Gamma(\bar{B}_s^0 \to \pi^- K^+) \Gamma(B_s^0 \to \pi^+ K^-)}{\Gamma(\bar{B}_s^0 \to \pi^- K^+) + \Gamma(B_s^0 \to \pi^+ K^-)}.$ $A_{CP}(B^0 \to K\pi) = \frac{\Gamma(\bar{B}^0 \to K^-\pi^+) - \Gamma(B^0 \to K^+\pi^-)}{\Gamma(\bar{B}^0 \to K^-\pi^+) + \Gamma(B^0 \to K^+\pi^-)}$

- Different optimizations for B_d/B_s
- PID is a keypoint
- Raw asymmetry must be corrected for detection asymmetry and B production asymmetry

$$\mathcal{A}_{\mathrm{CP}} = \mathcal{A}_{\mathrm{Raw}} - (\mathcal{A}_{\mathrm{Det.}} + \kappa \mathcal{A}_{\mathrm{Prod.}})$$

- A_{Det} determined from large D decay samples
- κ dilution from mixing/acceptance
- A_{Prod} determined from time dependence

Total correction is small (~1%)

LHCb-PAPER-2013-018 arXiv: 1304.6173

$$A_{CP}(B^0 \to K^+\pi^-) = -0.080 \pm 0.007 \text{ (stat)} \pm 0.003 \text{ (syst)},$$

$$A_{CP}(B_s^0 \to K^-\pi^+) = 0.27 \pm 0.04 \text{ (stat)} \pm 0.01 \text{ (syst)}.$$

First observation CP violation in B_s decays,

Direct CP violation

- Compare the decay rates of B+/B- $(K\pi\pi, KKK, KK\pi, \pi\pi\pi,...)$
- Go from raw asymmetries to CP asymmetries as in 2-body case

1.0 fb⁻¹

LHCb-CONF-2012-018 (Khh)
LHCb-CONF-2012-028 (πKK, πππ)

$A_{CP} = A_{CP}^{RAW} - (A_{CP}^{Det.} + A_{CP}^{Prod.})$

 ${\cal A}_{CP}^{Det.}$ and ${\cal A}_{CP}^{Prod.}$ are determined from the control channel $B^\pm \to J/\psi \, K^\pm$

$${\bf A}_{CP}({\bf B}{\rightarrow}{\bf K}\pi\pi)$$
 = +0.034 ± 0.009(stat) ± 0.004(syst) ± 0.007(J/ ψ K) 2.8 σ ${\bf A}_{CP}({\bf B}{\rightarrow}{\bf K}{\bf K}{\bf K})$ = -0.046 ± 0.009(stat) ± 0.005(syst) ± 0.007(J/ ψ K) 3.7 σ ${\bf A}_{CP}({\bf B}{\rightarrow}\pi\pi\pi)$ = +0.120 ± 0.020(stat) ± 0.019(syst) ± 0.007(J/ ψ K) 4.2 σ ${\bf A}_{CP}({\bf B}{\rightarrow}\pi{\bf K}{\bf K})$ = -0.153 ± 0.046(stat) ± 0.019(syst) ± 0.007(J/ ψ K) 3.0 σ

Dalitz in 3-body charmless

LHCb-CONF-2012-018/028

- CP asymmetries observed in the Dalitz Plane (i.e B KKK)

1.0 fb⁻¹

- Large CPV at low m²
- Not likely connected everywhere to the resonant structure in the Dalitz projections

$$\begin{split} A_{cp}(B^{\pm} \to \pi\pi\pi \ region) &= +0.622 \pm 0.075 (stat) \pm 0.032 (syst) \pm 0.007 (J/\psi K^{\pm}) & \textbf{7.6 } \sigma \\ A_{cp}(B^{\pm} \to \pi KK \ region) &= -0.671 \pm 0.067 (stat) \pm 0.028 (syst) \pm 0.007 (J/\psi K^{\pm}) & \textbf{9.2 } \sigma \end{split}$$

Full amplitude analysis is the next step

Charmless 3-body decays (neutral Bods)

With neutral particles (Kshh)

