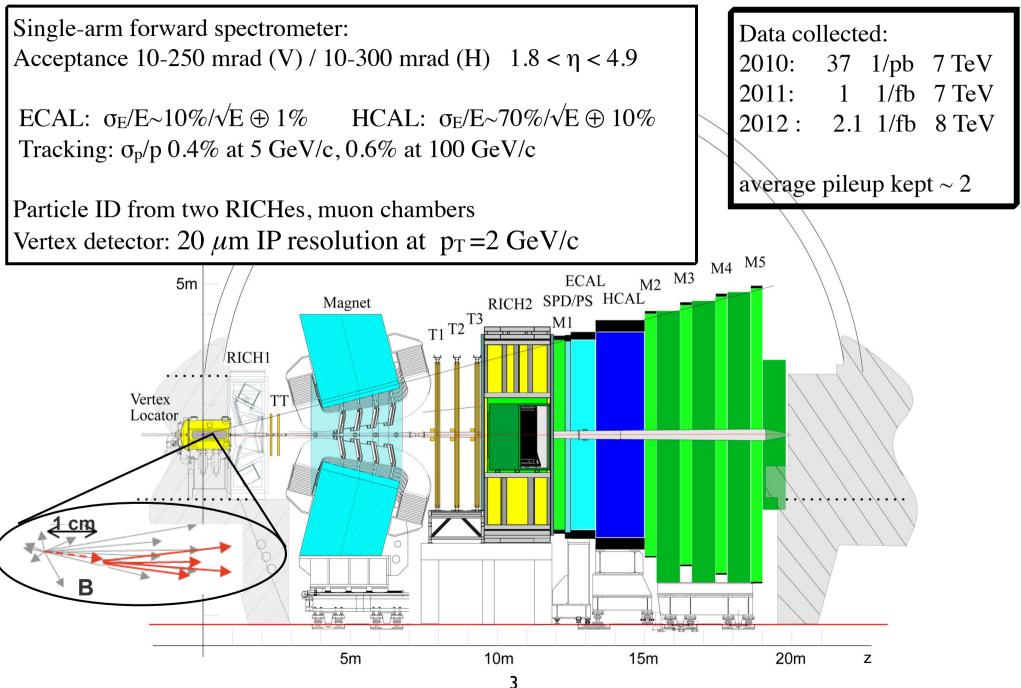


A. Bay LPHE, EPFL Lausanne Aspen March 2013

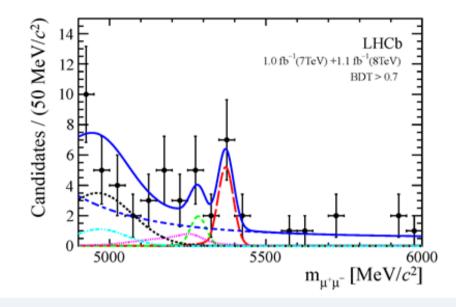
Toward direct searches for Higgs-like particles at LHCb



Summary

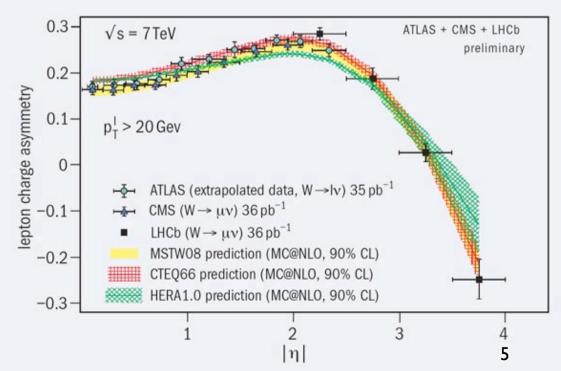
- The LHCb detector
- $H \rightarrow \tau^+ \tau^-$
- Higgs searches, b jets studies
 - b-bbar inclusive cross section
 - central-forward asymmetry in b-bbar events
- h⁰ to long lived particles

The LHCb detector


VErtex LOcator (VELO)

