ATLAS Searches for Higgs Bosons Beyond the Standard Model

Trevor Vickey

University of the Witwatersrand, South Africa University of Oxford, United Kingdom

June 14, 2012

Origin of Mass Workshop, Stockholm, Sweden

The ATLAS Experiment at the CERN LHC

3-Level Trigger

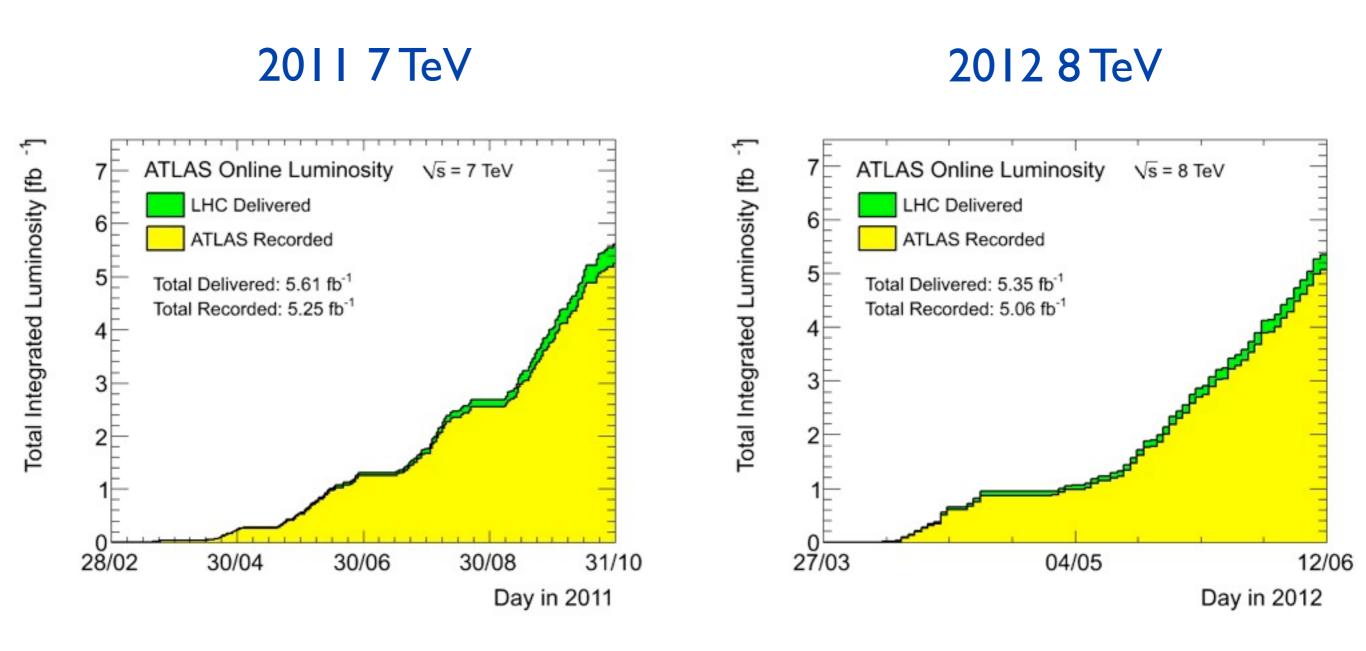
Reducing the rate from 40 MHz to 200-300 Hz

Muon Spectrometer

 $(|\eta| < 2.7)$: Air-core toroids with gas-based muon chambers; Muon trigger and measurement with momentum resolution < 10% up to $p_{\mu} \sim 1 \text{ TeV}$

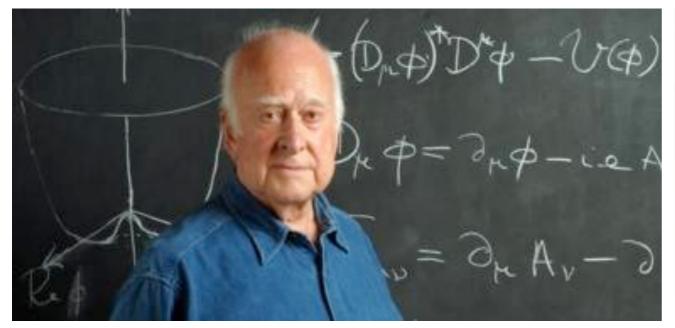
HAD calorimetry

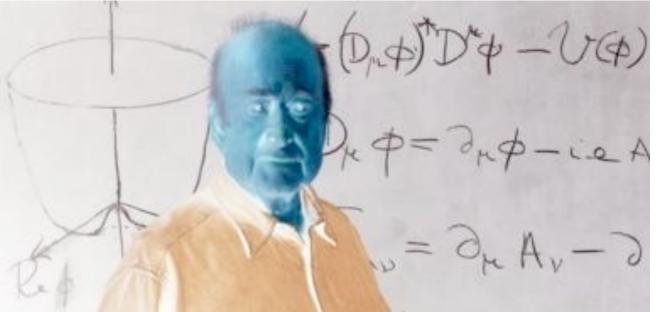
 $(|\eta|<5)$: hermetic and highly segmented; Fe/scintillator Tiles (central), Cu/W-LAr (fwd) Trigger and measurement of jets and missing E_T E-resolution: $\sigma/E \sim 50\%/\sqrt{E \oplus 0.03}$


Inner Detector (|η|<2.5,

B=2T): Si Pixels, Si strips, Transition Radiation detector (straws); Precise tracking and vertexing, allows for e/π separation; Momentum resolution: $\sigma/p_T \sim 3.8 \times 10^{-4} p_T$ (GeV) \oplus 0.015 i.e. $\sigma/p_T < 2\%$ for $p_T < 35$ GeV

EM Calorimeter ($|\eta|$ <3.2):


Pb-LAr Accordion; allows for e/ γ triggering, identification and measurement; E-resolution: $\sigma/E \sim 10\%/\sqrt{E}$


ATLAS Datasets

• ATLAS results shown today will all be from the 7 TeV 2011 dataset

If the (light) Higgs weighs ~125 GeV...

Standard Model Higgs

WW

ΖZ

tt

300

400 500

Higgs BR + Total Uncert 0 1

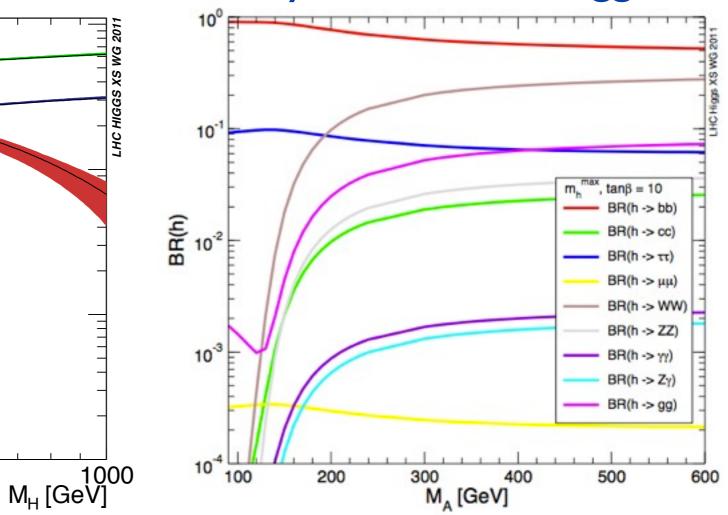
10⁻²

10⁻³

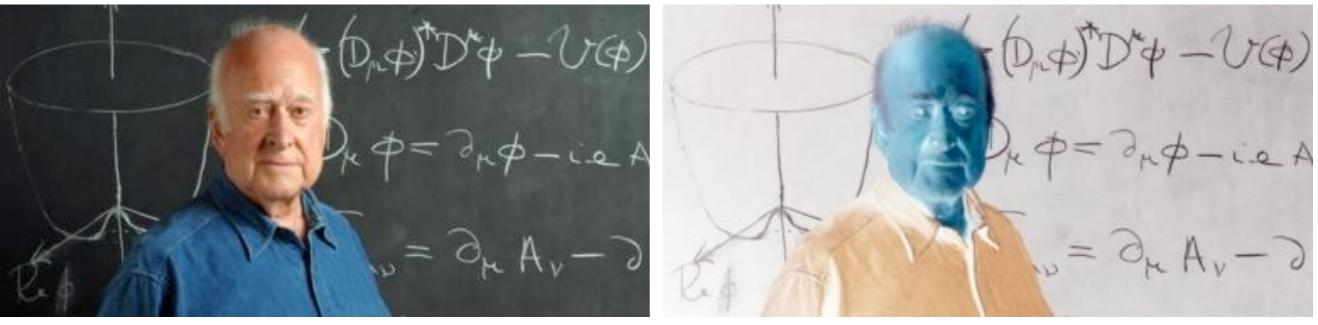
ττ

cc

100

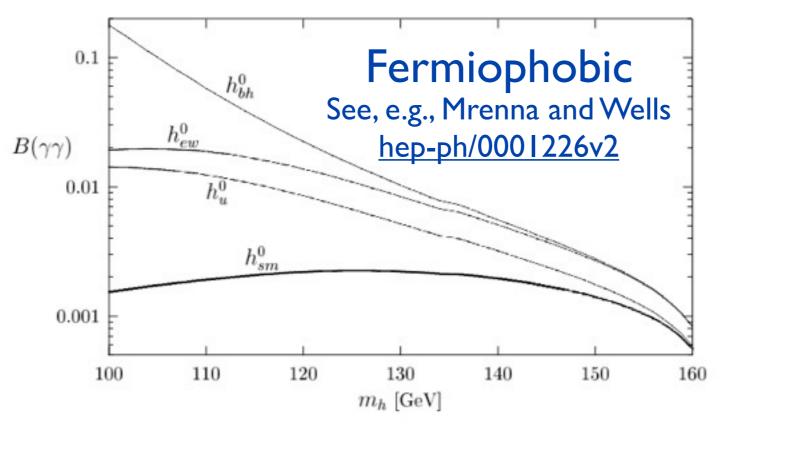

bb

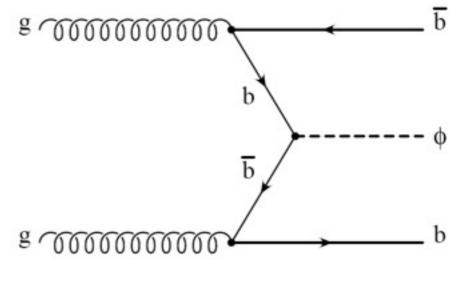
gg


Zγ

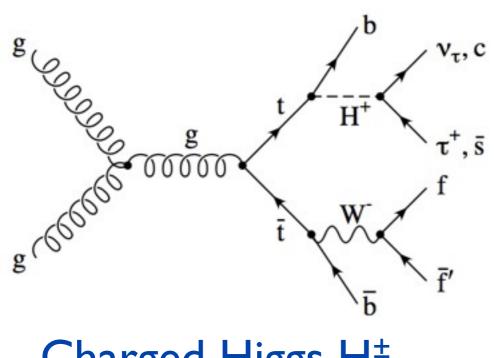
200

If the (light) Higgs weighs ~125 GeV...