LHCb-CONF-2012-023

- NP can enter through penguin diagrams

1.0 fb⁻¹

$$A_{CP}(\Delta t) = S_f \sin(\Delta m t) + C_f \cos(\Delta m t)$$

- Future plans: Dalitz amplitude followed by time-dependent analysis
- First step BR measurements

$$\begin{array}{ll} \frac{\mathcal{B}(B^0 \to K_{\rm S}^0 K^\pm \pi^\mp)}{\mathcal{B}(B^0 \to K_{\rm S}^0 \pi^+ \pi^-)} &= 0.117 \pm 0.018 \; ({\rm stat.}) \, \pm 0.018 \; ({\rm syst.}), \\ \frac{\mathcal{B}(B^0 \to K_{\rm S}^0 K^+ K^-)}{\mathcal{B}(B^0 \to K_{\rm S}^0 \pi^+ \pi^-)} &= 0.53 \pm 0.04 \; ({\rm stat.}) \, \pm 0.04 \; ({\rm syst.}), \\ \frac{\mathcal{B}(B_s^0 \to K_{\rm S}^0 \pi^+ \pi^-)}{\mathcal{B}(B^0 \to K_{\rm S}^0 \pi^+ \pi^-)} &= 0.24 \pm 0.06 \; ({\rm stat.}) \, \pm 0.04 \; ({\rm syst.}), \\ \frac{\mathcal{B}(B_s^0 \to K_{\rm S}^0 \pi^+ \pi^-)}{\mathcal{B}(B^0 \to K_{\rm S}^0 \pi^+ \pi^-)} &= 1.96 \pm 0.15 \; ({\rm stat.}) \, \pm 0.20 \; ({\rm syst.}), \\ \frac{\mathcal{B}(B_s^0 \to K_{\rm S}^0 K^+ K^-)}{\mathcal{B}(B^0 \to K_{\rm S}^0 \pi^+ \pi^-)} &= 0.084 \pm 0.031 \; ({\rm stat.}) \, \pm 0.019 \; ({\rm syst.}). \end{array}$$

Soon update results with improved selection

- LHCb-PAPER-2013-007 Mixing induced CPV in $B_s^0 \rightarrow \phi \phi (K^+K^-K^+K^-)$ 1.0 fb⁻¹ arXiv:1303.7125[hep-ex]
 - Study the CP violation asymmetry in interference between decay and mixing

 ϕ_s is expected to be zero as cancellation of mixing and decay weak phases (dominated by V_{ts} in T, P transitions)

Key ingredients: Time-integrated analysis, amplitude (angular) analysis

Systematics dominated by the s-wave contamination and angular acceptance

Similar analysis on $B_s \rightarrow K^*K^*$ and more coming

LHCb Collaboration, R. Aaij et al., Phys. Lett. B 709 (arXiv:1111.4183) 11

Angular analysis (tagged time-dependent analysis)

1.0 fb⁻¹

LHCb-PAPER-2013-007 arXiv:1303.7125[hep-ex]

cos θ,

Parameter	Value	$\sigma_{\mathrm{stat.}}$	$\sigma_{\rm syst.}$
$\phi_s[\text{rad}] (68 \% \text{ CL})$		[-2.37, -0.92]	0.22
$ A_0 ^2$	0.329	0.033	0.017
$ A_{\perp} ^2$	0.358	0.046	0.018
$ A_{\rm S} ^2$	0.016	$^{+0.024}_{-0.012}$	0.009
δ_1 [rad]	2.19	0.44	0.12
δ_2 [rad]	-1.47	0.48	0.10
$\delta_{\rm S}$ [rad]	0.65	$^{+0.89}_{-1.65}$	0.33

Total *CP*-even CP-odd S-wave

(b) LHCb-

 Γ_S and $\Delta\Gamma_S$ from $B_s^0 \to J/\psi \phi$ LHCB-PAPER-2013-002 in preparation. $\Delta m_S = (17.73 \pm 0.05) ps^{-1}$, LHCb-CONF-2011-050.