LHCh

LHCb playground



New Physics hunting via indirect searches $B_s^0 \rightarrow \mu^+ \mu^-$

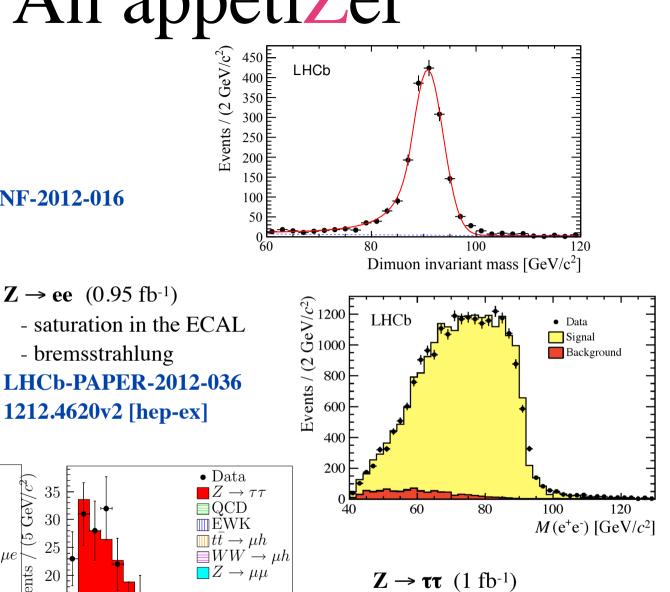
Predicted BR = $(3.54 \pm 0.30) 10^{-9}$ arXiv:1208:0934 & PRL 109 041801 (2012)

Observed BR = $3.2^{+1.4}_{-1.2}$ (stat) $^{+0.5}_{-0.3}$ (syst)

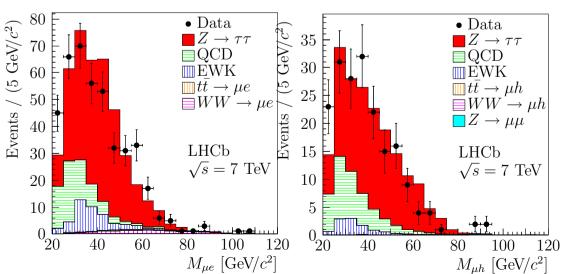
Phys. Rev. Lett. 108 (2012) 231801 LHCb-CONF-2012-043

Full story in C. Langenbruch's talk

Physics measurements in kinematical regions complementary to ATLAS & CMS


$$A_W = \frac{\sigma_{W^+} - \sigma_{W^-}}{\sigma_{W^+} + \sigma_{W^-}}$$

JHEP 6 (2012) 58

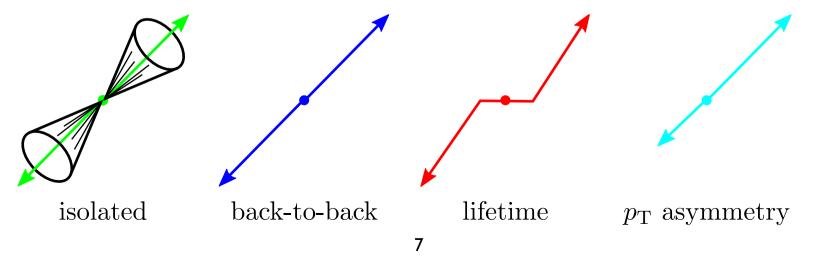


An appetiZer

 $\mathbf{Z} \rightarrow \boldsymbol{\mu}\boldsymbol{\mu}$ (37 pb⁻¹) JHEP 2012, 6 (2012), 58 1212.4620 [hep-ex] See also Z+jet: LHCb-CONF-2012-016

 $\mathbf{Z} \rightarrow \mathbf{ee} \ (0.95 \text{ fb}^{-1})$

- bremsstrahlung


 $H \rightarrow \tau^+ \tau^-$

Goal: set limits on neutral Higgs production in the **forward** region in pp collisions at 7 TeV.

DATA sample $L \sim 1 \text{ fb}^{-1}$ collected in 2011 at 7 TeV

Five analysis streams:

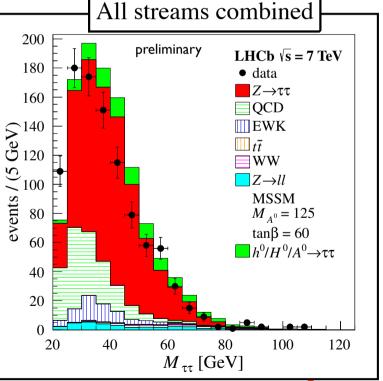
di-muon, muon+electron, electron+muon, muon+hadron, electron+hadron. First particle $p_T > 20$ GeV/c, second $p_T > 5$ GeV/c, zero total charge. Leptons must be isolated, and with some impact parameter wrt primary vertex. The couple must be ~back-to-back $\Delta \phi > 2.7$ rad, mass > 20 GeV/c². The momentum asymmetry is defined as the absolute difference between the transverse momenta of the two τ lepton decay product candidates over their sum, and is required be greater than 0.3 for the di-muon stream.