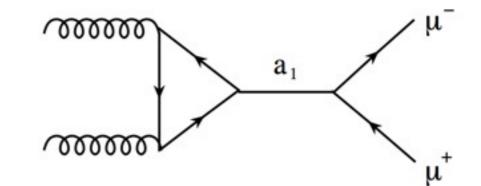



Standard Model Higgs

Beyond the SM Higgs

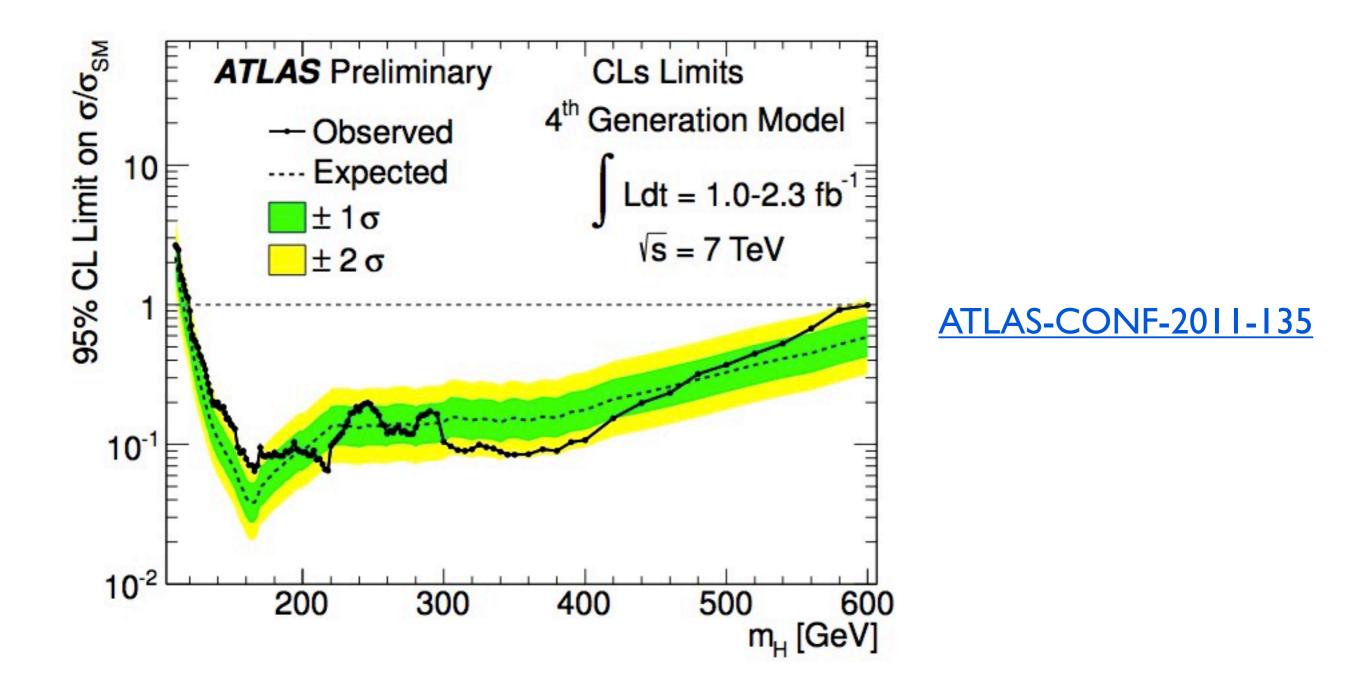

- Suppose that this is not a Standard Model Higgs
 - Higgs with different couplings? \Rightarrow MSSM, SM4, Fermiophobic
 - More complicated Higgs sector? ⇒ MSSM, Doubly-charged Higgs
 - Light scalar Higgs? ⇒ NMSSM
 - Hidden Higgs sector? ⇒ Higgs to long-lived particles

Beyond the Standard Model Higgs Bosons

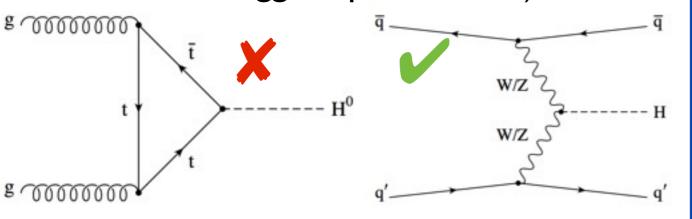


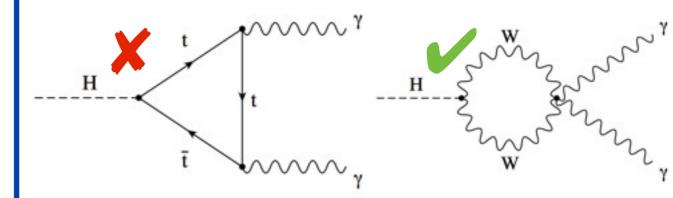
MSSM $\phi = h/A/H$

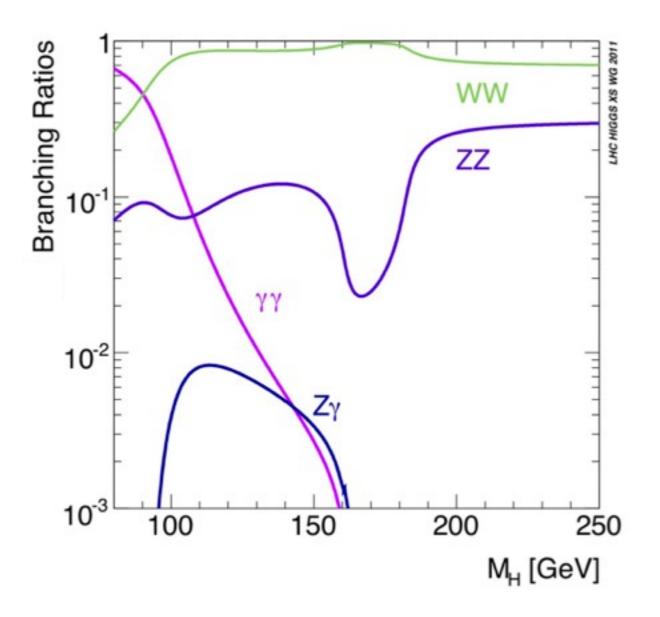
NMSSM $a_1 \rightarrow \tau^+ \tau^-, \mu^+ \mu^-$


SM4 Higgs Search

 An additional 4th generation of fermions modifies the gg fusion production mode and the Higgs decay branching ratios

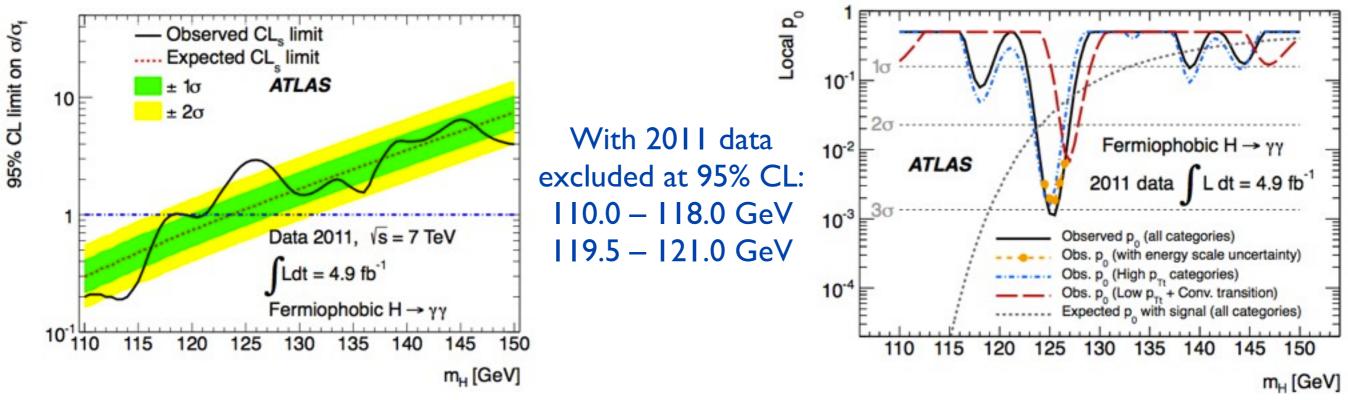

SM4 Higgs Search


- The enhanced cross section relative to the SM allows for an exclusion of large parts of the parameter space
 - Higgs mass range of 120-600 GeV is excluded at the 95% CL


Fermiophobic Higgs Searches

 Couplings to all fermion generations substantially suppressed (two Higgs doublet models or Higgs triplet models)

- No couplings to fermions
- Production via VBF and VH
- Decay via $\gamma\gamma$, ZZ, WW and Z γ
- ATLAS search very similar to the SM Higgs $\rightarrow \gamma\gamma$ search



Fermiophobic Higgs Searches

- Fermiophobic Higgs search results from ATLAS only for the $\gamma\gamma$ analysis
 - Same event selection as used in the SM $\gamma\gamma$ analysis; see Jonas' talk from Monday

2 photons pT > 40 / 25 GeV Categories based on conversions, η and di-photon pT Signal modelled with "crystal ball" (= gaussian core+power law lowend tail)+gaussian; bkg with exponential

• Will include results from the WW and ZZ analyses in the near future

Eur. Phys. J. C (arXiv: 1205.0701)

Motivation for Supersymmetry

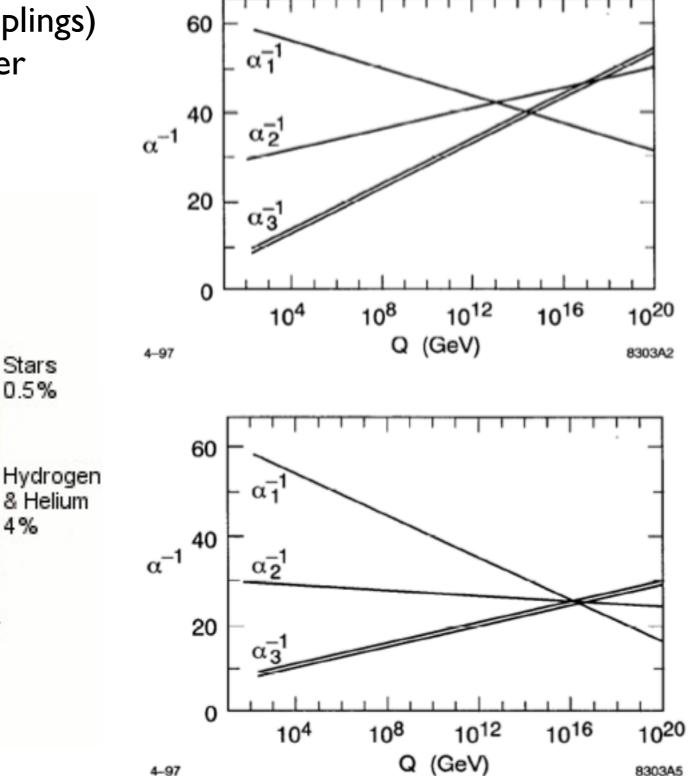
- Motivation for Supersymmetry:
 - Naturalness (Hierarchy Problem)
 - Unification of the forces (gauge couplings)