 $\phi_S \in [-2.46, -0.76]$ rad at 68% CL

- Charmless are very interesting channels to check the SM and look for NP
- 2-body (γ, ϕ_s)
 - B \rightarrow hh addressing both $A_{CP}(B^0 \rightarrow K^+)$ direct and mixing-induced CP violation $A_{CP}(B^0 \rightarrow K^-)$

$$A_{CP}(B^0 \to K^+\pi^-) = -0.080 \pm 0.007 \text{ (stat)} \pm 0.003 \text{ (syst)},$$

 $A_{CP}(B^0 \to K^-\pi^+) = 0.27 \pm 0.04 \text{ (stat)} \pm 0.01 \text{ (syst)}.$

- 3-body $(\alpha, \gamma, \phi_s, \phi_d)$
 - B→3h: BF and integrated CP asymmetries are measured

```
{\bf A}_{CP}({\bf B}{
ightarrow}{
m K}\pi\pi) = +0.034 ± 0.009(stat) ± 0.004(syst) ± 0.007(J/\psi K) 

{\bf A}_{CP}({\bf B}{
ightarrow}{
m K}{
m K}{
m K}) = -0.046 ± 0.009(stat) ± 0.005(syst) ± 0.007(J/\psi K) 

{\bf A}_{CP}({\bf B}{
ightarrow}\pi\pi\pi) = +0.120 ± 0.020(stat) ± 0.019(syst) ± 0.007(J/\psi K) 

{\bf A}_{CP}({\bf B}{
ightarrow}\pi{
m K}{
m K}) = -0.153 ± 0.046(stat) ± 0.019(syst) ± 0.007(J/\psi K)
```

- $B \rightarrow K_s hh$: Signal established (publications with 1fb⁻¹ to come)
- 4-body decays(angular analysis) (γ, ϕ_s)
 - $B_{d,s} \rightarrow VV$ ($\phi \phi, K^*K^*, K^*\rho, \rho \rho, ...$) Amplitude time-dependent analysis published with 1fb⁻¹.
 - More will follow
- Prospects for 3fb⁻¹:
 - Statistic improvement, amplitude analysis and addition of SS tagging

BackUp

Resolution

momentum resolution:

 $\Delta p / p = 0.4 \%$ at 5 GeV/c to 0.6 % at 100 GeV/c

ECAL resolution (nominal):

1 % + 10 % / √(E[GeV])

impact parameter resolution:

20 µm for high-pT tracks

invariant mass resolution:

~8 MeV/c2 for B \rightarrow J/ ψ X decays with constraint on J/ ψ mass

~22 MeV/c2 for two-body B decays

~100 MeV/c2 for Bs $\rightarrow \phi$ $\gamma,$ dominated by photon contribution decay time resolution:

45 fs for Bs \rightarrow J/ ψ ϕ and for Bs \rightarrow Ds π

Efficiencies

percentage of working detector channels:

~ 99 % for all sub-detectors

data taking efficiency:

> 90 %

data good for analyses:

> 99 %

trigger efficiencies:

~ 90 % for dimuon channels

~ 30 % for multi-body hadronic final states

track reconstruction efficiency:

> 96 % for long tracks

electron ID efficiency:

~ 90 % for ~ 5 % e→h mis-id probability kaon ID efficiency:

~ 95 % for ~ 5 % $\pi \rightarrow$ K mis-id probability muon ID efficiency:

~ 97 % for 1-3 % $\pi \rightarrow \mu$ mis-id probability

Acceptance

pseudorapidity: 2 < n < 5

Charmless 2 body decays (protons)

arXiv:1206.2794

Branching fractions

$$\mathcal{B}(B^{0} \to \pi^{+}\pi^{-})/\mathcal{B}(B^{0} \to K^{+}\pi^{-}) = 0.262 \pm 0.009 \pm 0.017$$

$$(f_{s}/f_{d}) \cdot \mathcal{B}(B_{s}^{0} \to K^{+}K^{-})/\mathcal{B}(B^{0} \to K^{+}\pi^{-}) = 0.316 \pm 0.009 \pm 0.019$$

$$(f_{s}/f_{d}) \cdot \mathcal{B}(B_{s}^{0} \to \pi^{+}K^{-})/\mathcal{B}(B^{0} \to K^{+}\pi^{-}) = 0.074 \pm 0.006 \pm 0.006$$

$$(f_{d}/f_{s}) \cdot \mathcal{B}(B^{0} \to K^{+}K^{-})/\mathcal{B}(B_{s}^{0} \to K^{+}K^{-}) = 0.018^{+0.008}_{-0.007} \pm 0.009$$

$$(f_{s}/f_{d}) \cdot \mathcal{B}(B_{s}^{0} \to \pi^{+}\pi^{-})/\mathcal{B}(B^{0} \to \pi^{+}\pi^{-}) = 0.050^{+0.011}_{-0.009} \pm 0.004$$

$$\mathcal{B}(\Lambda_{b}^{0} \to p\pi^{-})/\mathcal{B}(\Lambda_{b}^{0} \to pK^{-}) = 0.86 \pm 0.08 \pm 0.05 \text{ (world's most precise)}$$