$H \rightarrow \tau^+ \tau^-$

SIGNALS

Following LHC Higgs Cross Section Working Group recommendations. SM: Model independent. Cross sections from DFG. MSSM: Can only be model dependent: chose m_{h0}^{max} scenario, which leaves only M_{A^0} and tan β free. Cross sections and efficiencies functions of M_{A^0} and tan β , from gg fusion and bbbar associated production (HIGLU, GGH@NNLO, BBH@NNLO) Contributions from h^0 , A^0 , and H^0 are summed. Branching fractions with FeynHiggs 2.7.4. Efficiencies for the signal from data (same as $\mathbf{Z} \rightarrow \tau \tau$ analysis)

BACKGROUNDS

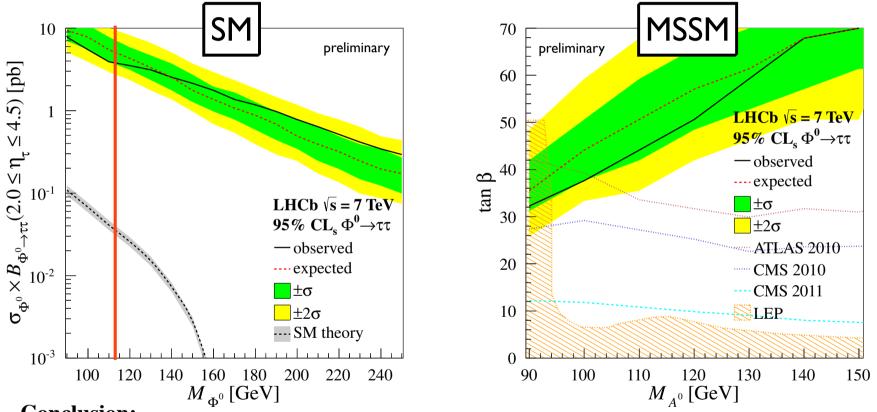

 $Z \rightarrow \tau^+ \tau^-$: shape from simulation, theoretical cross section, efficiency from data.

QCD: leptonic b- or c-hadron decay or misidentified hadron. Shape from isolation sideband, normalization from same-sign.

EWK: lepton from W or Z, second particle from underlying event. Shape from simulation, normalized from same-sign.

top/WW: leptonic decays. Taken from simulation.

 $Z \rightarrow \ell \ell$: shape from sidebands, normalization from peak or mis-id rates.

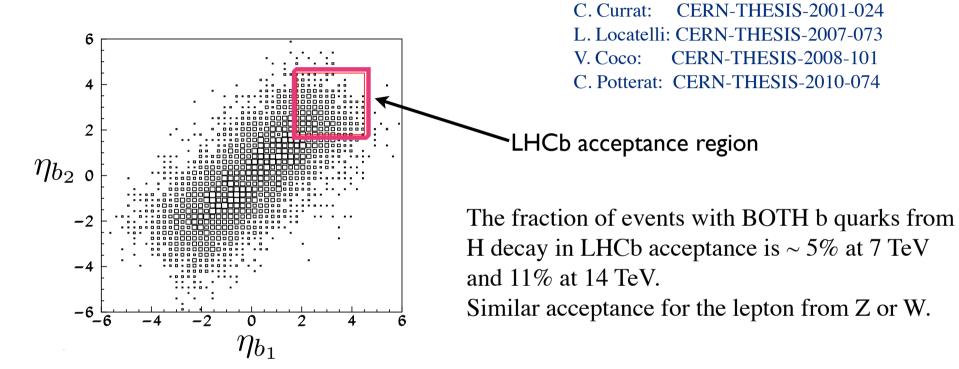

$H \rightarrow \tau^+ \tau^-$

Calculate asymptotic limit from profile ratio of extended likelihood using mass shape

(Eur. Phys. J. C71 (2011) 1554, arXiv:1007.1727)

