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THE TOEPLITZ PACKAGE USERS' GUIDE

0. B. Arushanian, M. K. Samarin, V. V. Voevodin, E. E. Tyrtyshnikov (USSR)
B. S. Garbow, J. M. Boyle, W. R. Cowell, K. W. Dritz (USA)

ABSTRACT

The TOEPLITZ package is a collection of Fortran subroutines
for the numerical solution of systems of linear equations with
coefficient matrices of Toeplitz or circulant form. This report
provides a description of the algorithms and software in the
package and includes program listings.

INTRODUCTION

l. Overview of the TOEPLITZ Package

The TOEPLITZ package is a collection of Fortran subroutines for solving

linear systems
Ax = b,

where A is a Toeplitz matrix (see subsection 1.1 of Chapter 1), a circulant
matrix (see subsection 1.2 of Chapter 1), or has one of several block struc-
tures based on Toeplitz or circulant matrices. 1Included also is capability

for orthogonal factorization of a column-circulant matrix (see subsection 1.4

of Chapter 1).

Such systems arise in problems of electrodynamics, acoustics, mathe-
matical statistics, algebra, in the numerical solution of integral equations
with a difference kernel, and in the theory of stationary time series and
signals (see, e.g., [5,7,9,17,20,25,26]). Circulant matrices play an impor-
tant role in the theory of circular convolutions [13]. Block-Toeplitz
matrices have recently begun to play a significant role as the applicability

of multichannel time series increases [22,30].

Although the theoretical and practical significance of Toeplitz matrices
was recognized early in this century [23,28,31], computational aspects were
not studied until more recently. The most influential and fundamental paper

on algorithmic aspects was Levinson's extension to the discrete case of



Wiener's basic work on filtering [19,29]. It was here that the technique of
bordering and recursion on the order of the system was first shown to be an
effective way to produce efficient algorithms for Toeplitz systems. Levin-
son's algorithm is an O(Mz) method for solving an order M positive-definite
symmetric Toeplitz system of equations. Trench later used the same ideas to
show how bordering could be exploited for general Toeplitz systems [24].

Trench's work was made more explicit and generalized by Zohar [32,33].

These O(MZ) algorithms for Toeplitz systems are currently the most
practical methods for such problems. They have simple descriptions as pro-
grams, they use simple storage and control structures, and error analyses are

available for some of them [8,10,11].

The algorithms in this package for circulant matrices appear to have been
known classically (see [13]). Toeplitz matrices of the second level are dis-
cussed in [4,21,22,27]; the algorithms are essentially the same as those in
this package.

Toeplitz matrices arising in time series and signal processing are quite
often covariance matrices that occur 1in normal equations for linear least-
squares problems. The coefficient matrices in these probléms often have
column-circulant structures that lend themselves to efficient methods for
problem solution by orthogonalization. These methods are usually called
"lattice methods" in the signal processing literature [12,14,18]; one such
method [12] is implemented in the TOEPLITZ package.

The TOEPLITZ package has an intentional similarity to LINPACK [15] in the
format of the Fortran source, in the comments, and in the subroutine naming
conventions; All names consist of four, five, or six letters (depending on
the level of block structure of the matrix A) in the forms XSL#, XYSL#, or
XYZSL# for the system solving subroutines and CQR# for the orthogonal factor-
ization subroutines.® When A has no special block structure (see Chapter 1),
the letter in the X position specifies the type of the matrix:

T Toeplitz
C Circulant.

*The one member not governed by the naming convention is the service
subroutine SALWC (SALWZ in double precision), called by most of the two-level
and all of the three-level system solving subroutines.



When A has a two-level block structure (see Chapter 2), the letters in the XY

positions specify the type of the matrix:
TG Block-Toeplitz where the blocks are general matrices
CT Block-circulant where the blocks are Toeplitz matrices
CC Block-circulant where the blocks themselves are circulant matrices
CG Block-circulant where the blocks are general matrices.

When A has a three-level block structure (see Chapter 3), the letters in the
XYZ positions specify the type of the matrix:

CTG Block-circulant where the blocks are two-level TG-type matrices
CCT Block-circulant where the blocks are two-level CT-type matrices
CCC Block-circulant where the blocks are two-level CC-type matrices
CCG Block-circulant where the blocks are two-level CG-type matrices.

By permuting corresponding rows and columns, one can transform any two-
level XY-type matrix to YX-type (see Tyrtyshnikov [25]). Similarly, one can
interchange any two levels of a three-level XYZ-type matrix. These cir-

cumstances effectively extend the capability of the TOEPLITZ package to

additional matrix types.

The fixed letters SL indicate that the routine solves a linear system,

while the 1letters QR indicate that the routine performs an orthogonal

factorization.

The last letter in the # position specifies the matrix data type.
Standard Fortran allows the use of three such types:
S  REAL
D DOUBLE PRECISION
(o COMPLEX.

In addition, some Fortran systems allow a double precision complex type:

z DOUBLE COMPLEX.

2. The Leading Array Dimension Parameter

Those members . of the TOEPLITZ péckage that process a two—-dimensional
array include in their calling sequences the parameter LDA (or LDQ,LDS) to
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communicate the leading dimension of the array. 'Leading dimension" refers to
the DIMENSION statement storage allocation for the array and should be distin-
guished from the order of the linear system. The inclusion of this parameter
enables flexibility in processing systems of varying order without the bother
of changing the DIMENSION statement for the coefficient matrix.

For example, if the array A has been declared "A(50,20)" in the DIMENS ION
statement, then simply enter the statement "LDA = 50" into the body of the
program before the call to the TOEPLITZ package subroutine.

3. Development of the TOEPLITZ Package

In offering the TOEPLITZ package to the international computing
community, it is appropriate to note that this software is the result of
collaboration among scientists in the United States and the Soviet Union.
Hence, in addition to the intrinsic usefulness of the package, the software in
its present form demonstrates the possibilities inherent in Soviet-American
collaboration in the development of scientific software. The work was carried
out under the auspices of the agreement between the U.S.A. and the U.S.S.R. on
Scientific and Technological Cooperation in the Field of Application of

Computers to Economics and Management, subtopic Mathematical Software.