With
$$\mathcal{B}(B^0 \to K^+\pi^-) = (19.4 \pm 0.6) \times 10^{-6}$$
 (HFAG) and $f_s/f_d = 0.267^{+0.021}_{-0.020}$ $\mathcal{B}(B^0 \to \pi^+\pi^-) = (5.08 \pm 0.17 \pm 0.37) \times 10^{-6}$ PRD 85 (2012), 032008 $\mathcal{B}(B_s^0 \to K^+K^-) = (23.0 \pm 0.7 \pm 2.3) \times 10^{-6}$ (world's most precise) $\mathcal{B}(B_s^0 \to \pi^+K^-) = (5.4 \pm 0.4 \pm 0.6) \times 10^{-6}$ (world's most precise) $\mathcal{B}(B^0 \to K^+K^-) = (0.11^{+0.05}_{-0.04} \pm 0.06) \times 10^{-6}$ (world's most precise) $\mathcal{B}(B_s^0 \to \pi^+\pi^-) = (0.95^{+0.21}_{-0.17} \pm 0.13) \times 10^{-6}$ (5.3 σ , first observation)

Charmless 2 body decays $(B_s^0 \rightarrow KK)$

Time-dependent B⁰_s→KK

Preliminary results

 Δm_s from $B_s \rightarrow D_s \pi$ PLB 709(2012)177) $\Delta \Gamma_s$ from $B_s \rightarrow J/\psi \phi$ PRL 108(2012)101803

 $A_{kk}^{dir} = 0.02 \pm 0.18(stat) \pm 0.04(syst)$ $A_{kk}^{mix} = 0.17 \pm 0.18(stat) \pm 0.05(syst)$ $\rho(A_{kk}^{dir}, A_{kk}^{mix}) = -0.10 (stat only)$

First $B_s^0 \rightarrow KK$ CP asymmetry measurement

• $K\pi\pi$ and KKK

LHCb-CONF-2012-018

$$\begin{split} A_{cp}(B^{\pm} \to K\pi\pi) &= +0.034 \pm 0.009(stat) \pm 0.004(syst) \pm 0.007(J/\psi K) \\ A_{cp}(B^{\pm} \to KKK) &= -0.046 \pm 0.009(stat) \pm 0.005(syst) \pm 0.007(J/\psi K) \end{split}$$

2.8σ

 3.7σ

πππ and πΚΚ

LHCb-CONF-2012-028

$$\begin{split} A_{cp}(B^{\pm} \to \pi\pi\pi) &= +0.120 \pm 0.020(stat) \pm 0.019(syst) \pm 0.007(J/\psi K) \\ A_{cp}(B^{\pm} \to \pi K K) &= -0.153 \pm 0.046(stat) \pm 0.019(syst) \pm 0.007(J/\psi K) \end{split}$$

4.2σ 3.0σ

19

• $B \rightarrow \pi \pi \pi$ large CPV region

LHCb-CONF-2012-028

Very large CPV in a region not associated to a resonance

 $A_{cp}(B^{\pm} \to \pi\pi\pi \text{ region}) = +0.622 \pm 0.075(\text{stat}) \pm 0.032(\text{syst}) \pm 0.007(J/\psi K^{\pm})$

Charmless 3-body decays (with protons)

3-body charmless with ppbK

LHCb-PAPER-2012-047

Relative branching fractions and upper limits

$$\frac{\mathcal{B}(B^{+} \to p\bar{p}K^{+})_{\text{total}}}{\mathcal{B}(B^{+} \to J/\psi K^{+} \to p\bar{p}K^{+})} = 4.91 \pm 0.19 \text{ (stat)} \pm 0.14 \text{ (syst)},$$

$$\frac{\mathcal{B}(B^{+} \to p\bar{p}K^{+})_{M_{p\bar{p}} < 2.85 \text{ GeV}/c^{2}}}{\mathcal{B}(B^{+} \to J/\psi K^{+} \to p\bar{p}K^{+})} = 2.02 \pm 0.10 \text{ (stat)} \pm 0.08 \text{ (syst)},$$