Upper limits calculated at CLs = 95 %

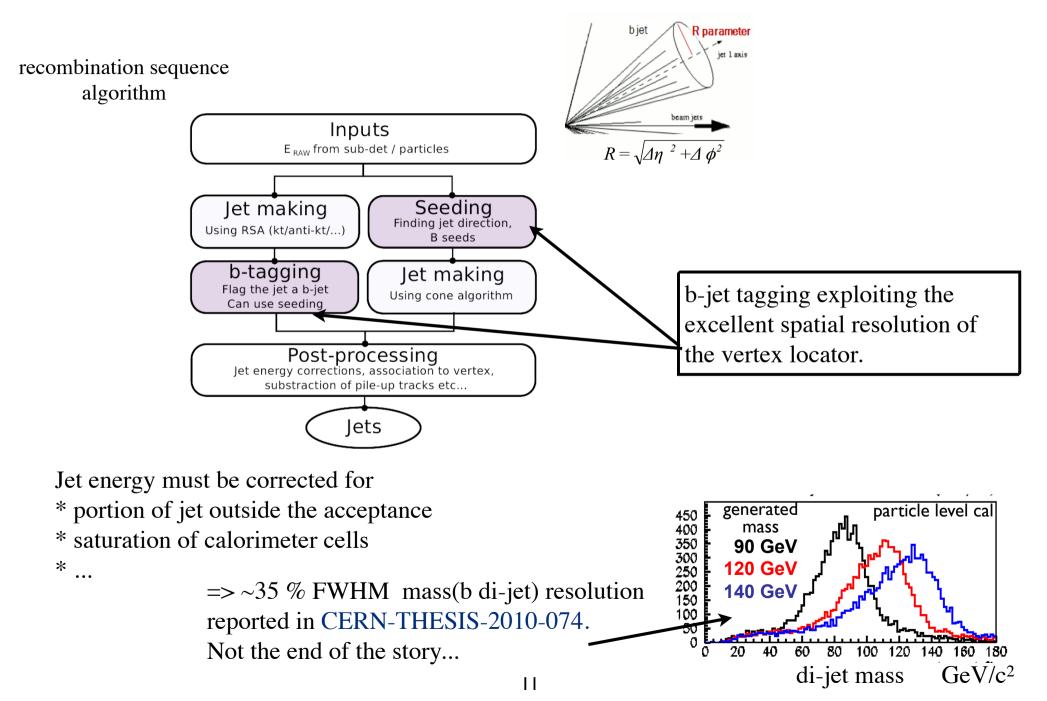
MSSM limits compared to ATLAS, CMS, and LEP results


Conclusion:

Model independent search for Higgs $\rightarrow \tau^+ \tau^-$ cross section times branching fraction upper bound at ~ 3 pb for an Higgs mass of 125 GeV/c², both τ in 2 < η < 4.5. In the context of the m_{h0}^{max} scenario, values above tan β from 32 to 70 are excluded for the A⁰ mass range from 90 to 150 GeV/c².

SM(like)-Higgs studies

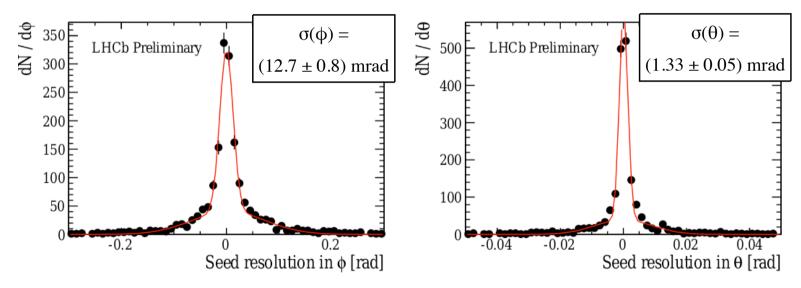
MC studies for the detection of Higgs bosons in associated production with Z or W can be found in CERN thesis:



Analysis of 2011 and 2012 data ongoing.

This activity has triggered the preparation of several tools for jet reconstruction, calibration, beauty-jets tagging...

Jets with beauty



$\sigma(b\overline{b})$ inclusive

DATA sample: consider only events with ONE reconstructed primary vertex ($L = 2.6 \text{ pb}^{-1}$)

Partial b-hadron reconstruction: 3 or 2 tracks vertices give seeds with total charge $\pm 1,0$ respectively. Merge seeds when they are too close, and if final mass < 5.5 GeV/c².