Heavy Elements

Neutrinos

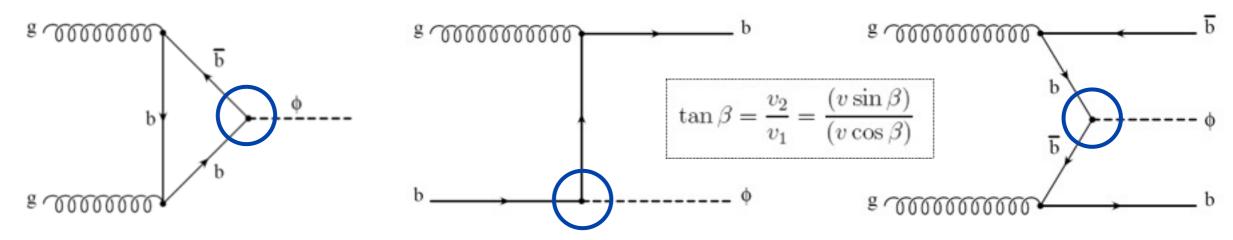
Dark Matter

25%

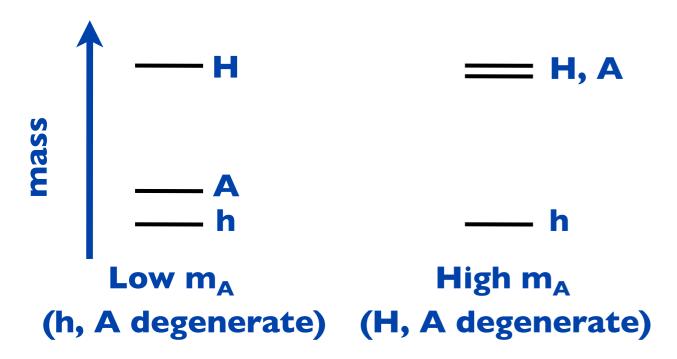

Dark Energy

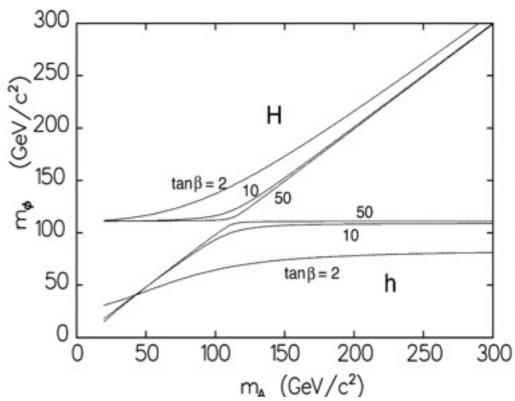
70%

0.3%

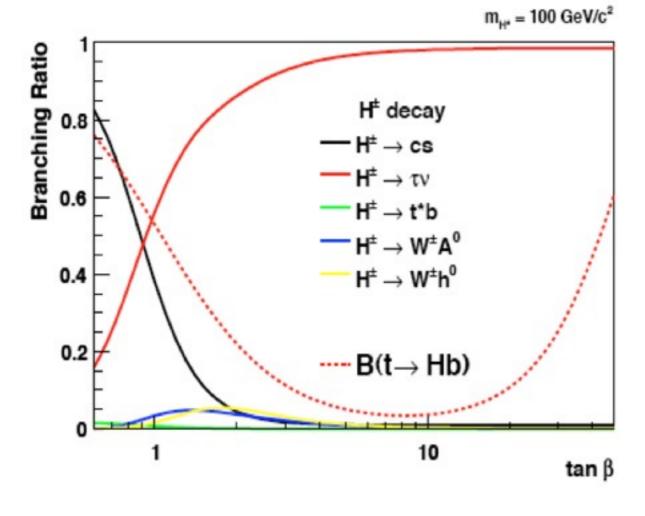

0.03%

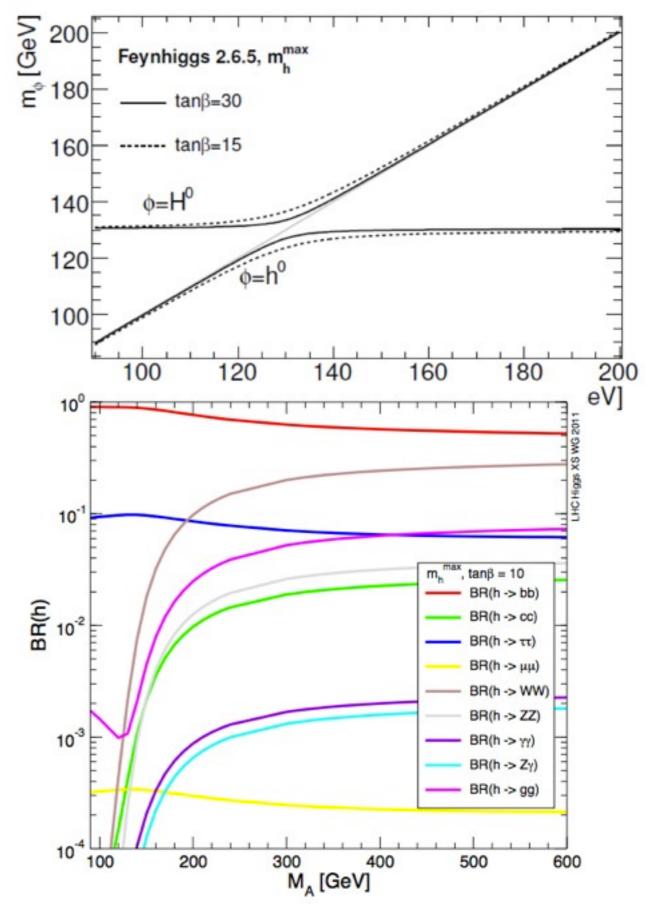
• Provides a candidate for Dark Matter




MSSM Higgs Sector

- Consider the case of an MSSM Higgs at the LHC
 - 2 Higgs doublets give rise to 5 physical Higgs bosons: h, H, A, H[±]
 - Enhanced coupling to 3rd generation; strong coupling to down-type fermions (at large tanβ get strong enhancements to h/H/A production rates)
 - Diagrams with bbp vertex enhanced proportional to $tan^2\beta$ where $\phi=h,H,A$


• Can parameterize the masses of the Higgs bosons with two free parameters: $\tan\beta$ and m_A



MSSM Higgs Sector

- A popular and well-studied extension of the Standard Model
 - Mass of h < 135 GeV
 - For large parts of parameter space H→ττ and H[±]→τ[±]ν decays are dominant,WW / ZZ decays are suppressed
 - Charged Higgs produced mainly in top decays or in association with tb, depending on its mass

Mass Reconstruction with T leptons

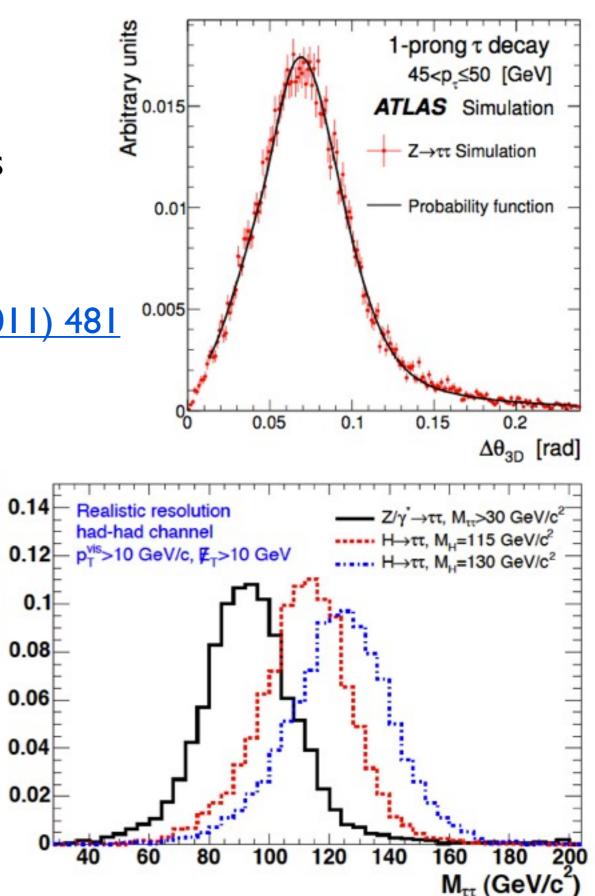
- Visible mass:
 - Invariant mass of the visible τ decay products
- Effective mass
 - Invariant mass of the visible τ decay products + MET
- Collinear mass:
 - Assume that neutrinos are emitted parallel to the visible τ decay products' direction \Rightarrow 2 equations and 2 unknowns

$$E_{x} = P_{v1} \cdot \cos(\theta_{1}) \cdot \cos(\varphi_{1}) + P_{v2} \cdot \cos(\theta_{2}) \cdot \cos(\varphi_{2})$$

$$E_{y} = P_{v1} \cdot \cos(\theta_{1}) \cdot \sin(\varphi_{1}) + P_{v2} \cdot \cos(\theta_{2}) \cdot \sin(\varphi_{2})$$

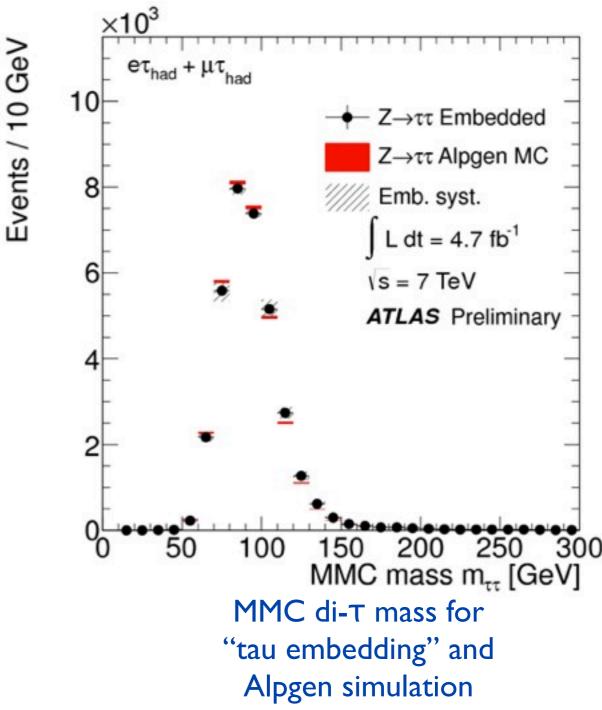
$$m_{collinear} = \frac{m_{vis}}{x_{1}x_{2}}$$

$$x_{1,2} \text{ are the momentum fractions carried away by the visible T products}$$