This collaborative effort was initiated at the Numerical Software Work-
shop which took place at the National Science Foundation (NSF) in Washington,
D.C. in December of 1975. The general framework of joint efforts was dis-
cussed during that workshop by D. Aufenkamp of NSF, W. Cody of the Applied
Mathematics Division, Argonne National Laboratory (AMD-ANL), and O. Arushanian
of the Science Research Computing Center, Moscow State University (SRCC-MSU),
then visiting Pennsylvania State University for the year. Further steps were
discussed during a meeting ﬁhich took place at Penn State in February of 1976
involving D. Aufenkamp (NSF), J. Boyle (AMD-ANL), W. Cowell (AMD-ANL), and
0. Arushanian (SRCC-MSU), and during a short visit by O. Arushanian to
J. Bunch, University of California at San Diego (UCSD). In accordance with
plans agreed upon during these meetings and approved in the meeting of coordi-
nators and experts on the topic '"Theoretical Foundations of Software for
Application in Economics and Management'" which took place in Moscow in June of
1976, long-term visits of American scientists to the U.S.S.R. in 1976 and 1978
and of Soviet scientists to the U.S.A. in 1978 and 1979 were arranged to



exchange information and to carry out joint work on numerical software devel-
opment. These joint efforts came to be known as the SALAR (Soviet-American
Libraries and Algorithms Research) project. Results of accomplished works
have appeared in 25 papers (see [1] and [2]) and were presented at the IFIP
Congress in August of 1977 in Toronto, Canada (see [3]).

The contributions from the U.S.A. side were made by J. Boyle, K. Dritz,
W. Cowell, and B. Garbow of AMD-ANL (now redesignated MCS-ANL), J. Bunch of
UCSD, D. Sorensen (now of MCS-ANL), W, Miller (now of the University of Ari-
zona), and C. Moler of the University of New Mexico. The contributions from
the U.S.S.R. side were made by V. Voevodin (now of the Academy of Sciences,
State Committee for Science and Technology), O. Arushanian, M. Samarin,
E. Nikolaev, V. Morozov, Y. Kuchevskiy, E. Tyrtyshnikov, N. Bogomolov, and
V. Borisov of SRCC-MSU.

The SALAR project had a number of objectives. First of all, it repre-
sented joint research into the methodology and practical aspects of producing
mathematical software, namely, numerical libraries and packages. This main
objective dictated the necessity of also investigating systems aspects of
mathematical software development, which include the study of transportability
problems, tailoring of programs to user requests, abstract formulation of
numerical algorithms, and program transformation and generation systems.
Methodological questions associated with the joint systematization, testing,
and certification of mathematical software packages were also of great impor-
tance in the SALAR project. Research in numerical algorithms development was
conducted mostly in linear algebra on problems such as updating algorithms for

matrix decomposition and solving special types of linear systems.

The TOEPLITZ package was produced as a part of the SALAR project and can
be considered as a practical result of previous investigations. The routines
were originally written in 1978 at Moscow State University by E. Tyrtyshnikov
[25] on the basis of the theoretical results of W. Trench [24] and
S. Voevodina [27], and on his own research. A preliminary version of the
users' guide was written by Soviet and American scientists during a visit to
Argonne National Laboratory (U.S.A.) made by Soviet scientists O. Arushanian
and M. Samarin (of SRCC-MSU) in 1979. Multiple versions of TOEPLITZ subrou-
tines and formatting of codes were obtained with the help of the TAMPR-system
[3], produced by J. Boyle and K. Drité of AMD-ANL. Modifications, commenting,

11
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and test driver design were also accomplished during this Argonne visit.
Scientific supervision over the development of the TOEPLITZ package at SRCC-
MSU was provided by V. Voevodin.

Further developmental work on the codes and preparation of this users'
guide were accomplished at Argonne in 1982, The added capability for ortho-
gonalization of column-circulant matrices derives from a new algorithm of
G. Cybenko [12] (of Tufts University). Cybenko also suggested an improved
formulation of another of the algorithms, supplied background information
included in the "Overview” section of this guide, and pointed us to many of

the references.

In conclusion, we wish to acknowledge the support of the National Science
Foundation (U.S.A.) and the State Committee for Science and Technology
(U.S.S.R.), executors of the Science and Technology Agreement. Special thanks
are due to D. Aufenkamp (U.S.A.), B. Rameev (U.S.S.R.), and Y. Baraboshkin
(U.S.S.R.) who created conditions in which our joint work could flourish. We
also express our great gratitude to Judy Beumer (of MCS-ANL) who carefully
typed the manuscript for this users' guide.

4, Availability of the TOEPLITZ Package

The TOEPLITZ package is available on tape from the following sources.

National Energy Software Center IMSL, Inc.

Argonne National Laboratory or Sixth Floor, NBC Bldg.
9700 South Cass Avenue 7500 Bellaire Blvd.
Argonne, IL 60439 Houston, TX 77036-5085
Phone: (312) 972-7250 Phone: (713) 772-1927

The package includes both single precision and double precision versions of

the programs, and testing aids are also provided on the tape (see The TOEPLITZ

Package Implementation Guide, ANL-83-17).

Comments and questions regarding the TOEPLITZ package should be directed
to

Burton S. Garbow

Mathematics and Computer Science Division
Argonne National Laboratory

9700 South Cass Avenue

Argonne, IL 60439

Phone: (312) 972-7184
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CHAPTER 1: TOEPLITZ AND CIRCULANT MATRICES

l. Structure and Representation

l1.1. Toeplitz matrices (T-matrices)

A Toeplitz matrix, or T-matrix, A is a real or complex square matrix
whose elements along the main diagonal and along each co-diagonal are equal;

thus A has the representation

/ ao al 32 « o o aM_l\
a_ 1 ao al * o o %_2
A= 8_2 a_l aO o o o aM_3

. e e o o o o o o o o

\a-M+l a-M+2 8-M+3 * 30 ) .