=> Seeds approximate very well the initial B hadron direction

Energy correction from MC to recover the b-hadron energy.

Selecting events with exactly 2 seeds within the fiducial volume: $\eta \in (2.5 - 4.0)$ and $p_T > 5$ GeV/c

$\sigma(b\overline{b})$ inclusive

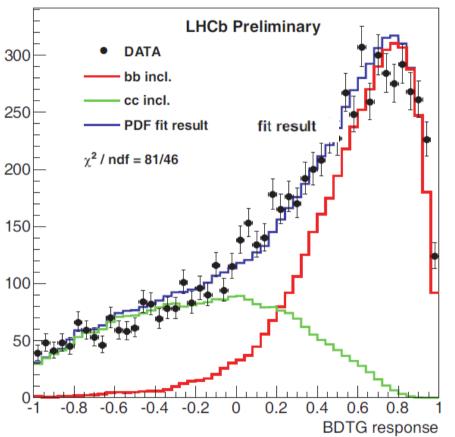
Inclusive *b* seeding efficiency

- from MC: $(81.6 \pm 0.7)\%$
- x-check with data: tag jet with other side $B \rightarrow D\pi$:

 $(82.5 \pm 3.0)\%$ global efficiency for b events $8 \ 10^{-4}$ for c events $1.8 \ 10^{-5}$

BDT to get the b-bbar and c-cbar contributions, 4 variables: seed p_T , seed inv. mass, sum of IP significances, and scalar sum of the tracks p_T wrt seed direction x-check of the shape with (other side) $B \rightarrow D\pi$ and $D \rightarrow K\pi\pi$

Results for $\eta \in (2.5 - 4.0)$ and $p_T > 5 \text{ GeV/c}$


 σ (b-bbar) = (7.7 ± 0.12 (stat) ± 0.84 (syst)) µb

 σ (c-cbar) = (104.6 ± 2.7 (stat) ± 11.4 (syst)) µb.

(For reference, extrapolated to full space with POWHEG we obtain 364 μb and 3353 μb , resp.)

Conclusion:

Measured inclusive b-bbar and c-cbar cross sections in $\eta \in (2.5 - 4.0)$ and $p_T > 5$ GeV/c. Future: use larger statistics. Analysis at 8 TeV. Study b-bbar correlations.

The central-forward bb asymmetry A_{FC}

TEVATRON has proton-antiproton collisions: can measure a Forward-Backward Asymmetry A_{FB} .

SM prediction for t-tbar is $A_{FB} \sim 5\%$ (Phys. Rev. D59 (1999) 054017)

CDF and D0 observe a value \sim 3 to 4 times larger.

=> The discrepancy is ~2.5 sigmas.

$$A_{t\bar{t}} = \frac{N(y_t > y_{\bar{t}}) - N(y_{\bar{t}} > y_t)}{N(y_t > y_{\bar{t}}) + N(y_{\bar{t}} > y_t)}$$

LHC has proton-proton collision: can only measure the Forward-Central Asymmetry A_{FC} which is predicted to be ~1% in the SM (JHEP 01 (2012) 063): top quarks with larger rapidities are preferred, anti-top produced more frequently at smaller rapidities.—

$$A_{FC} = \frac{N(\Delta_y > 0) - N(\Delta_y < 0)}{N(\Delta_y > 0) + N(\Delta_y < 0)} \quad \Delta_y = |y_t| - |y_{\bar{t}}|$$