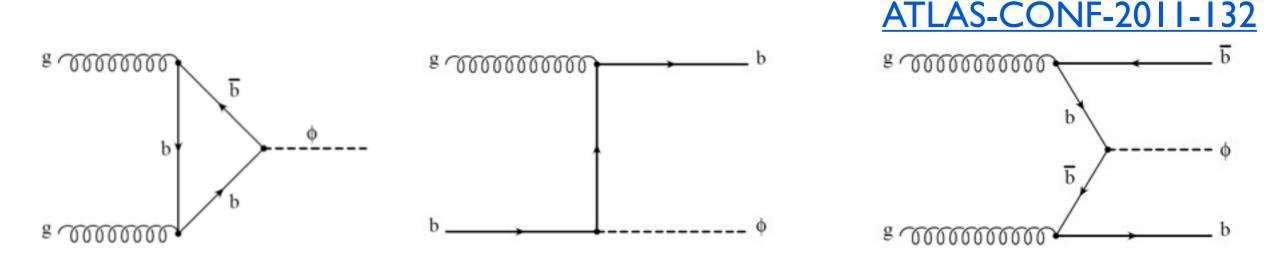

Mass Reconstruction with T leptons

Arbitrary units

- Missing Mass Calculator technique
 - A step beyond the "collinear mass"
 - Assume the angle between the neutrinos and the visible hadronic Ts (Δθ) is non-zero
 - End up with more unknowns than equations
 <u>NIM A654 (2011) 481</u>


$$\begin{split} E_{T_x} &= p_{\min_1} \sin \theta_{\min_1} \cos \phi_{\min_1} + p_{\min_2} \sin \theta_{\min_2} \cos \phi_{\min_2} \\ E_{T_y} &= p_{\min_1} \sin \theta_{\min_1} \sin \phi_{\min_1} + p_{\min_2} \sin \theta_{\min_2} \sin \phi_{\min_2} \\ M_{\tau_1}^2 &= m_{\min_1}^2 + m_{vis_1}^2 + 2\sqrt{p_{vis_1}^2 + m_{vis_1}^2} \sqrt{p_{\min_1}^2 + m_{\min_1}^2} \\ &- 2p_{vis_1} p_{\min_1} \cos \Delta \theta_{vm_1} \\ M_{\tau_2}^2 &= m_{\min_2}^2 + m_{vis_2}^2 + 2\sqrt{p_{vis_2}^2 + m_{vis_2}^2} \sqrt{p_{\min_2}^2 + m_{\min_2}^2} \\ &- 2p_{vis_2} p_{\min_2} \cos \Delta \theta_{vm_2} \end{split}$$

- Use a likelihood to solve an underconstrained set of equations
 - Solve the equations in a grid of angles $\Delta \theta$ and choose the best one

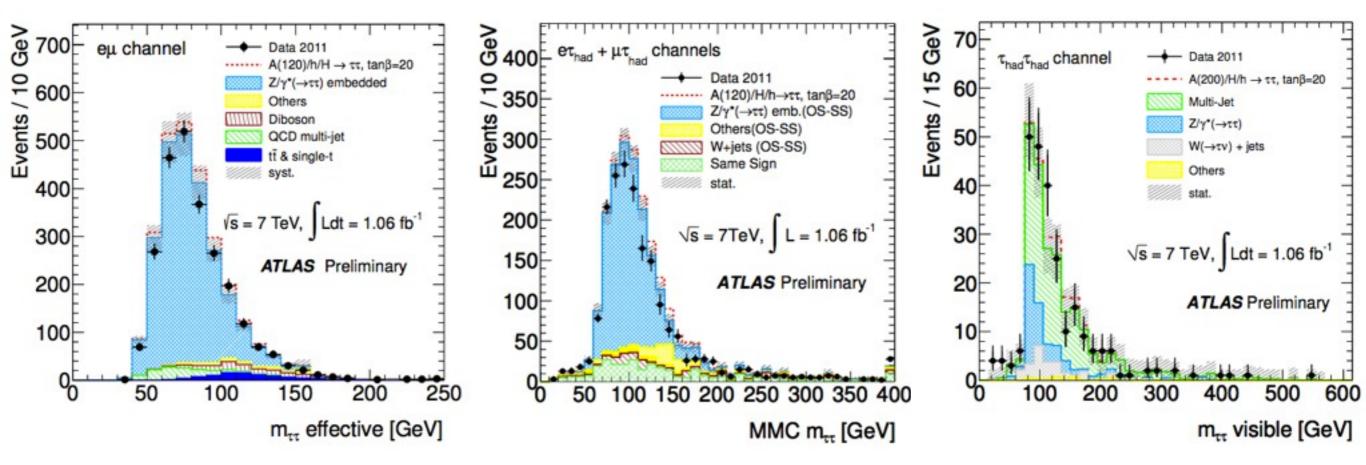

Special Techniques Used with T leptons

- $Z \rightarrow \tau \tau$ is the most important (irreducible) background source for di- τ final states
- Embedding technique (" τ -embedded" $Z \rightarrow \mu \mu$ data events):
- A semi-data-driven method: select an adequately pure Z→µµ event sample from data and then replace the muons with simulated taus
- Pile-up, underlying event, kinematics, etc. are all taken directly from the data
- ATLAS charged Higgs search also uses embedding for ttbar backgrounds

Neutral MSSM Higgs Search

- MSSM Neutral Analysis (three main channels, depending on the τ decay)
 - For the fully-hadronic channel a double-T trigger is used

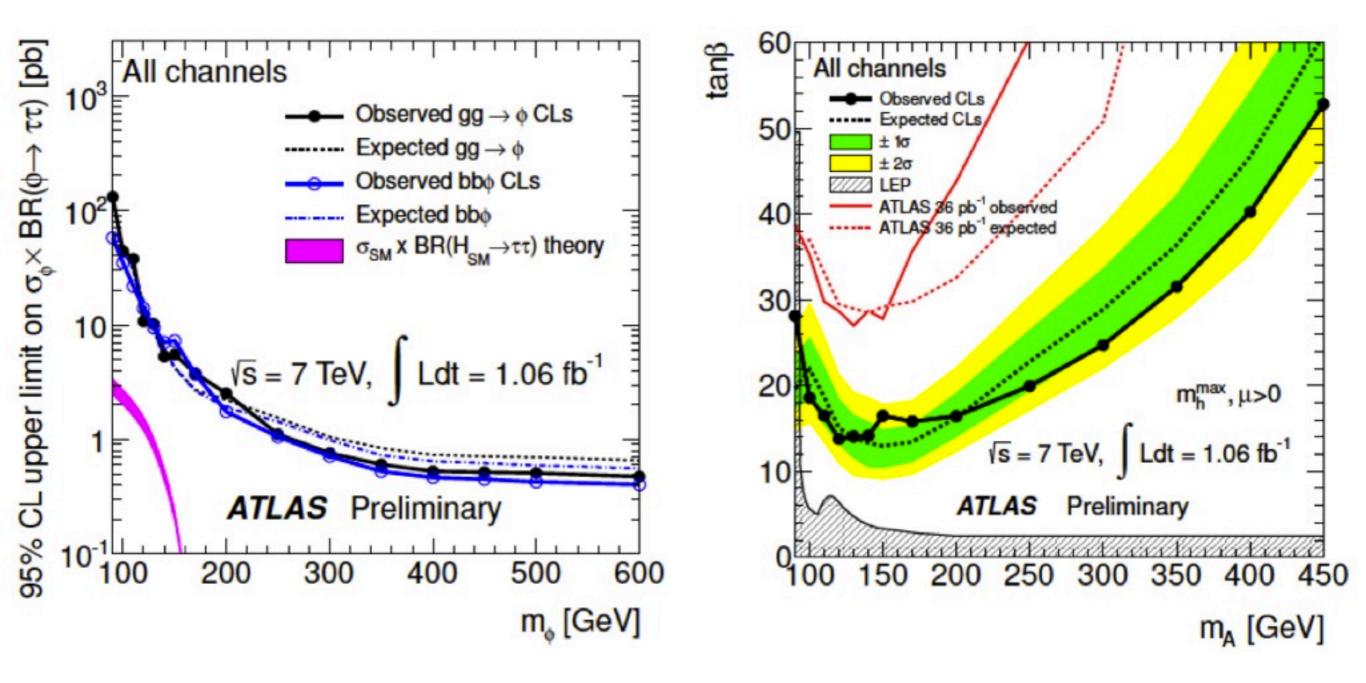
τ(lep)τ(lep) using eμ	т(lep)т(had)	т(had)т(had)
1 isolated e with p⊤ > 25 GeV	isolated e / μ with pT >25/20 GeV	2 τ _{had} with p _T > 30/45 GeV
1 isolated μ with $p_T > 20$ GeV	exactly one τ_{had} with $p_T > 20 \text{ GeV}$	
Opposite sign	Opposite sign	Opposite sign
Sum of lepton pT and MET < 120 GeV, $\Delta \Phi(e,\mu)$ >2	MET > 20 GeV, MT<30 GeV	MET > 25 GeV


- Dominant backgrounds:
 - Z+jets (irreducible), multi-jet events, W+jets, ttbar, di-boson
- Dominant systematics:
 - Energy scale (~25%), signal cross-section (~15%), tau efficiency & fake rate (~12%)

Neutral MSSM Higgs Search

- MSSM Neutral Analysis (three main channels, depending on the T decay)
 - For the fully-hadronic channel a T trigger is used <u>ATLAS-CONF-2011-132</u>

