ATLAS tt resonance searches

Marcel Vos (IFIC, CSIC/UV, Valencia, Spain)

on behalf of the ATLAS collaboration

ICHEP, Melbourne, July 2012

motivation

The top quark is special in many extensions of the Standard Model

The LHC produces high-mass tt pairs at an unprecedented rate

Search for signatures of new physics in the tt mass spectrum

- narrow resonance; leptophobic Z' Phys. Rev. D 49 (1994) 4454, hep-ph/9911288.
- broad (Γ/m~15%), colored resonance; KK gluon Phys. Rev. D 77 (2008) 015003, Phys. Rev. D 76 (2007) 115016, JHEP 09 (2007) 074

Results on 7 TeV pp data from:

di–lepton (ℓ = e, $\mu \rightarrow BR \sim 5\%$)

1.04/fb ATLAS-CONF-2011-123

2.04/fb, Eur. Phys. J. C, arXiv:1205.5371 [hep-ex]

lepton+jets (ℓ = e, $\mu \rightarrow BR \sim 30\%$)

classical/resolved

200/pb ATLAS-CONF-2011-087

2.04/fb ATLAS-CONF-2012-029/

Eur. Phys. J. C, arXiv:1205.5371 [hep-ex]

boosted

2.04/fb preliminary results

tt resonances: di-lepton final state

Selection:

- 2 isolated leptons, opposite charge
- ≥2 jets with p_T > 25 GeV
- $|m_7 m_{\parallel}| < 10 \text{ GeV}$
- $E_{T}^{miss} > 40 \text{ GeV}$
- m_{||} > 10 GeV

~ 1.3 - 1.5% for benchmark signals

Backgrounds:

Drell-Yan MC normalized in a data control sample orthogonal to the signal sample

Reconstruction:

Two undetected neutrinos. Use effective mass: $H_T + E_T^{miss}$, where $H_T = \sum p_T$

di-lepton final state

No significant deviations from the Standard Model \rightarrow 95% C.L. upper limits on σ x BR as a function of mass (Bayesian approach)

32 systematic uncertainties

- \rightarrow each has a small impact (<15%) on σxBR limits
- \rightarrow sensitivity degraded by a factor 1.5 3 wrt stat. only

Sensitivity limited by branching fraction and mass resolution

→ less of a disadvantage for broad resonances

lepton+jets (classical)

Backgrounds:

Multijets from data with low-quality leptons W+jets normalized using charge asymmetry

lepton+jets (classical)

Reconstruction:

- 4 (3) highest p_{T} jets
- + lepton
- + neutrino
- ISR mitigation scheme

Good mass resolution (10-15%)

Semi-boosted analysis: special high-mass region has $\sim 1\%$ of background events, but can have a large signal contribution

Lepton+jets (classical)

No sign of new physics \rightarrow 95% C.L. limits on σ x BR using the same tools as di-lepton search

Interpretation in terms of a narrow leptophobic Z' in topcolor models and the KK gluon. Limits on the σ x BR of broad resonances are slightly weaker.

95% C.L. excluded rate:

 σ x BR < 9.3 pb at m = 500 GeV σ x BR < 0.95 pb at m = 1300 GeV

95% C.L. excluded mass ranges:

500 GeV < m(Z') < 880 GeV $500 \text{ GeV} < m(g_{\kappa\kappa}) < 1010 \text{ GeV}$

Top quarks in a new kinematic regime

A graphical account of the argument for a dedicated reconstruction algorithm for boosted top quarks, using landmark ATLAS events

Reconstruct as a "fat" jet with R=1 Tag using jet substructure

Observed: Naive expectation $m_j = 197 \text{ GeV}$ $> m_t$ $sqrt(d_{12}) = 110 \text{ GeV}$ $\sim m_w$ $sqrt(d_{23}) = 40 \text{ GeV}$...

Early "I+jets" candidate ATLAS-CONF-2010-063

First boosted top quark candidate ATLAS-CONF-2011-073

 $m_{tt} > 1 \text{ TeV}$ ATLAS-CONF-2011-083

lepton+jets (boosted)

Efficiency [%]

Events / GeV

Lepton selection identical to previous analysis (for the future: ATL-PHYS-PUB-2010-008)

Semi-leptonic top candidate = lepton + neutrino + jet closest to lepton

Hadronic top candidate = "fat" jet (anti-k_t, R=1)

 $p_{\tau} > 250 \text{ GeV}$

m_i > 100 GeV

(= invariant mass of 4-vector sum of jet constituents)

$$\sqrt{d_{12}} > 40 \text{ GeV}$$

(= first k_t splitting scale of jet constituents)

See also: Bertrand Chapleau's contribution to this conference and JHEP 1205 (2012) 128

lepton+jets (boosted)

Transverse mass of the lv system

Mass of the blv system

Shape of kinematic distributions corroborates background composition from data/MC

Jet mass distribution for anti- k_t R=1 jets selected as hadronic top candidates with pT > 350 GeV

Mass response for "fat" jets reasonably well described

 $t\bar{t}$ mass spectrum combining electron+jets and muon+jets channels compared to a SM template from data and MC Very good agreement with SM: Largest excess (BumpHunter) ~ 1.4 σ

30 sources of systematic uncertainty on yield and shape of background and signal

Jet energy and mass scale (5-7%) has the largest impact on the sensitivity

Impact of pile-up on jet mass is fairly well modeled

Conclusions

Note: a summary plot of the three resonance searches is under discussion. Consider this figure a place holder

Expected g_{KK} limit @ 600 GeV

ATLAS di-lepton: 11.3 pb

ATLAS Classical: 6.0 pb

ATLAS Boosted: -

Expected g_{KK} limit @ 1.6 TeV

ATLAS di-lepton: 2.8 pb

ATLAS Classical: 0.68 pb

ATLAS Boosted: 0.40 pb

ATLAS $t\bar{t}$ resonance searches with 2.05/fb provide sensitivity from production threshold and well into the TeV regime Classical and boosted algorithms have complementary sensitivity: the boosted analysis clearly enhances the ATLAS sensitivity for m > 1 TeV