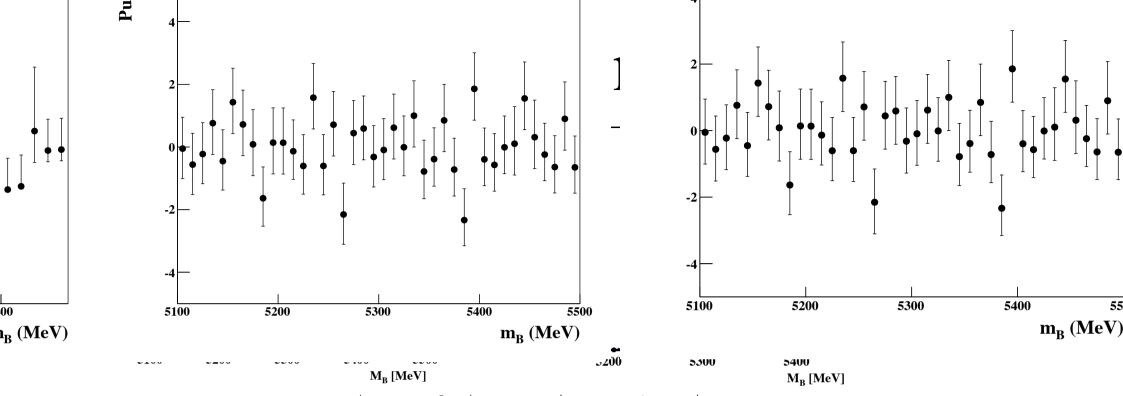
LHCb-CONF-2013-001

$$\begin{array}{c} \hline \\ P \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ P \\ \hline \\ P \\ \hline \\ P \\ \hline \end{array} \begin{array}{c} \\ P \\ \hline \\ P \\ \hline \\ P \\ \hline \end{array} \begin{array}{c} \\ \\ P \\ \hline \\ P \\ \hline \end{array} \begin{array}{c} \\ \\ P \\ \hline \\ P \\ \hline \end{array} \begin{array}{c} \\ \\ P \\ \end{array} \end{array}$$

dN/dy

=> Present results at LHC are consistent with SM.

Relation between A_{FB} and A_{FC} see: arXiv:1105.4606 (from New Physics $A_{FC} \sim 1/5 - 1/10$ of A_{FB})


A_{FC} in $b\overline{b}$

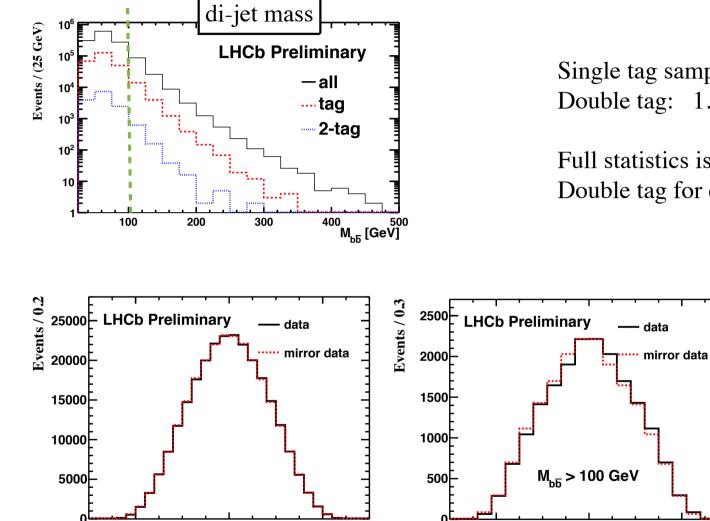
Measurement of asymmetry for b-quarks can provide additional information [Kahawala, Krohn, Strassler, arXiv:1108.3301]

Measurement dominated by contribution from $gg \rightarrow bb$. Increase sensitivity to SM/non-SM by taking forward events and $m_{bb} > 100 \text{ GeV/c}^2$ i.e. enrich events with $qq \rightarrow bb$, and $qg \rightarrow bbg$

Analysis of 1.0 fb⁻¹ of data at 7 TeV.

- * Two jets from anti-k_T (R = 0.5), $p_T > 15$ GeV/c, $\Delta \phi(j_1, j_2) > 2.5$ rad, 2< η <5, and correct jet energy to quark level.
- * b tag based on vertices formed by 2, 3 or 4 tracks significantly displaced from the primary vertex => very high purity from a BDT. Charm contamination negligible.
 * Flavor tag: hardest displaced track (p>10 GeV/c, χ_{IP}² >16) must be a muon.
- Resolution on $\Delta y \sim 0.1$ => no significant dilution on A_{FC}.
- $\sigma(m_{bb}) \sim 15-20$ %, no unfolding procedure for the moment. Effects on A_{FC} ~ 1%.
- Dilution of flavor tag from B^0 and B_s^0 oscillations, decays via a c-quark, muon mis-ID. Purity values computed from MC, from data with fully reconstructed B⁺, and from double tag events coincide.