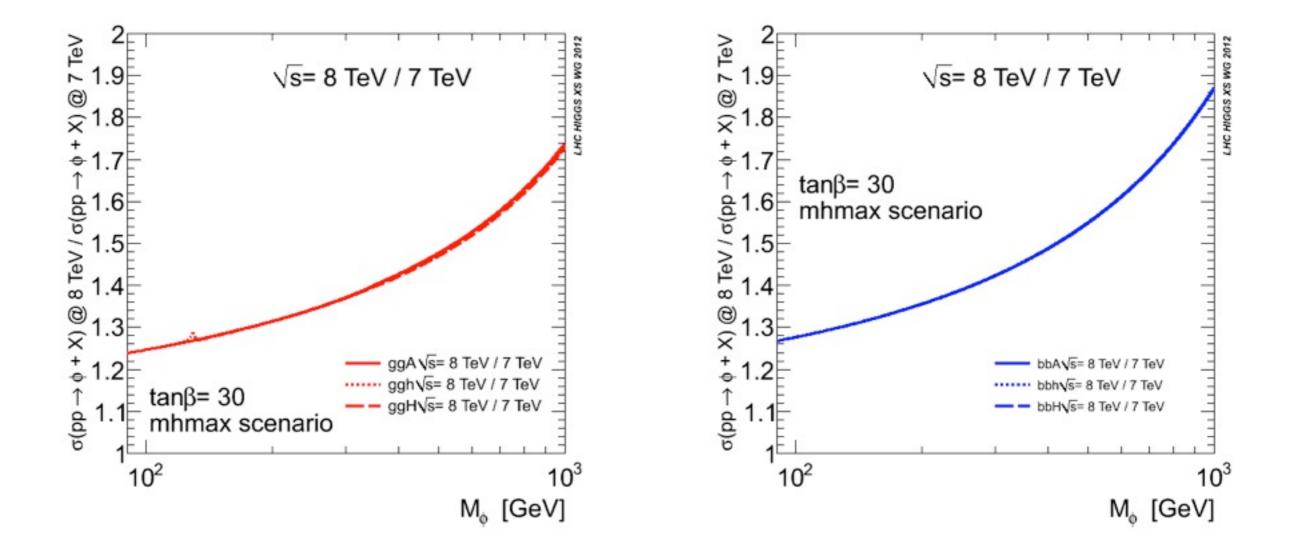
τ(lep)τ(lep) using eμ	т(lep)т(had)	т(had)т(had)
1 isolated e with p⊤ > 25 GeV	isolated e / μ with pT >25/20 GeV	2 τ _{had} with p _T > 30/45 GeV
1 isolated μ with $p_T > 20$ GeV	exactly one τ_{had} with $p_T > 20 \text{ GeV}$	
Opposite sign	Opposite sign	Opposite sign
Sum of lepton pT and MET < 120 GeV, $\Delta \Phi(e,\mu)$ >2	MET > 20 GeV, MT<30 GeV	MET > 25 GeV


Mass distributions:

MSSM Neutral Higgs Search

- Combine the T_{lep} - T_{had} , T_{had} - T_{had} and T_e - T_{μ} channels for one exclusion limit
 - Limit with the m_h^{max} benchmark scenario
 - Also determine a $\sigma \times BR$ limits

ATLAS-CONF-2011-132

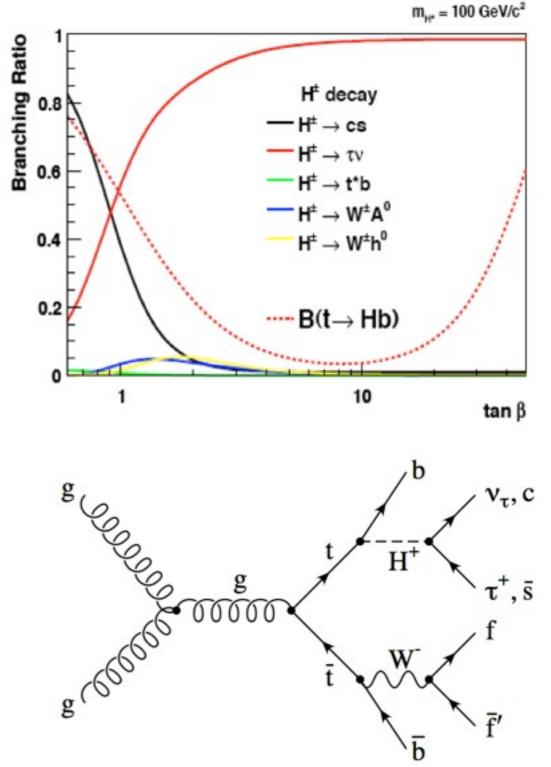


MSSM Neutral Higgs with 8 TeV

 8 TeV MSSM signal cross sections now available on the LHC Higgs XS TWiki (for both the m_h-max and no-mixing scenarios)

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/MSSMNeutral

- Significant enhancement of the production cross sections over those at 7 TeV
- Scan .root files will eventually include WW and gamma-gamma BRs (recast our SM Higgs limits in the context of the MSSM)
- Stay tuned...



A Generic 2HDM: Charged Higgs Searches

- Charged Higgs bosons could be produced from a generic 2HDM
- H+ Production:
 - Light H⁺: $pp \rightarrow tt \rightarrow bW bH^+$
 - Heavy H⁺: gb \rightarrow tH⁺ and gg \rightarrow tbH⁺
- H+ Decay:
 - Light H⁺: Almost exclusively to TV (at low tanB predominantly to cs̄)
 - Heavy H⁺: tb; τν; χ⁺χ⁰
- ATLAS charged Higgs searches with taus:

 $\begin{array}{ll} tau(had)+W(\rightarrow lv): & tt \rightarrow bbWH \rightarrow bb~(lv)~(\tau_{had}~v)\\ tau(had)+W(\rightarrow jets): & tt \rightarrow bbWH \rightarrow bb~(qq)~(\tau_{had}~v)\\ tau(lep)+W(\rightarrow jets): & tt \rightarrow bbWH \rightarrow bb~(qq)~(\tau_{lep}~v) \end{array}$

• ATLAS charged Higgs search with $c\overline{s}$: H⁺($\rightarrow c\overline{s}$)+W($\rightarrow lv$): tt $\rightarrow bbWH \rightarrow bb$ (lv) ($c\overline{s}$)

Charged Higgs: $H^+ \rightarrow \tau v$

• Perform this search in three channels:

JHEP (arXiv: 1204.2760)

Tau(lep) + W(→ jets)	Tau(had) + W(\rightarrow jets)	Tau(had) + W(\rightarrow lv)
1 isolated e/ μ , pT > 25/20 GeV	1 τ_{had} with pT > 40 GeV	1 isolated e/ μ , pT > 25/20 GeV
		1 τ_{had} with pT > 20 GeV
At least 4 jets (pT>20 GeV) with exactly 2 b-tagged	At least 4 jets (pT>20 GeV) with at least 1 b-tagged	At least 2 jets (pT>20 GeV), with at least 1 b-tagged
MET & Topological cuts	MET & Topological cuts	vertex ΣpT > 100 GeV

- Dominant backgrounds:
 - ttbar, single-top, multi-jets, W+jets, Z+jets, di-boson, multi-jet events
- Dominant systematics:
 - Jet energy resolution / scale (10-30%), b-tagging efficiency (5-17%), misidentification probability (e.g., jet→τ or e→τ; 12-21%)

Charged Higgs: $H^+ \rightarrow \tau v$

• The final discriminants for each channel:

Vacuation 500 Events / 10 GeV 10 GeV 10 GeV ≥ 400 80 ATLAS Events / 20 Ge/ Data 2011 $\tau + \mu$ Data 2011 τ +jets $\Box t\bar{t} \rightarrow b\bar{b}W^+W^-$ ଟ୍ଷ 350 True T Data 2011 Others 70 $Jet \rightarrow \tau misid$ True 7 Events 300 250 HAR SM + uncertainty $e \rightarrow \tau$ misid $Jet \rightarrow \tau misid$ 60 - m_{H⁺} = 130 GeV Multi-jets $e \rightarrow \tau$ misid $B(t \rightarrow bH^*) = 5\%$ 50 ever SM + uncertainty Misid'ed lepton _____ m_H = 130 GeV 200 SM + uncertainty 40 Ldt = 4.6 fb100 m,... = 130 GeV $B(t \rightarrow bH^+) = 5\%$ s = 7 TeV150 30 ATLAS ATLAS $Ldt = 4.6 \text{ fb}^{-1}$ 100 20 50 $Ldt = 4.6 \text{ fb}^{-1}$ s = 7 TeV lepton+jets 50 10 s = 7 TeV 100 150 200 250 300 350 200 250 80 100 120 140 160 180 6 150 50 100 60 50 40 mH [GeV] m_T [GeV] E_T^{miss} [GeV]

Our most sensitive channel for this search is the τ+jets

- The lepton+jets channel $(H^+ \rightarrow \tau^+ \nu \rightarrow I^+ \nu \nu \nu)$ has a very similar signature to $W^+ \rightarrow I^+ \nu$, so rely on kinematics for discrimination
 - cosθ* (exploit W boson polarization from top decay)
 - Charged Higgs transverse mass m^H
 - b-jet-to-top association important for both; done with a χ^2

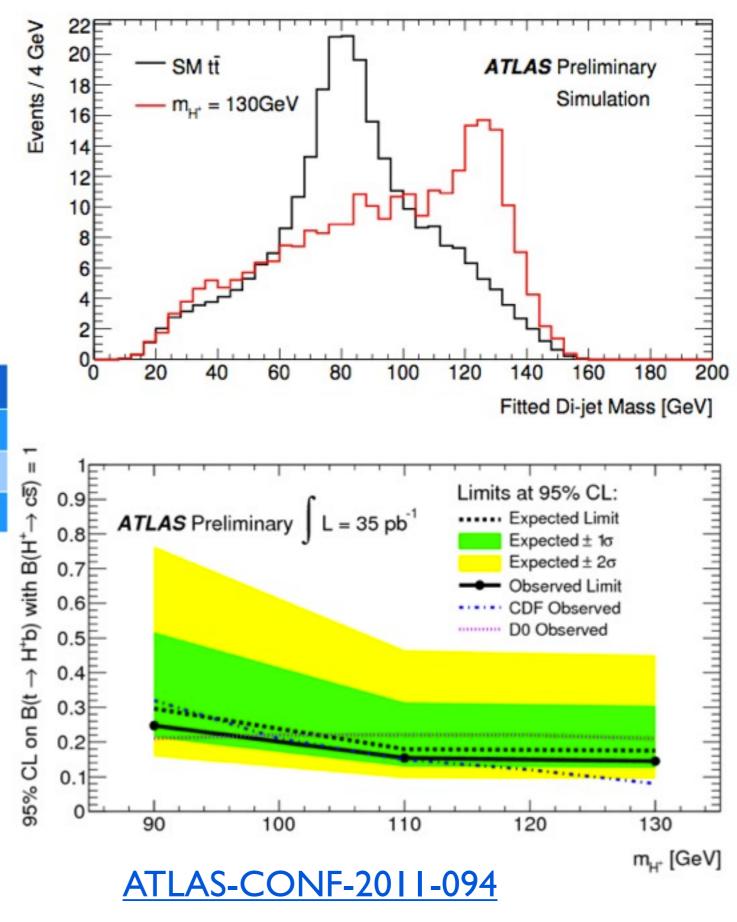
$$(m_{\rm T}^{\rm H})^2 = \left(\sqrt{m_{\rm top}^2 + (\vec{p_{\rm T}}^l + \vec{p_{\rm T}}^b + \vec{p_{\rm T}}^{\rm miss})^2} - p_{\rm T}^b}\right)^2 - \left(\vec{p_{\rm T}}^l + \vec{p_{\rm T}}^{\rm miss}\right)^2 \qquad \chi^2 = \frac{(m_{jjb} - m_{\rm top})^2}{\sigma_{\rm top}^2} + \frac{(m_{jj} - m_W)^2}{\sigma_W^2}$$

