CERN Accelerating science

Article
Report number arXiv:1209.0499 ; CERN-PH-TH-2012-228 ; CPHT-RR069.0812 ; UMN-TH-3116-12 ; LPT-ORSAY-12-92 ; UH-511-1199-12 ; FTPI-MINN-12-28 ; CERN-PH-TH-2012-228 ; CPHT-RR069.0812 ; UMN-TH-3116-12 ; FTPI-MINN-12-28 ; LPT-ORSAY-12-92 ; UH-511-1199-12
Title Strong moduli stabilization and phenomenology
Author(s) Dudas, Emilian (Orsay, LPT ; Ecole Polytechnique, CPHT ; CERN) ; Linde, Andrei (Stanford U., Phys. Dept. ; Stanford U., ITP) ; Mambrini, Yann (Orsay, LPT) ; Mustafayev, Azar (Hawaii U. ; Minnesota U., Theor. Phys. Inst.) ; Olive, Keith A. (Minnesota U., Theor. Phys. Inst.)
Publication 2013-01-15
Imprint 05 Sep 2012
Number of pages 21
Note Comments: 21 pages, 7 figures
21 pages, 7 figures, final version with updated Figures 2 and 3
In: Eur. Phys. J. C 73 (2013) 2268
DOI 10.1140/epjc/s10052-012-2268-7
Subject category Particle Physics - Phenomenology
Abstract We describe the resulting phenomenology of string theory/supergravity models with strong moduli stabilization. The KL model with F-term uplifting, is one such example. Models of this type predict universal scalar masses equal to the gravitino mass. In contrast, A-terms receive highly suppressed gravity mediated contributions. Under certain conditions, the same conclusion is valid for gaugino masses, which like A-terms, are then determined by anomalies. In such models, we are forced to relatively large gravitino masses (30-1000 TeV). We compute the low energy spectrum as a function of m_{3/2}. We see that the Higgs masses naturally takes values between 125-130 GeV. The lower limit is obtained from the requirement of chargino masses greater than 104 GeV, while the upper limit is determined by the relic density of dark matter (wino-like).
Copyright/License Preprint: © 2012-2025 CERN (License: CC-BY-3.0)



Corresponding record in: Inspire


 Záznam vytvorený 2012-09-05, zmenený 2023-03-14


Plný text:
Nahraj plný textPDF
External link:
Nahraj plný textPreprint