A T-matrix is completely specified by its first row and column.

In the TOEPLITZ package a T-matrix of order M is represented by a singly
subscripted array of 2*M-1 elements which contains the first row of the matrix

followed by its first column beginning with the second element:
ao,al,az,...,aM_l,a_l,a_z,...,a_M+1 .

1.2. Circulant matrices (C-matrices)

A circulant matrix, or C-matrix, A is a T-matrix, limited here to complex

mode, with the further property that
a4y = a4 » i=1,2,...,M"1 3

thus A has the representation
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A C-matrix is completely specified by its first row; each further row may be
obtained from the previous one by a right cyclic shift.

In the TOEPLITZ package a C-matrix of order M is represented by a singly

subscripted array of M elements which contains the first row of the matrix:

ao,al ,az,coo,aM_l L]

1.3. General matrices (G-matrices)

A general real or complex square matrix

411 212 213 - - - 31M
a1 422 a3 - ¢ - A2y

A= 831 832 333 e o o a3M

8M 1 aMz aM3 [ o o am

will be called a G-matrix.

In the TOEPLITZ package a G-matrix of order M is represented by a singly

subscripted array of M#**2 elements which contains the successive columns of

the matrix:

all ,821 ,831 goee ,aMl ,a12 ,322,332,...,8M2,... ,alM,aZM,a3M,o LX) ,a-m .

l.4. Column—circulant matrices

The designation "column-circulant” will be given to a real or complex
rectangular matrix A, with'row order M at least equal to its column order L,
whose first column is specified and each further column obtained from its

predecessor by a downward cyclic shift; thus A has the representation



ag aM-1 aM-2 ° ° * M-L+1
a apg @y * * c AM-L+2
A = 32 al ao o o o aM_L+3
ay-1] aM-2 3M-3 ° - *° ML .

In the TOEPLITZ package a colum-circulant matrix with M rows is
represented by a singly subscripted array of M elements which contains the

first column of the matrix:

ao,al ,az, s oo ,aM_l .

2. Solution of Linear Equations with T-Matrices

2.1. Purpose

The TOEPLITZ subroutines in this section are designed to solve linear
algebraic equations with T-matrices. Usage will be described for the single
precision real version. Double precision, complex, and double precision
complex versions are also available. Indeed, the complex version is called in

solving two-level CT-matrix systems (see subsection 3.5 of Chapter 2).

2.2. Usage

Single precision real T-matrices. TSLS solves a linear system with a

real Toeplitz matrix. The calling sequence is
CALL TSLS(A,X,R,M) .
On entry,
A is a singly subscripted array of 2*M-1 elements which contains the

first row of the T-matrix followed by its first column beginning
with the second element. A is unaltered by TSLS.

15
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X is a singly subscripted array of M elements which contains the right
hand side of the system.

R is a singly subscripted array of 2*M-2 elements used for work space.
M is the order of A and the number of elements in X.

On return,
X contains the solution of the system.

Double precision real T-matrices. The calling sequence of the déuble

precision real T-matrix subroutine TSLD is the same as that of TSLS with A, X,
and R DOUBLE PRECISION variables.

Single precision complex T-matrices. The calling sequence of the single

precision complex T-matrix subroutine TSLC is the same as that of TSLS with A,
X, and R COMPLEX variables.

Double precision complex T-matrices. In those computing systems where it

is available, the calling sequence of the double precision complex T-matrix
subroutine TSLZ is the same as that of TSLS with A, X, and R DOUBLE COMPLEX

variables.

2.3. Example

The following program segment illustrates the use of the single precision
subroutine TSLS for real T-matrices. Examples of the use of TSLD, TSLC, and
TSLZ could be obtained by changing the subroutine name and type declaration.

The system is of order 4 with coefficients as follows.

1 2 3 4 10

5 1 2 3 11
A= X =

6 5 1 2 14

7 6 5 1 19




REAL A(7),X(4),R(6)

INTEGER M,I

DATA A(l1)/1.0/,A(2)/2.0/,A(3)/3.0/,A(4)/4.0/,
* A(5)/5.0/,A(6)/6.0/,A(7)/7.0/

DATA X(1)/10.0/,X(2)/11.0/,X(3)/14.0/,X(4)/19.0/
M=4

CALL TSLS(A,X,R,M)

DO 10 I =1, M

WRITE(eeoseas) X(I)
10 CONTINUE
STOP
END

The solution of the system is

X =(.0,1.0,1.0,1.0) .

2.4. Algorithm

The algorithm for the solution of a system of linear algebraic equations
Ax = b (1)

with a T-matrix A of order M comprises a sequence of M steps. At the (k+l)-st

step the solution of the system
Ay = dy (2)

is determined. Here

aO al e o o ak !yo,k ‘ ’ bO ‘
a_l ao ¢« o o ak_l yl ,k bl
A = a_2 a_l e o o ak_z N yk = y2 ,k ’ dk = b2
8-k Z-k+1* * %0 Yk,k by J .

The vector y, is calculated by recurrence from Yi-1° The final result of

the recurrent process is the solution of system (1), namely, x = YM-1°

At step 1, y5 = bo/ao. At step k+l, let us consider the unknown vector
Yy to be the sum of two vectors, one of which, augmented by a zero, was deter-

mined at the k-th step:

17
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’ Y0,k ‘ : Y0,k-1 20,k
Y1,k - ¥1,k-1 21,k
. = . 1 + . _ (3)
Yk-1,k Yk-1,k-1 Zk-1,k
Yk, k 0 | 2K,k .

Substituting this sum into equation (2) and taking into account that the

vector yp_i satisfies the equation

A 1Yk-1 = k-1 >

we see that the unknown vector Zy from (3) with elements

zo’k,zl’k,.. .,Zk,k

is the solution of the system

Az = i
where

0
0
: i

f, = . f =b - a vy .

k ’ - - -

0 k,k k 2=1 27k=-2,k-1
Y |

Thus, the vector z, is the same as the last column of the matrix A;l multi-

plied by fk K* Hence, for recurrent calculation of the vectors Y it is
?

sufficient to evaluate recurrently the last column of the matrix A; , Or as

done here for further economy an appropriately chosen multiple of this

column. It is here that advantage is taken of the Toeplitz structure of A.