JHEP (arXiv: 1204.2760)

Charged Higgs: $H^+ \rightarrow TV$

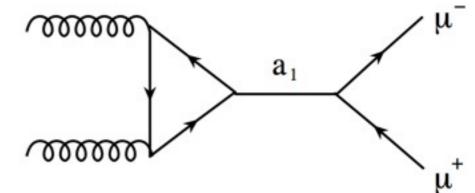
- ATLAS results heavily constrain the allowed phase space for a charged Higgs in the MSSM scenario
- Limit is also presented on the BR($t \rightarrow bH^+$)

JHEP (arXiv: 1204.2760)

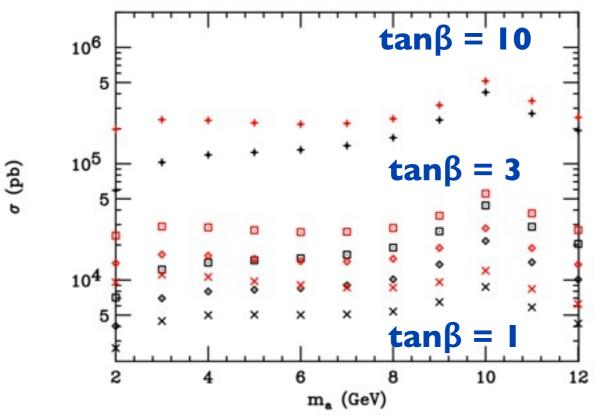


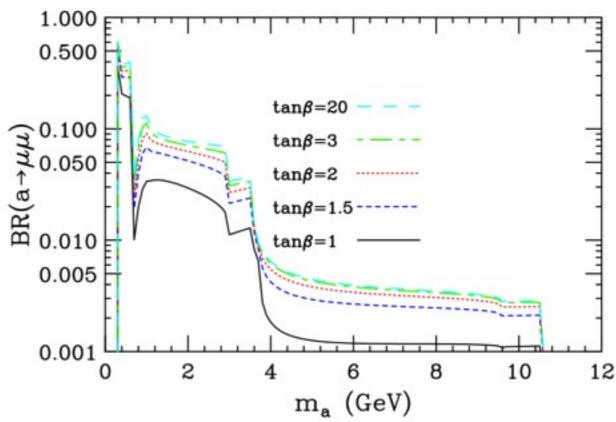
Charged Higgs: $H^+ \rightarrow c\overline{s}$

- Final state allows for full reconstruction of the H⁺ candidates
- Examine the di-jet spectrum and look for a second peak

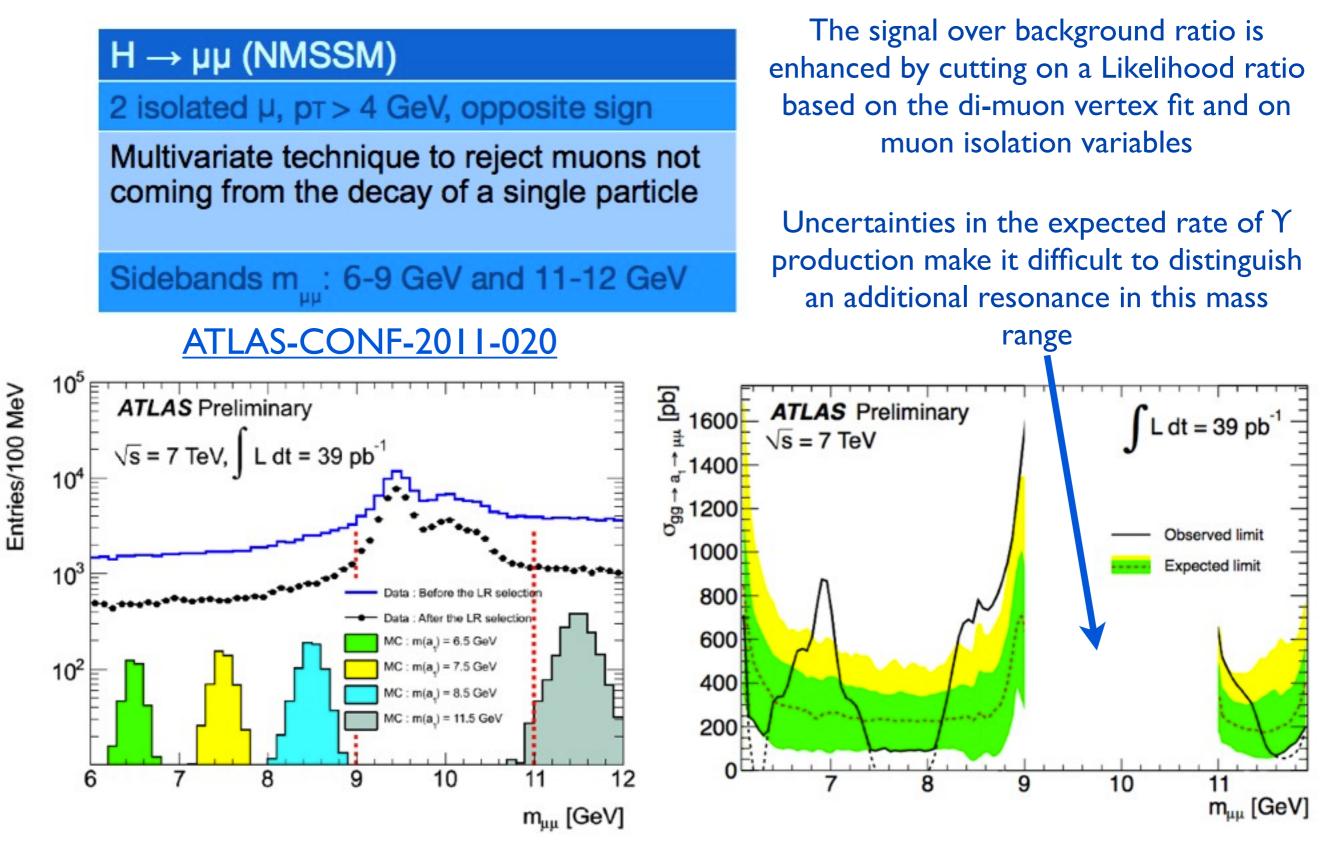

tt → bW bH⁺ → b (e/mu) v b cs 1 isolated e/ μ , pT > 20 GeV At least 4 jets, pT>20 GeV; one b-Tagged jet MET/MT cuts: MT>25 GeV (e); MT+MET>60GeV

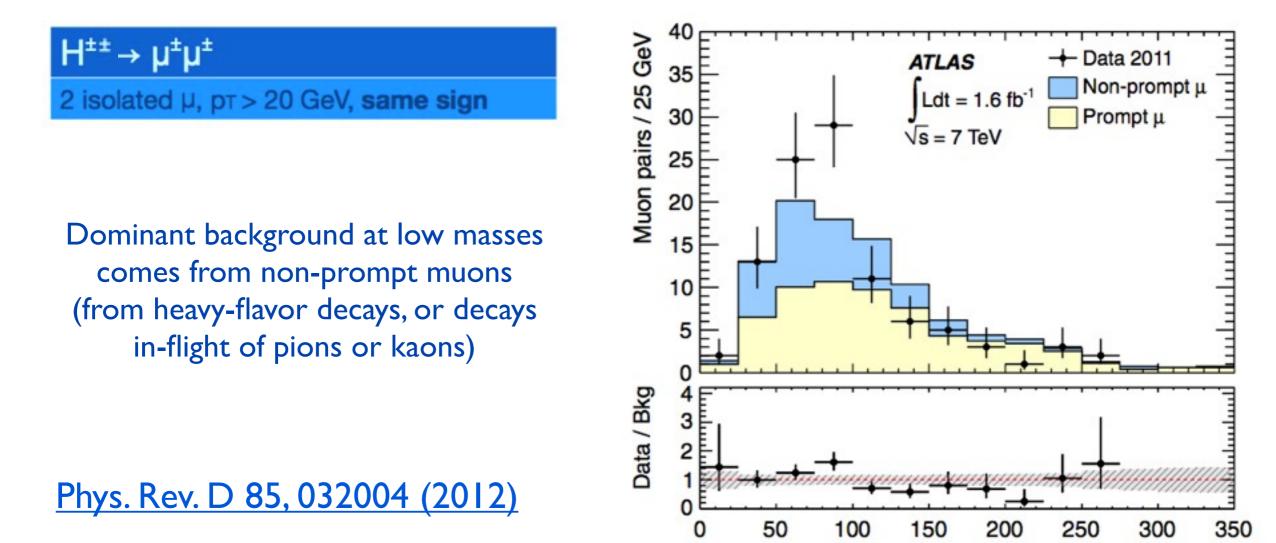
$$\chi^{2} = \sum_{i=l,4jets} \frac{(p_{T}^{i,fit} - p_{T}^{i,meas})^{2}}{\sigma_{i}^{2}}$$
$$+ \sum_{j=x,y} \frac{(p_{j}^{UE,fit} - p_{j}^{UE,meas})^{2}}{\sigma_{UE}^{2}}$$
$$+ \sum_{k=bjj,blv} \frac{(M_{k} - M_{top})^{2}}{\sigma_{top}^{2}}.$$


The NMSSM: $\mu\mu$ channel


- The Next-to-MSSM
 - Introduces a complex singlet scalar field
 - Higgs sector expands as a result:
 - 3 CP-even scalars: h_1 , h_2 , h_3
 - 2 CP-odd scalars: a1, a2
 - 2 Charged scalars: H[±]
- The light CP-odd Higgs, a
 - Could be very light, e.g. ~10 GeV
 - Could have dominant production mode $h \rightarrow a_1 a_1$

- In the ideal scenario
 - $m_{al} < 2 m_B$
 - Dominant decay modes into TT, cc, gg
 - µµ final state is a clean search channel