B candidate masses for $B^{\pm} \to D^0 \pi^{\pm}$ and $B^{\pm} \to J/\psi K^{\pm}$ used in the flavor-tag studies.



-2

0

A_{FC} in $b\overline{b}$

2

 Δ y

Observed $\Delta y = |y_b| - |y_{\bar{b}}|$ distributions for all events and for $m_{bb} > 100 \text{ GeV/c}^2$. Reflected plots along $\Delta y=0$ in red.

-2

Single tag sample : 2.6×10^5 events Double tag: 1.5×10^4

2

Δy

0

Full statistics is used in the final analysis. Double tag for control.

A_{FC} in $b\overline{b}$

After correction for mis-tag, we obtain:

$$\begin{split} A_{\rm FC}^{b\bar{b}} &= (0.5\pm0.5~{\rm (stat)}\pm0.5~{\rm (syst)})\%, \\ A_{\rm FC}^{b\bar{b}}(M_{b\bar{b}}>100~{\rm GeV}) &= (4.3\pm1.7~{\rm (stat)}\pm2.4~{\rm (syst)})\%. \end{split}$$

where:

$$A_{FC}^{b\bar{b}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)} \qquad \Delta y = |y_b| - |y_{\bar{b}}|$$

Systematic errors from flavor-tagging purity and detector asymmetry (seen in events tagged μ^+ vs μ^- , but ~cancellation when two sub-samples added).

Conclusion:

 A_{FC} measured in the system $b\overline{b}$.

Several improvement on the analysis are under study, in particular a more efficient b-tag, and m_{bb} resolution unfolding. Adding 2012.

=> Should increase the $m_{bb} > 100 \text{ GeV/c}^2$ mass sample by a factor of 6. We also have good hope to present results beyond the t-tbar threshold.

h⁰ to Long-Lived Particles

1) Minimal Supersymmetric SM with R-Parity and Baryon number violations

L. M. Carpenter, D. E. Kaplan, and E.-J. Rhee,

"Six-Quark Decays of the Higgs Boson in Supersymmetry with R-Parity Violation", Phys. Rev. Lett. 99 (2007) 211801

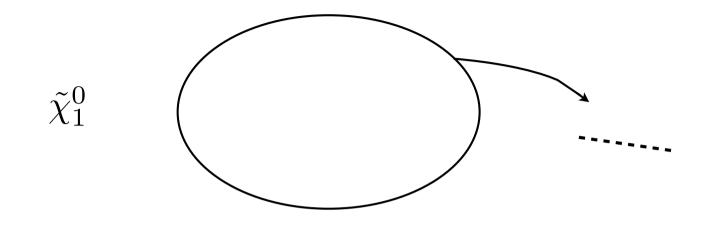
 $h^0 o ilde{\chi}^0_1 ilde{\chi}^0_1 \qquad ilde{\chi}^0_1 o 3\, {
m jets} \qquad$ (~70% cases with a b)

2) Hidden Valley

M. J. Strassler and K. M. Zurek,

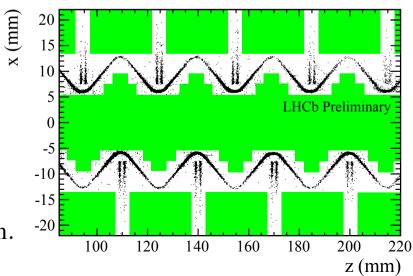
"Echoes of a hidden valley at hadron colliders", Phys. Lett. B651 (2007) 374