Let us denote by g and hk the first and last columns, respectively, each

scaled by the as yet unspecified factor q, of the matrix Ak :

80,k ’ho,k ‘ ’qk 0
h
€1,k 1,k 0 0
8 = ] &)L » and Ag =1 |, Ab =1-1].
-1,k he1k 0 0
Bk, k Bk 0] qy



It is clear that when k = 0 the unscaled vectors coincide and contain the
single element l/ao; we choose q; = ag so that gy = hy = 1. We will determine
8k»> by, and q from g, _,;, hk-l’ and qx_; using the following two sums:

80,k-1 [ o
81,k-1 B0, k-1
8 = : M ’
8r-1,k-1 by 2,k-1
0 hy1,k-1
’ 80 - ‘ 0
0,k-1 -
€1,k-1 2
hk =r E + . ,
Bie- ko1 B 2,k-1
0 By 1k

where v and r are unknown scalars which we are going to derive.

Since gy and by are columns of the matrix A;l scaled by q;, then

gO,k-l‘ 0 9
- 81,k-1 Bo, k-1 0
A = A : + VA, : =1 ,
8k-1,k-1 b2 k-1 0
0 by 1,k-1 0
gogk-l ’ 0 . 0
81 k-1 By k-1 0
Aghy = A : + Ay SRS B I .
8x-1,k-1 Tk-2,k-1
0 | hy 1,k-1 A

These relationships reduce to the following equations for determining the

unknown scalars:

r+£f,=0

+ fv= 2

q q q
k-1 2 k k-1
R (4)

fl + qk_lv =0 flr + qk_1 = q
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where
) i
£, = a_,8 o 1.1 s f,= ah, . . . .
1 =1 2L°k-2,k-1 2 4=1 £ 2-1,k-1

Solving equations (4) we find
MR LT L ST S S S

Note that this algorithm for solving linear systems with T-matrices requires
that Ay be non-singular for all k.

2.5. Programming details — subroutine TSLS1

The calling sequence of subroutine TSLS is consistent with those of the
other TOEPLITZ subroutines. However, it proves convenient in the implementa-
tion to consider the input matrix as two arrays and to partition the work
space. Therefore, subroutine TSLS1 was produced to directly implement the
algorithm, and subroutine TSLS merely acts as a user interface that calls

TSLS1. TSLS1 may be called directly by the user, if desired.
The calling sequence of subroutine TSLS1 is
CALL TSLS1(Al,A2,B,X,Cl1,C2,M) .

On entry,

Al is a singly subscripted array of M elements which contains the first
row of the T-matrix. Al is unaltered by TSLS1.

A2 is a singly subscripted array of M-1 elements which contains the
first column of the T-matrix beginning with the second element. A2
is unaltered by TSLSl.

B is a singly subscripted array of M elements which contains the right
hand side of the system. B is unaltered by TSLSI.

Cl,C2 are singly subscripted arrays of M-1 elements used for work

space.

M is the order of the T-matrix and the number of elements in B and X.



On return,

X is a singly subscripted array of M elements which contains the
solution of the system. X may coincide with B.

Subroutine TSLS1 has double precision, complex, and double precision
complex versions with names TSLDl, TSLCl, and TSLZl, respectively, whose
calling sequences are the same as that of TSLS1 with Al, A2, B, Cl, C2, and X

variables of the corresponding type.

Towards timing estimation, note that the algorithm for solving linear
systems with T-matrices requires approximately 3M2 multiplications.

2.6. Additional information

The calling sequences of subroutines TSLS and TSLS1 for the solution of
linear systems with T-matrices 1limit the right hand sides to single column
vectors. There may be situations where the solutions of two or more such
systems with the same coefficient matrix are desired. In these situations,
modifications of the subroutines that would permit all solutions to be
obtained in a single step could markedly improve efficiency. Fortunately, the
algorithm organization for T-matrices enables such modifications to be made

with little effort.

Three changes need to be made: 1) The parameter list must be extended to
include the column order of X and B, and the leading dimension for these newly
created two—dimensional arrays; 2) References to X and B must be rendered two-
dimensional; and 3) DO loops must be introduced for cycling over the columns
of X and B. Resulting forms of TSLS and TSLSl are given below and can be
compared with the official versions listed in Appendix B; to facilitate the
comparison, the changes are indicated in lower case. The identical changes
could be made to the double precision, complex, and double precision complex

versions of these subroutines.
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Q
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SUBROUTINE TSLS(A,X,R,M,mcol,1dx)
INTEGER M,mcol, ldx
REAL A(1),X(1dx,mcol),R(1)

TSLS CALLS TSLS1 TO SOLVE THE REAL LINEAR SYSTEM

A*X=28B

WITH THE T - MATRIX A .

ON ENTRY

A

mcol

1dx

ON RETURN

X

REAL(2*M - 1)
THE FIRST ROW.OF THE T - MATRIX FOLLOWED BY ITS
FIRST COLUMN BEGINNING WITH THE SECOND ELEMENT .
ON RETURN A IS UNALTERED .

REAL(M,mcol)
THE RIGHT HAND SIDE matrix B .

REAL(2*M - 2)
A WORK VECTOR .

INTEGER
THE ORDER OF THE MATRIX A .

integer
the number of columns of the matrices x and b .

integer
the leading dimension of the array x .

THE SOLUTION matrix .

SUBROUTINES AND FUNCTIONS

TOEPLITZ PACKAGE ... TSLS1

CALL SUBROUTINE TSLS1

CALL TSLS1(A,A(M+1),X,X,R,R(M),M,mcol,1dx)

RETURN
END

SUBROUTINE TSLS1(A1,A2,B,X,C1,C2,M,mcol,1dx)
INTEGER M,mcol, 1ldx
REAL A1(M),A2(1),B(1dx,mcol),X(1ldx,mcol),C1(1),C2(1)

TSLS1 SOLVES THE REAL LINEAR SYSTEM

A*X=28

WITH THE T - MATRIX A .