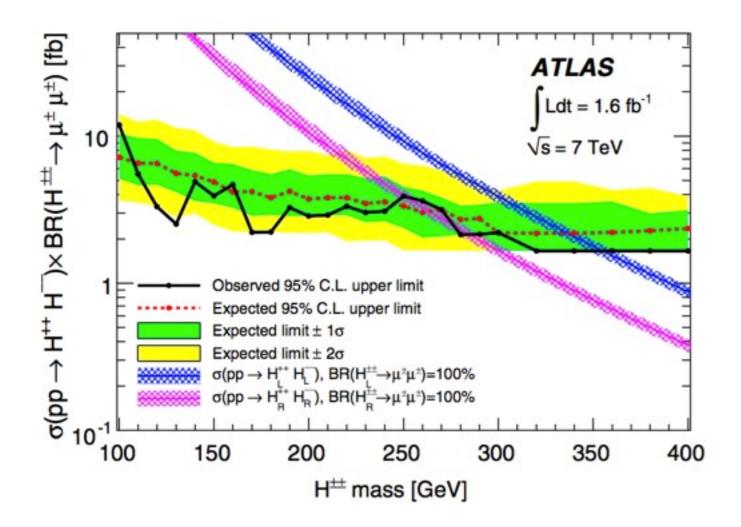

<u>arXiv: 0911.2460</u>

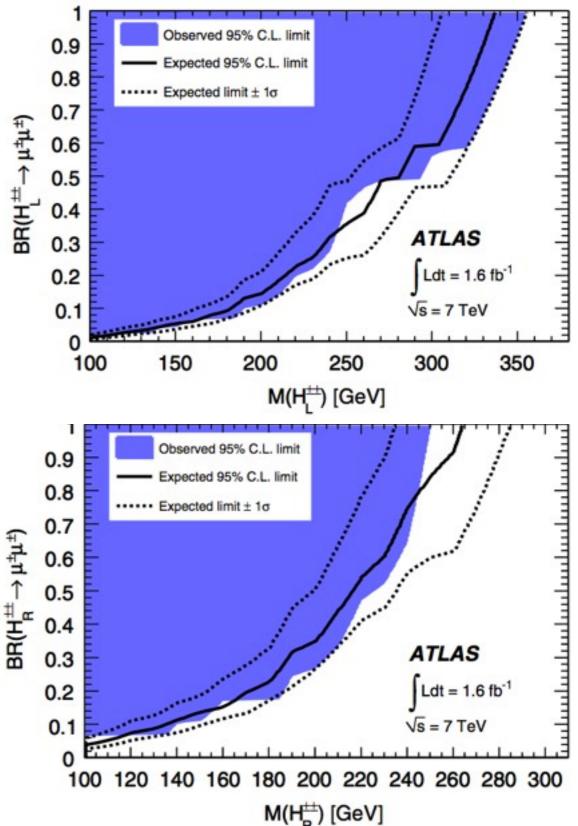

The NMSSM: $a_1 \rightarrow \mu \mu$ channel

Search for this Higgs in the region to either side of the Y

Doubly Charged Higgs (H⁺⁺)

- Predicted by many models
 - Left-Right symmetric models, "Seesaw Type-II" models including Higgs triplet models (H⁰, H⁺, H⁺⁺) and "Little Higgs" models
 - Possible observation of H⁺⁺ at the LHC could provide more insight into neutrino masses
 - Predominantly produced in pairs via Drell-Yan $pp \rightarrow H^{++}H^{--}$
- This is performed as a generic same-sign di-muon spectrum search

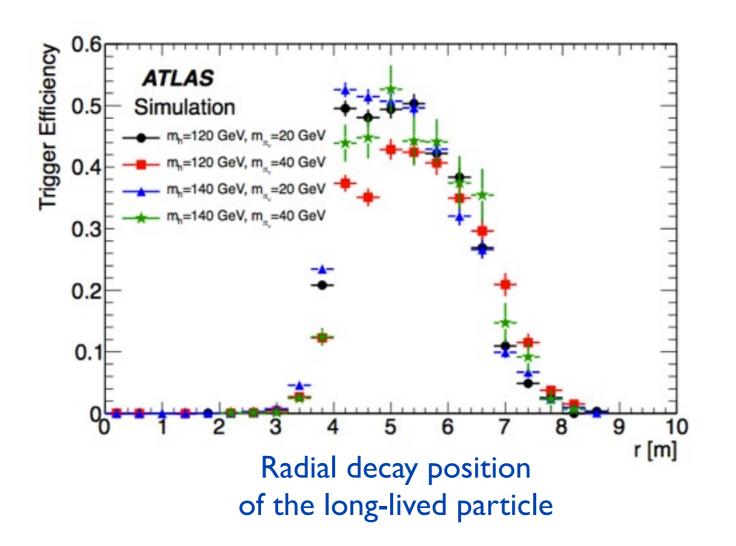



m(μ[±]μ[±]) [GeV]

Doubly Charged Higgs (H⁺⁺)

- Exclusion limits in 1.6 fb⁻¹
 - Assuming qq $\rightarrow Z/\gamma^* \rightarrow H^{++}H^{--} \rightarrow$ $\mu^{+}\mu^{+}\mu^{-}\mu^{-}$
 - Limits on H⁺⁺ mass of 251 GeV (355 GeV) for right-handed (left-handed) production; BR=100%

 $H_{L^{\pm\pm}}$ couple to both the Z and photons $H_{R}^{\pm\pm}$ only couple to photons



Phys. Rev. D 85, 032004 (2012)

29

Higgs Decaying to Long-Lived Particles

- A number of models include Higgs decaying to long-lived particles
 - For example, the so-called "Hidden Valley Model"
 - SM is weakly coupled to a hidden sector by some communicator particle
 - Here the Higgs is the communicator and can decay to long-lived particles
 - Search for $h \rightarrow \pi_{\nu} \pi_{\nu}$ (the long-lived π_{ν} has a displaced decay to fermion-antifermion pairs; decay predominantly to bb, cc and $\tau\tau$)
- ATLAS has a dedicated trigger for long-lived particles decaying in the outer parts of the detector

arXiv: 1203.1303

Higgs Decaying to Long-Lived Particles

 Searching for a light Higgs in the "Hidden Valley" context with the long-lived particles decaying in the hadronic calorimeter, and then those decay products are detected in the muon system

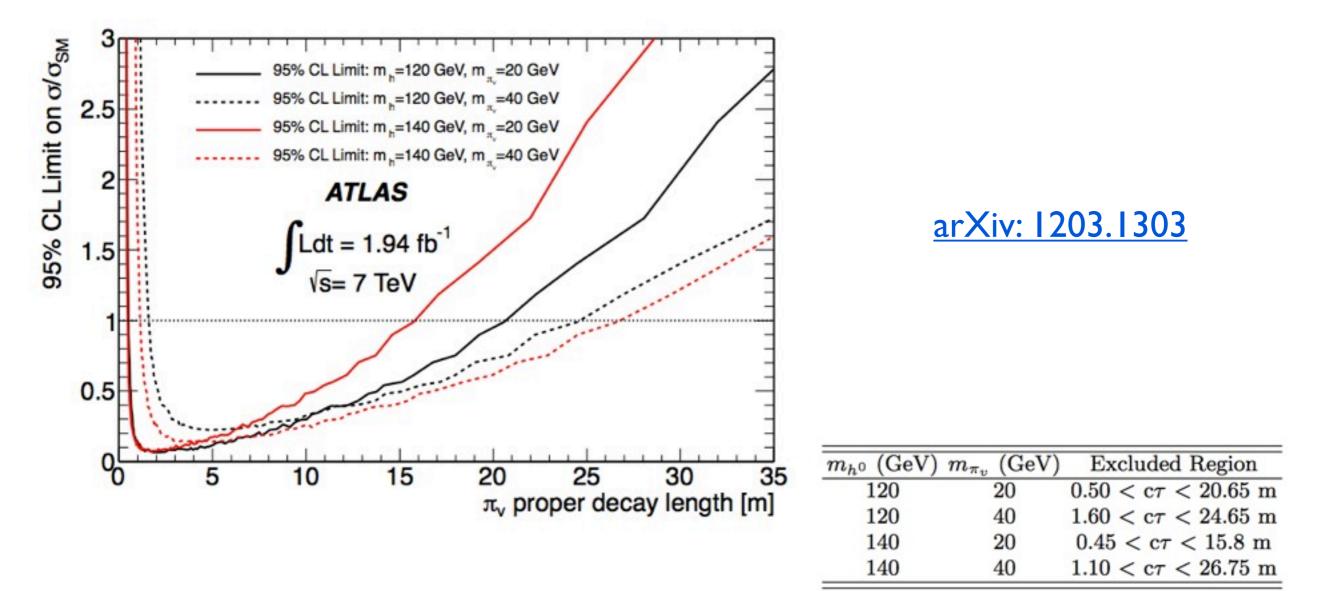
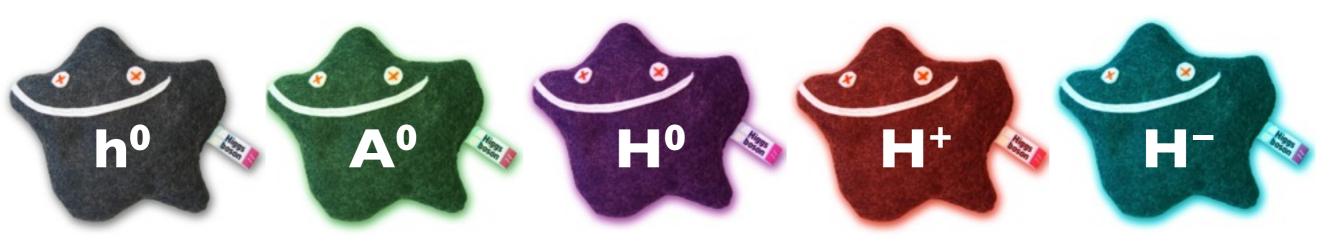
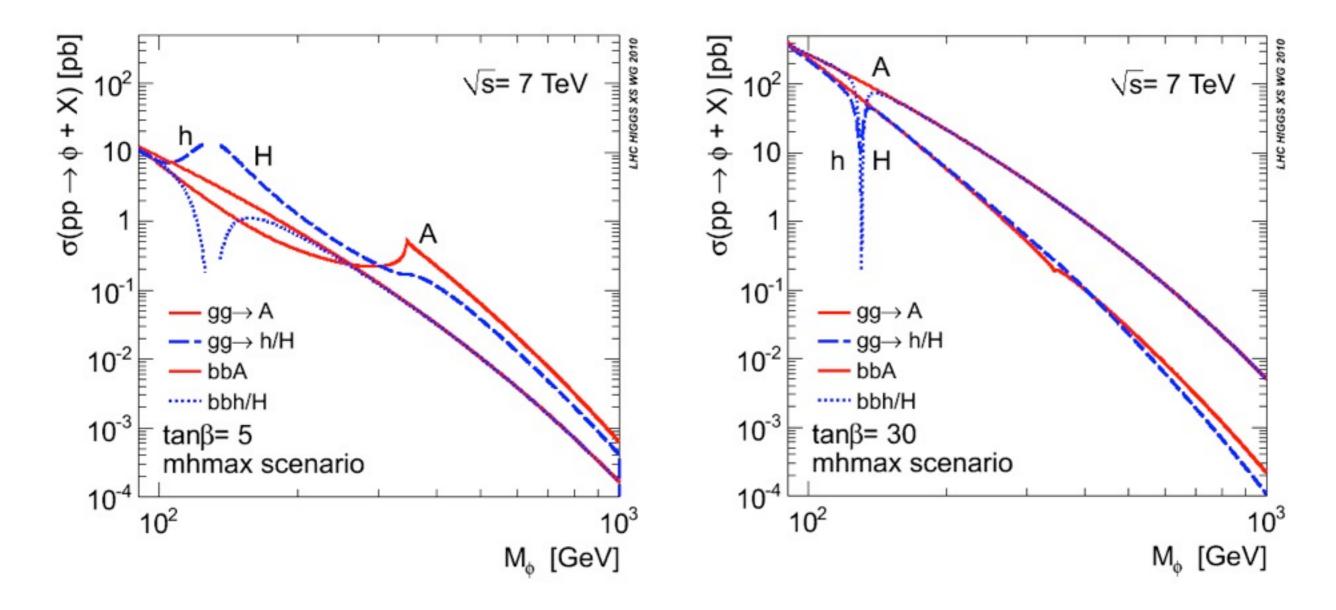



TABLE II: The excluded proper decay lengths $(c\tau)$ of the π_v , at 95% CL, for each of the signal samples, assuming 100% branching ratio for the channel $h^0 \to \pi_v \pi_v$.