$$\frac{\mathcal{B}(B^{+} \to \eta_{c}(1S)K^{+} \to p\bar{p}K^{+})}{\mathcal{B}(B^{+} \to J/\psi K^{+} \to p\bar{p}K^{+})} = 0.578 \pm 0.035 \text{ (stat)} \pm 0.025 \text{ (syst)},$$

$$\frac{\mathcal{B}(B^{+} \to J/\psi K^{+} \to p\bar{p}K^{+})}{\mathcal{B}(B^{+} \to J/\psi K^{+} \to p\bar{p}K^{+})} = 0.080 \pm 0.012 \text{ (stat)} \pm 0.009 \text{ (syst)}.$$

$$\frac{\mathcal{B}(\eta_c(2S) \to p\bar{p})}{\mathcal{B}(\eta_c(2S) \to K\bar{K}\pi)} < 3.1 \times 10^{-2}$$
$$\frac{\mathcal{B}(X(3872) \to p\bar{p})}{\mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-)} < 2.0 \times 10^{-3}$$

VV decays $(B_s^0 \rightarrow \phi \phi)$

Previous angular analysis (untagged)

LHCb-PAPER-2012-004 arXiv:1204.2813

$$|A_0|^2 = 0.365 \pm 0.022 \,(\text{stat}) \pm 0.012 \,(\text{syst}) \,,$$

$$|A_\perp|^2 = 0.291 \pm 0.024 \,(\text{stat}) \pm 0.010 \,(\text{syst}) \,,$$

$$\cos(\delta_\parallel) = -0.844 \pm 0.068 \,(\text{stat}) \pm 0.029 \,(\text{syst}) \,,$$

$$A_U = -0.055 \pm 0.036 \,(\text{stat}) \pm 0.018 \,(\text{syst}) \,,$$

$$A_V = 0.010 \pm 0.036 \,(\text{stat}) \pm 0.018 \,(\text{syst}) \,.$$

Untagged time-integrated analysis
Systematics dominated by the s-wave contamination and angular acceptance
Polarization in good agreement with CDF

Triple products

1.0 fb⁻¹ LHCb-PAPER-2012-004 arXiv:1204.2813

$$\begin{split} V &= sign(\cos\theta_{1}\cos\theta_{2})\sin\varphi = sign(\cos\theta_{1}\cos\theta_{2})(\hat{n}_{1}\times\hat{n}_{2})\cdot\hat{p}_{1} \\ U &= \frac{\sin2\varphi}{2} = 2(\hat{n}_{1}\cdot\hat{n}_{2})(\hat{n}_{1}\times\hat{n}_{2})\cdot\hat{p}_{1} \\ A_{V} &= \frac{N_{V}^{+}-N_{V}^{-}}{N_{V}^{+}+N_{V}^{-}} = -\frac{2\sqrt{2}}{\pi}\frac{\mathrm{Im}(A_{\perp}A_{0}^{*})}{|A_{0}|^{2}+|A_{\parallel}|^{2}+|A_{\perp}|^{2}} \\ A_{U} &= \frac{N_{U}^{+}-N_{U}^{-}}{N_{U}^{+}+N_{U}^{-}} = -\frac{4}{\pi}\frac{\mathrm{Im}(A_{\perp}A_{\parallel}^{*})}{|A_{0}|^{2}+|A_{\parallel}|^{2}+|A_{\perp}|^{2}} \end{split}$$

- Calculated as asymmetries in U=sin(2ϕ) and V=sign($\cos\theta_1\cos\theta_2$)sin ϕ

$$A_U = -0.055 \pm 0.036$$

 $A_V = 0.010 \pm 0.036$

Systematics dominated by the time acceptance Results in agreement with CDF measurements with no CPV

VV decays $(B_s^0 \rightarrow K^*K^*)$

- $B_s^0 \rightarrow K^*K^* (K\pi K\pi)$
 - First observation with 35pb⁻¹

Non negligible S-wave component Hints for the B_d peak

$$f_L = 0.30 \pm 0.12(stat) \pm 0.04(syst)$$

 $f_L = 0.38 \pm 0.11(stat) \pm 0.04(syst)$

Untagged time-integrated angular fit to helicity angles (remarkable difference wrt BaBar)

2011 + 2012 analysis to come

LHCb Collaboration, R. Aaij et al., Phys. Lett. B 709 (arXiv:1111.4183)