ON ENTRY

Al

REAL(M)



GOOOOOOOODOOOOOOOOOOOOOOOOOOOOOOOO

[oNoNe]

[oNoNeoNe]

[oNoNoNe]

A2

C1

c2

mcol

ldx

ON RETURN

X

THE FIRST ROW OF THE T - MATRIX A .
ON RETURN Al IS UNALTERED .

REAL(M - 1)

THE FIRST COLUMN OF THE T - MATRIX A
BEGINNING WITH THE SECOND ELEMENT .
ON RETURN A2 IS UNALTERED .

REAL(M,mcol)
THE RIGHT HAND SIDE matrix .
ON RETURN B IS UNALTERED .

REAL(M - 1)
A WORK VECTOR .

REAL(M - 1)
A WORK VECTOR .

INTEGER
THE ORDER OF THE MATRIX A .

integer

the number of columns of the matrices x and b .

integer

the leading dimension of the arrays x and b .

REAL(M,mcol)

THE SOLUTION matrix. X MAY COINCIDE WITH B .

INTERNAL VARIABLES

INTEGER I1,I2,j,N,N1,N2
REAL R1,R2,R3,R5,R6

SOLVE THE SYSTEM WITH THE PRINCIPAL MINOR OF ORDER 1 .

R1 = A1(1)

do 5 j =1, mcol
X(1,j) = B(1,j)/R1

continue
IF (M .EQ.

1) GO TO 80

RECURRENT PROCESS FOR SOLVING THE SYSTEM
WITH THE T - MATRIX FOR N = 2, M .

DO 70 N=2, M

COMPUTE MULTIPLES OF THE FIRST AND LAST COLUMNS OF
THE INVERSE OF THE PRINCIPAL MINOR OF ORDER N .

NI1=N-1
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[oNoNeoNe!

10
20

30
40

50

60

65
70
80

N2 =N -2
R5 = A2(N1)
R6 = A1(N)
IF (N .EQ. 2) GO TO 20
C1(N1) = R2
DO 10 I1 =
I2
RS
R6
CONTINUE
CONTINUE
R2 = -R5/R1
R3 = -R6/R1
R1 = R1 + R5*R3
IF (N .EQ. 2) GO TO 40
R6 = C2(1)
C2(N1) = 0.0EO
DO 30 I1 = 2, N1
RS = C2(I1)
C2(I1) = C1(I1)*R3 + R6
C1(I1) = C1(I1) + R6*R2
R6 = RS
CONTINUE
CONTINUE
C2(1) = R3

1 =1, N2

N -1I1

R5 + A2(I1)*C1(I2)
R6 + A1(I1+1)*C2(I1)

nmnnw-

COMPUTE THE SOLUTION OF THE SYSTEM WITH THE
PRINCIPAL MINOR OF ORDER N .

do 65 j = 1, mcol
R5 = 0.0E0
DO 50 I1 =1, N1
I2=N-11
R5 = R5 + A2(I1)*X(I2,j)
CONTINUE
R6 = (B(N,j) - R5)/R1
DO 60 I1 =1, N1
X(I1,j) = X(I1,j) + C2(I1)*Ré6
CONTINUE
X(N,j) = R6
continue
CONTINUE
CONTINUE
RETURN
END



3. Solution of Linear Equations with C-Matrices

3.1. Purpose

The TOEPLITZ subroutine in this section is designed to solve linear
algebraic equations with C-matrices; it is limited to complex matrices because
the algorithm employs complex arithmetic. Users with real circulant matrices
can either declare them complex or consider them simply T-matrices and employ
the subroutines of section 2. Running times as real T-matrices are shorter,
but the unitary transformations employed in the algorithm described below for
C-matrices offer greater stability. A double precision version of the sub-

routine is also available.

3.2. Usage

Single precision C-matrices. CSLC solves a linear system with a complex

circulant matrix. The calling sequence is
CALL CSLC(A,X,R,M) .,

On entry,

A is a singly subscripted array of M elements which contains the first
row of the C-matrix. A is unaltered by CSLC.

X is a singly subscripted array of M elements which contains the right
hand side of the system.

R i§ a singly subscripted array of M elements used for work space.
M is the order of A and the number of elements in X.

On return,
X contains the solution of the system.

Double precision C-matrices. In those computing systems where it is

available, the calling sequence of the double precision C-matrix subroutine
CSLZ is the same as that of CSLC with A, X, and R DOUBLE COMPLEX variables.

25



26

3.3. Example

The following program segment illustrates the use of the single precision
subroutine CSLC for C-matrices. An example of the use of CSLZ could be
obtained by changing the subroutine name and type declaration. The system is

of order 4 with coefficients as follows.

141 2421 3431 4+4d 10+101
4+41 141 2421 3431 10+1041
A - 3431 4+41 1+ 2421 T 10+1041
2421 3431 4+41 1+ 10+104i

COMPLEX A(4),X(4),R(4)
INTEGER M,I .
DATA A(1)/(1.0,1.0)/,A(2)/(2.0,2.0)/,A(3)/(3.0,3.0)/,
* A(4)/(4.0,4.0)/
DATA X(1)/(10.0,10.0)/,X(2)/(10.0,10.0)/,X(3)/(10.0,10.0)/,
X(4)/(10.0,10.0)/
M=4
CALL CSLC(A,X,R,M)
DO 10I =1, M
WRITE(eee,e..) X(I)
10 CONTINUE
STOP
END

*

The solution of the system is

X = ((1.0,0.0),(1.0,0.0),(1.0,0.0),(1.0,0.0)) .