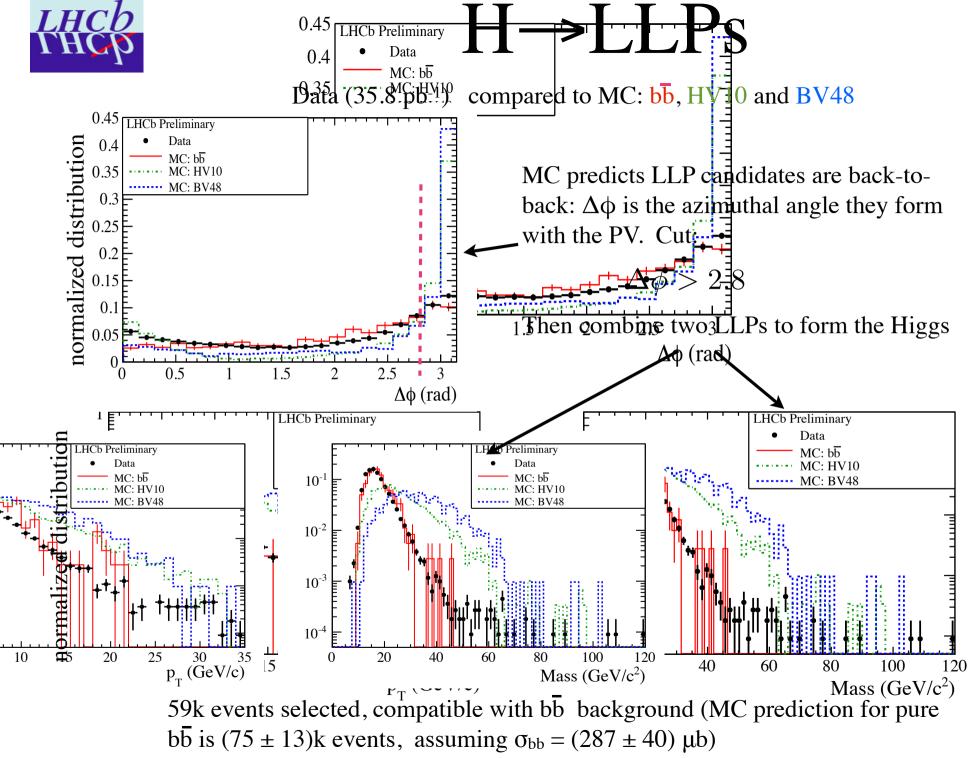
 $h^0 \to \pi_V^0 \pi_V^0 \to b \bar{b} b \bar{b}$


Both:
$$m_{LLP} > 20 \, GeV/c^2 \quad \tau_{LLP} > 1 \, ps$$

=> find two massive Long-Lived Particles (LLP) in the event => combine to form h⁰

Model	Turn	mare	m t 0	Models shown in the plo
WIOUCI	$ au_{ m LLP}{ m ps}$	m_{LLP} GeV/c ²	${ m m_{h^0}}{ m GeV/c^2}$	
BV48	10	48	114	RPV, B violation
HV10	10	35	120	Hidden Valley


H→LLPs



Loose selection:

Main background at this point: interactions with matter, mainly Si sensors, and the RF screen.

We select only LLP candidates with vertex in the green region.

H→LLPs

FINAL selection to reject all b-bbar events (t-tbar, minbias, idem):

* The two LLP candidates must have

nb of tracks ≥ 6 mass > 6 GeV/c² vtx position errors $\sigma_r < 0.05$ mm, $\sigma_z < 0.24$ mm

=> No data events survives the final selection.

MC is used to obtain the selection efficiency. For BV48 we obtain a value of 0.38 %. => BR × sigma upper limit = 32 pb (95% CL)

Several points of the 3D parameter space studied with full simulation. A fast simulation is then used to cover a larger region of the parameter space. Two examples (units is [pb]):

LLP lifetime $= 10 \text{ ps}$										
m_{LLP}	30	35	40	48	55					
m_{h^0}										
100	101	58	44	58						
105	100	75	44	39						
110	132	75	56	34						
114	128	91	47	32	46					
120	148	93	58	34	31					
125	179	90	61	41	29					

Higgs mass = $114 \text{ GeV/}c^2$								
m_{LLP}	30	35	40	48	55			
$ au_{LLP}$								
3	210	156	136	168	410			
5	145	101	68	58	137			
10	129	91	47	32	46			
15	155	90	49	31	33			
20	131	93	63	32	31			
25	142	100	61	34	25			

Conclusion:

Preliminary analysis with 36 pb⁻¹ sets limits on $h^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0$ Analysis of 2011 data and 2012 should increase sensitivity by a factor of ~10. Searches will be extended to other topologies, including single LLP.

Global conclusion

• LHCb can explore kinematical regions complementary to ATLAS and CMS

- Tools have been developed for reconstruction of jets and b tagging them with good efficiency&purity
- Measured

b-bbar and c-cbar inclusive cross section

 A_{FC} for b-bbar

- Set limits on neutral Higgs production in the forward direction
- Higgs in associated production analysis ongoing

* 13-14 TeV operation will improve the acceptance to decay products from heavy resonances

* Upgrade very welcome