3.4. Algorithm
The algdrithm for solving a system of linear algebraic equations

Ax = b (1
with a C-matrix A of order M proceeds from a similarity transformation of A to
a diagonal matrix

*
D = QAQ ,

where Q is unitary. (The symbol * denotes conjugate transpose.) The elements

of Q are inverse discrete Fourier transformations defined as

_ g(1-1)+(3-1)
qij—E /m’



where E = exp(Zn/:T]M). The solution x of the system (1) is then determined

as
-1 *
x=QD Qb . (2)
The diagonal elements dyy of D can be calculated as simply

M
dgg =M jzl i1 0 P = D2 M

In other words, if d is a column vector composed of the diagonal elements

dll’d22”"’dMM of D, and a is a colum vector composed of the elements

ao,al,...,aM_l‘of the first row of A, then these vectors are related by

d=/MQa.

3.5. Progga-ningggetails

In the implementation of subroutine CSLC, instead of Q the matrix 6'= ™M Q

is used, and formula (2) of subsection 3.4 becomes
S T
x = QD 1Q b/M .

The vector d composed of the diagonal elements d;j; of D is then calculated

more simply as

d =Qa.

Towards timing estimation, note that the algorithm for solving linear systems
with C-matrices requires approximately 3M2 multiplications.

3.6. Additional information

The calling sequence of subroutine CSLC for the solution of linear sys-
tems with C-matrices limits the right hand side to a single colummn vector.
There may be situations where the solutions of two or more such systems with
the same coefficient matrix are desired. In these situations, modifications
of the subroutine that would permit all solutions to be obtained in a single
step could markedly improve efficiency. Unlike TSLS and TSLS1 discussed in
subsection 2.6, CSLC admits no simple modification for this purpose; however,
subroutine SALWC could be used instead.
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Subroutine SALWC is discussed 1in subsection 3.5 of Chapter 2 —-- it is
called as a service subroutine in the solution of second- and third-level
matrix systems. SALWC is similar to CSLC; its different organization, how-
ever, enables it to be separately useful, although somewhat awkward, for the
solution of C-matrix systems with multiple right hand sides. Its use requires
three calls with some arithmetic in-between, the presentation of the transpose
of the right hand side matrix, and additional work space; also, unlike CSLC,

it overwrites the coefficient array.

The following program segment illustrates the use of SALWC for C-matrix
systems of order M with MROW right hand sides (refer to subsection 3.5 of
Chapter 2 for a description of the SALWC calling sequence).

COMPLEX A(M),X(LDX,M),R1(M),R2(M)

RM = FLOAT(M)
CALL SALWC(A,R1,R2,1,M,1,-1)
CALL SALWC(X,R1,R2,MROW,M,LDX,1)
DO 10 J =1, M
DO 5 I = 1, MROW
X(1,J) = X(I,J)/A(J)/RM
5 CONTINUE
10 CONTINUE
CALL SALWC(X,R1,R2,MROW,M,LDX,-1)

The dominant term in the multiplication count for the above segment is
M2~(2-MROW+1), while for MROW calls of CSLC it is 3M2°MROW. Comparing these
quantities leads to the expectation that when MROW is 1 the two algorithms
should be about equally fast, and as MROW increases a savings of up to 1/3
should be possible with the above segment. For double precision, substitute

SALWZ.

4. Solution of Linear Equations with G-Matrices

4.1. Purpose

Capability to solve linear algebraic equations with G-matrices 1is
required for processing second- and third-level Toeplitz- and circulant-type

matrices described in Chapters 2 and 3. The availability of the LINPACK



package makes it unnecessary to duplicate effort to provide this capability;
the TOEPLITZ package simply invokes that subset of LINPACK which treats
general square matrices. Usage will be briefly described for the single
precision real version; double precision, complex, and double precision
complex versions are also available. Referral to the LINPACK Users' Guide
[15] is recommended for fuller discussion than will be given here, including
algorithm descriptions and programming details.

4.2. Usage
Single precision real G-matrices. SGEFA and SGESL together solve a

linear system Ax = b with a real general matrix A; SGEFA computes the LU

factorization of A and SGESL uses the factorization to solve the 1linear

system.
The calling sequence for SGEFA is

CALL SGEFA(A,LDA,M,PVT,INFO) .

On entry,

A is a doubly subscripted M by M array which contains the G-matrix.

LDA 1is the leading dimension of the array A.

M is the order of A and the number of elements in PVT,

On return,
A contains information from the LU factorization.

PVT is a singly subscripted array of M elements which contains informa-
tion to be transmitted to SGESL about the pivoting strategy used in
the factorization. Note: In the LINPACK package PVT is specified
as an integer array. For use in the TOEPLITZ package, PVT has the
variable type of A; this simplifies the partition of the work space.

INFO is an integer which if nonzero warns of singularity of A. Note:
Nonsingularity of A and indeed all its principal minors is funda-
mental for use of the TOEPLITZ package; no interrogation of INFO is

made anywhere.
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The calling sequence for SGESL is
CALL SGESL(A,LDA,M,PVT,X,JOB) .

On entry,

A is a doubly subscripted M by M array which contains the information
from the factorization stored by SGEFA.

LDA is the leading dimension of the array A.
M is the order of A and the number of elements in X and PVT.

PVT is a singly subscripted array of M elements which contains the pivot
information stored by SGEFA.

X is a singly subscripted array of M elements which contains the right
hand side of the system.

JOB is an integer which specifies the system to be solved. If JOB is
zero, the system Ax = b is solved. If JOB is nonzero, the system

ATx = b is solved. Note: In its use with the TOEPLITZ package, JOB

is always zero.
On return,
X contains the solution of the system.

Double precision real G-matrices. The calling sequences of the double

precision real G-matrix subroutines DGEFA and DGESL are the same as those of

SGEFA and SGESL with A, X, and PVT DOUBLE PRECISION variables.

Single precision complex G-matrices. The calling sequences of the single

precision complex G-matrix subroutines CGEFA and CGESL are the same as those

of SGEFA and SGESL with A, X, and PVT COMPLEX variables.

Double precision complex G-matrices. In those computing systems where

they are available, the calling sequences of the double precision complex
G-matrix subroutines ZGEFA and ZGESL are the same as those of SGEFA and SGESL
with A, X, and PVT DOUBLE COMPLEX variables.



5. Orthogonal Factorization of Column—Circulant Matrices

5.1. Purpose

Given an M by L column-circulant matrix A, the TOEPLITZ subroutines in
this section determine an M by L matrix Q with orthonormal columns and an
upper triangular matrix S of order L such that AS = Q. The AS = Q factoriza-
tion can be transformed to the more familiar A = QR factorization by inverting
S, i.e., R = s71, Usage will be described here for the single precision real
version. Double precision, complex, and double precision complex versions are

also available.

5.2. Usage

Single precision real column-circulant matrices. CQRS performs the

orthogonal factorization AS = Q of a real column-circulant matrix A. The

calling sequence is
CALL CQRS(A,Q,S,M,L,LDQ,LDS) .
On entry,

A is a singly subscripted array of M elements which contains the first

column of the column-circulant matrix. A is unaltered by CQRS.

M is the number of rows of the matrices A and Q. M must be at least
equal to L.
L is the number of columns of the matrices A and Q and the order of

the upper triangular matrix S.

LDQ is the leading dimension of the array Q.

LDS 1is the leading dimension of the array S.

On return,

Q is a doubly subscripted M by L array which contains the factor with

orthonormal columns.
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S is a doubly subscripted L by L array which contains the upper
triangular factor. Elements below the main diagonal of S are not

accessed.

Double precision real column-circulant matrices. The calling sequence of

the double precision real column-circulant orthogonal factorization subroutine

CQRD is the same as that of CQRS with A, Q, and S DOUBLE PRECISION variables.

Single precision complex column-circulant matrices. The calling sequence

of the single precision complex column—-circulant orthogonal factorization
subroutine CQRC is the same as that of CQRS with A, Q, and S COMPLEX

variables.

Double precision complex column-circulant matrices. In those computing

systems where it is available, the calling sequence of the double precision
complex column-circulant orthogonal factorization subroutine CQRZ is the same

as that of CQRS with A, Q, and S DOUBLE COMPLEX variables.

5.3. Example

The following program segment illustrates the use of the single precision
subroutine for orthogonal factorization of real column-circulant matrices;
factors Q and S are returned satisfying AS = Q. Examples of the use of CQRD,
CQRC, and CQRZ could be obtained by changing the subroutine name and type
declaration. The matrix is 4 by 3 with coefficients as follows.

1 4 3
2 1 4
A=
3 2 1
l4 3 2

REAL A(4),Q(4,3),5(3,3)

INTEGER M,L,LDQ,LDS,I,J

DATA A(1)/1.0/,A(2)/2.0/,A(3)/3.0/,A(4)/4.0/
M=
L =
LD
LDS
CALL CQRS(A,Q,S,M,L,LDQ,LDS)

i was

4
3



DOI0OI =1, M
WRITE(...,...) (Q(I1,J),J=1,L)
10 CONTINUE
DO 20I =1, L
WRITE(..e,...) (S(1,J),J=I,L)
20 CONTINUE
STOP
END

The factors Q and S are

1/Y/30 16/Y270 10/V7344 ’1/\/56 -4/Y270 -7/Y7344
2/Y30 -3/Y/270 78/Y7344

Q = S = 0 5/Y270 -16/Y7344
3/Y30 -2/Y270 -26/Y7344
4/V30  -1/Y270  -22/Y7344 ‘ 0 0 27 /Y7344

5.4. Algorithm
The algorithm description can be found in [12]. Note that usage of this

algorithm for orthogonal factorization of column-circulant matrices requires

that the matrix have full rank L.

5.5. Programming details

The algorithm for the orthogonal factorization of an M by L column-
circulant matrix requires approximately 6ML+L2 multiplications.



CHAPTER 2: TOEPLITZ- AND CIRCULANT-TYPE MATRICES OF THE SECOND LEVEL

1. Structure and Representation

l.1. Overview

A matrix

A

Ajp App Ajg e . e Ay

Ajy Agy Ajpz . . o Ay )
A = o)
A32 A33 [ ] [ ] [ ] A3L

A Ay Az e oo e A

with L elements in a row (or column) where the elements Aij are blocks of
order M is called a two-level matrj.x. L is called the first-level order and M
becomes the second-level order of the matrix A. The order N of A is‘then the

product of the orders of its levels: N = L*M.,

We will call the two-level matrix (1) an XY-type if A considered as a
block matrix is an X-type and each of its blocks Aij is a Y-type. As X~ and
Y-types in the TOEPLITZ package we consider T-, C-, and G-matrices defined in
section 1 of Chapter 1. Examples of two-level matrices can be found below and

in subsections 2.3, 3.3, 4.3, and 5.3 of this chapter.

By permuting corresponding rows and columns, we can transform any XY-type

to YX-type (see Tyrtyshnikov [25]). For example, the TC-matrix

l a b c|d e f
c a
c a| e
g h 1| a c
i g hj|ec
h 1 c




with L=2, M=3 can be permuted to the CT-matrix

c hla 1 g
d e al|lf b
g h)a 1

with L=3, M=2 by interchanging row and column pairs (1,6) and (3,4). This

circumstance allows us to limit consideration to one of each XY- YX-type pair.

The scheme for compact representation of two-level matrices 1is the
following. Let A be of XY-type with first-level order L and second-level
order M, Furthermore, let L be the number of elements required in the compact
representation of X and M be the number of elements required in the compact
representation of Y. Recall that for T-, C- and G-matrices of order M as
described in section 1 of Chapter 1 the values of M are, respectively, 2*M-1,
M, and M**2, 1In the TOEPLITZ package such a two-level matrix is represented
by a doubly subscripted M by L array. The blocks in the array are indexed
by the second subscript and ordered in accordance with the X-type compact
representation. In turn, the elements in a block are indexed by the first

subscript and ordered in accordance with the block's Y-type compact

representation.

1.2. TG-matrices

A matrix
A A Ay e By
PO i s B Ap-2
Ay A A - e A3

Ar+1 Ar42 Arase - - Ao |



is called a TG-matrix if Ai and A_y, i1=0,1,2,...,L-1, are G-matrices of order

M (see subsection 1.3 of Chapter 1).

In the TOEPLITZ package this TG-matrix is represented by a doubly sub-
scripted M**2 by 2*L-1 array in which the blocks are ordered in the following

way:

AO’AI ,AZ,.O.,AL_I’A_I ’A_Z’...’A~L+1 .

1.3. CT-matrices

A complex matrix

Ag A Ay ... Ay

AL_. 1 AO Al . . L] AL_Z ,
A= _ (2)

Al A2 A3 L] . L] AO

is called: a CT-matrix if Ai’ i=0,1,2,...,L-1, are T-matrices of order M (see

subsection 1.1 of Chapter 1).

In the TOEPLITZ package this CT-matrix 1s represented by a doubly sub-
scripted 2*M-1 by L array in which the blocks are ordered in the following

way:

AO’A]. ,Az,-o.,AL_l [

l.4. CC-matrices

A matrix of form (2) is called a CC-matrix if Ay, i=0,1,2,...,L-1, are

C-matrices of order M (see subsection 1.2 of Chapter 1).

In the TOEPLITZ package this CC-matrix is represented by a doubly sub-
scripted M by L array in which the blocks are ordered in the following way:

AO,AI ,AZ’...,AL_I [
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1.5. CG—matrices

A matrix of form (2) 1is called a CG-matrix if Ay, 1=0,1,2,...,L-1, are

G-matrices of order M (see subsection 1.3 of Chapter 1).

In the TOEPLITZ package this CG-matrix is represented by a doubly sub-
scripted M**2 by L array in which the blocks are ordered in the following way:

Ao,Al ’AZ’...,AL—]. [

1.6. Other types of two—level matrices

GT-, TC-, and GC-matrices, defined in analogous ways, can be permuted,
respectively, to TG-, CT-, and CG-matrices (see example in subsection 1.1).
Therefore, the TOEPLITZ package does not include subroutines for solving
linear systems with two-level matrices of these types. At the present time
no algorithm is known that capitalizes effectively on the structure of

TT-matrices, so TT-matrices should be treated as TG-matrices.

2. Solution of Linear Equations with TG-matrices

2.1. Purpose

The TOEPLITZ subroutines in this section are designed to solve linear
algebraic equations with TG-matrices, that is, block-Toeplitz matrices whose
blocks are G-matrices. Usage will be described for the single precision real
version. Double precision, complex, and double precision complex versions are
also available. Indeed, the complex version is called in solving three-level

CTG-matrix systems (see subsection 2.5 of Chapter 3).

2.2. Usage

Single precision real TG-matrices. TGSLS solves a linear system with a

real block-Toeplitz matrix whose blocks are G-matrices. The calling sequence

is

CALL TGSLS(A,X,R,M,L,LDA) .



On entry,

A is a doubly subscripted M**2 by 2*L-1 array which contains the
TG-matrix in the form described in subsection 1.2. A is unaltered
by TGSLS.

X is a singly subscripted array of M*L elements which contains the
right hand side of the system.

R is a singly subscripted array of 2*M**2*L+3*M**2+M elements used for

work space.
M is the order of each G-matrix block of A.
L is the number of blocks in each row or column of A,
LDA is the leading dimension of the array A.
On return,
X contains the solution of the system.

Double precision real TG-matrices. The calling sequence of the double

precision real TG-matrix subroutine TGSLD is the same as that of TGSLS with A,
X, and R DOUBLE PRECISION variables.

Single precision complex TG-matrices. The calling sequence of the single

precision complex TG-matrix subroutine TGSLC is the same as that of TGSLS with
A, X, and R COMPLEX variables.

Double precision complex TG-matrices. 1In those computing systems where

it is available, the calling sequence of the double precision complex
TG-matrix subroutine TGSLZ is the same as that of TGSLS with A, X, and R
DOUBLE COMPLEX variables.

2.3. Example

The following program segment illustrates the use of the single precision
subroutine TGSLS for real TG-matrices. Examples of the use of TGSLD, TGSLC,
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and TGSLZ could be obtained by changing the subroutine name and type declara-

tion. The system is of order 4 with coefficients as follows.

1 3 5 7 16
2 4 6 8 20
A = X =
9 11 1 3 24
10 12 2 4 ‘ 28
1

REAL A(4,3),X(4),R(30)
INTEGER M,L,LDA,I,J
DATA A(1,1)/1.0/,A(2,1)/2.0/,A(3,1)/3.0/,A(4,1)/4.0/,
* A(1,2)/5.0/,A(2,2)/6.0/,A(3,2)/7.0/,A(4,2)/8.0/,
* A(1,3)/9.0/,A(2,3)/10.0/,A(3,3)/11.0/,A(4,3)/12.0/
DATA X(1)/16.0/,X(2)/20.0/,X(3)/24.0/,X(4)/28.0/
M=
L=
LDA = 4
CALL TGSLS(A,X,R,M,L,LDA)
J = M*L
po10I=1,J
WRITE(.ee,e..) X(I)
10 CONTINUE
STOP
END

o

The solution of the system is

X = (1.0,1.0,1.0,1.0) .

2.4, Algorithn

The algorithm for solving a linear system
Ax = b (1)

with the TG-matrix



Ar+1 Aope Aope3e - -

where Ai and Ahi’ i=0,1,2,...,L-1, are G-matrices of order M, is the block
analogue of the algorithm for solving linear systems with T-matrices (see sub-

section 2.4 of Chapter 1).

Let us introduce the following notation:

AO Al . o o Ak yo ’k bo
~ A_l AO e o o Ak"l _ y1 ,k X ~ b].
Ck - e o o L] e o o o o o o ’ yk = : ’ dk = : ’
A Agi - - A i,k D stet-1

where Yi,k> i=0,1,...,k, are vectors of M elements. The algorithm consists of

step-by-step recurrent sol<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>