Conclusions and Outlook


- ATLAS has a very active search program for Beyond the Standard Model Higgs bosons
 - We have already pushed the constraints further than previous searches
 - Still wrapping up some publications on the full 2011 data
- Even if a SM-like Higgs is observed, BSM Higgs searches will continue to be relevant
- Stay tuned for first results on the 8 TeV 2012 data
- These are very exciting times!

Back-up Slides

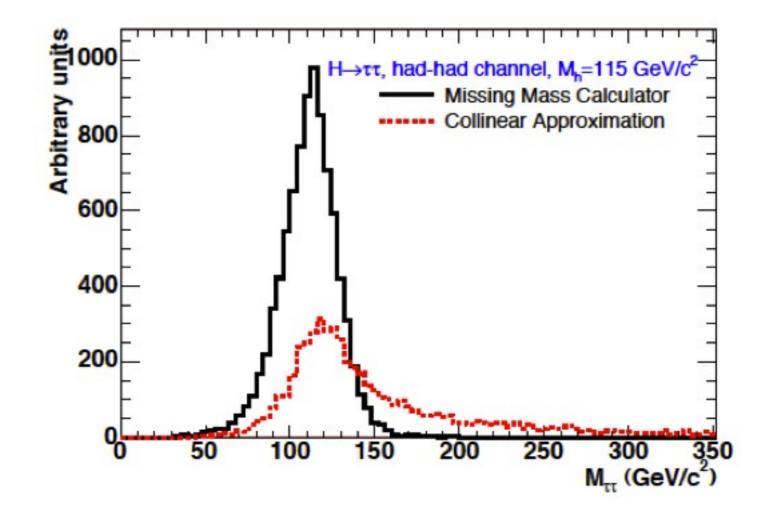
MSSM Higgs Cross Sections at 7 TeV

- Neutral $\phi = h/A/H$ produced through gg-fusion or b-associated processes
 - ggF cross sections based on HIGLU and ggH@NNLO
- bbH cross sections based on bbh@NNLO (5 flavor)
- Higgs masses and couplings calculated with FeynHiggs 2.7.4

MSSM Neutral Higgs

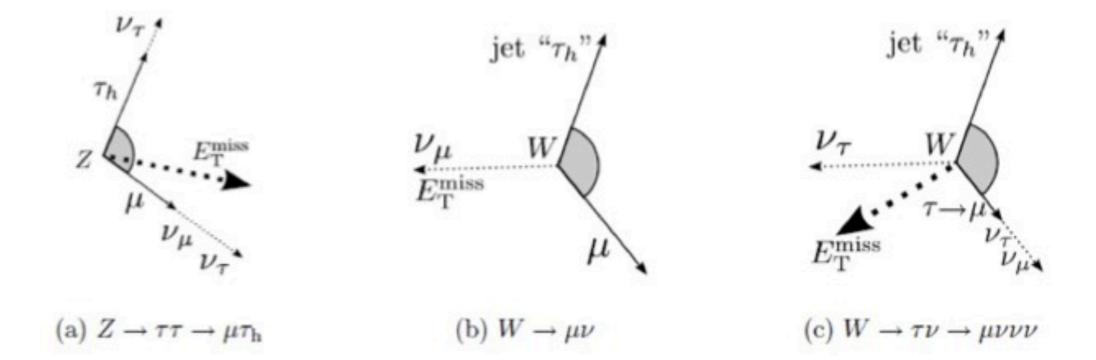
	Data	Total MC bkg	W+jets	Di-boson	$t\bar{t}+$	$Z/\gamma^* \rightarrow$	$Z/\gamma^* \rightarrow$	A/H/h signal
		(w/o QCD)			single-top	ee, µµ	$\tau^+ \tau^-$	
еµ	2472	2496±27	30±15	109±5	100±2	40 ± 4	2217±22	155±6
ethad	626	775±40	188±31	4.1±0.5	33 ± 3	64±5	486±24	41±4
$\mu \tau_{had}$	1287	1378 ± 43	239±33	5.4±0.6	51±4	105±7	978±26	75±5
Thad Thad	245	76±7	25±5	1.4 ± 0.3	2.0±0.9	2	48±5	19±1

Table 5: Observed numbers of events in data, for an integrated luminosity of 1.06 fb^{-1} , and total expected background contributions for the final states considered in this analysis, with their combined statistical and systematic uncertainties.


Final state	Exp. Background	Data
еµ	$(2.6 \pm 0.2) \times 10^3$	2472
lT had	$(2.1 \pm 0.4) \times 10^3$	1913
$\tau_{had} \tau_{had}$	233 +44 -28	245
Sum	$(4.9 \pm 0.6) \times 10^3$	4630

MSSM Neutral Higgs

	W+jets	Di-boson	tī+	$Z/\gamma^* \rightarrow$	$Z/\gamma^* \rightarrow$	Signal
			single-top ed		ee,μμ τ ⁺ τ ⁻	
$\sigma_{inclusive}$	-/-/5	7	10	5/5/-	5	14/14/16
Acceptance	-/-/20	4/2/7	3/2/9	2/14/-	5/14/14	5/7/9
e efficiency	-/-/0.8	4/3.1/0.5	4/3.6/0.3	4/3.1/-	4/3.0/0.5	4/3.6/0.1
μ efficiency	-/-/0.3	2/1.2/0.4	2/1.1/0.0	2/1.3/-	2/1.8/0.4	2/1.0/0.1
τ efficiency and fake rate	-/-/21	-/9.1/15	-/9.1/13	-/48/-	-/9.1/15	-/9.1/15
Energy scales and resolution	-/-/ ⁺³⁴ -21	$2/_{-9}^{+19}/_{-12}^{+26}$	6/+5/12	$1/_{-25}^{+39}/-$	$1/11/_{-23}^{+63}$	$1/_{-23}^{+30}/_{-8}^{+9}$
Luminosity	-/-/3.7	3.7	3.7	3.7/3.7/-	3.7	3.7
Total uncertainty	-/-/ ⁺⁴⁵ -36	$10/_{-16}^{+23}/_{-22}^{+32}$	13/15/23	8/+64/-	9/21/+67	$16/^{+35}_{-30}/^{+26}_{-25}$


eµ / lep-had / had-had

MMC vs Collinear Mass

SumCosDeltaPhi

SumCosDeltaPhi:

Charged Higgs $(\rightarrow \tau \nu)$

Sample	Event yield (lepton+jets)		
$t\bar{t}$	$840 \pm 20 \pm 150$		
Single top quark	$28~\pm~2~^{+8}_{-6}$		
W+jets	$14 \pm 3 + 6 2$		
Z+jets	$2.1\pm~0.7~^{-3}_{-0.4}$		
Diboson	$0.5 \pm 0.1 \pm 0.2$		
Misidentified leptons	$55 \pm 10 \pm 20$		
All SM backgrounds	$940 \pm 22 \pm 150$		
Data	933		
$t \rightarrow bH^+ (130 \text{ GeV})$	$120 \pm 4 \pm 25$		
Signal+background	$990 \pm 21 \pm 140$		

Sample	Event yield $(\tau + lepton)$		
	au + e	$ au+\mu$	
True τ +lepton	$430\pm14\pm59$	$570 \pm 15 \pm 75$	
Misidentified jet $\rightarrow \tau$	$510\pm23\pm86$	$660\pm26\pm110$	
Misidentified $e \rightarrow \tau$	$33\pm 4\pm 5$	$34\pm 4\pm 6$	
Misidentified leptons	$39\pm10\pm20$	$90\pm10\pm34$	
All SM backgrounds	$1010\pm30\pm110$	$1360\pm30\pm140$	
Data	880	1219	
$t \rightarrow bH^+$ (130 GeV)	$220\pm6\pm29$	$310\pm7\pm39$	
Signal+background	$1160\pm30\pm100$	$1570\pm30\pm130$	

Sample	Event yield (τ +jets)
True τ (embedding method)	$210\pm10\pm44$
Misidentified jet $\rightarrow \tau$	$36\pm6\pm10$
Misidentified $e \rightarrow \tau$	$3\pm1\pm1$
Multi-jet processes	$74 \pm 3 \pm 47$
All SM backgrounds	$330\pm12\pm65$
Data	355
$t \rightarrow bH^+ (130 \text{ GeV})$	$220 \pm 6 \pm 56$
Signal+background	$540 \pm 13 \pm 85$

Charged Higgs $(\rightarrow \tau \nu)$

Source of uncertainty	Normalisation uncertainty	Shape uncertainty
lepton+jets: lepton misidentification		
Choice of control region	6%	-
Z mass window	4%	-
Jet energy scale	16%	-
Jet energy resolution	7%	-
Sample composition	31%	-
$\tau {+} {\rm lepton: jet} {\rightarrow} \tau$ misidentification		
Statistics in control region	2%	-
Jet composition	11%	-
Object-related systematics	23%	3%
$\tau{+}\mathrm{lepton:}~e{\rightarrow}\tau$ misidentification		
Misidentification probability	20%	-
τ +lepton: lepton misidentification		
Choice of control region	4%	-
Z mass window	5%	
Jet energy scale	14%	-
Jet energy resolution	4%	-
Sample composition	39%	-

τ +jets: true τ		
Embedding parameters	6%	3%
Muon isolation	7%	2%
Parameters in normalisation	16%	-
τ identification	5%	-
τ energy scale	6%	1%
τ +jets: jet $\rightarrow \tau$ misidentification		
Statistics in control region	2%	-
Jet composition	12%	-
Purity in control region	6%	1%
Object-related systematics	21%	2%
τ +jets: $e \rightarrow \tau$ misidentification		
Misidentification probability	22%	-
τ +jets: multi-jet estimate		
Fit-related uncertainties	32%	1
$E_{\rm T}^{\rm miss}$ -shape in control region	16%	-

Charged Higgs (→cs)

Channel	Muon	Electron
Data	193	130
SM $t\bar{t} \rightarrow W^+ b W^- \bar{b}$	156^{+24}_{-29}	106^{+16}_{-20}
W/Z + jets	17 ± 6	9±3
Single top	7±1	5±1
Diboson	0.30 ± 0.02	0.20 ± 0.02
QCD multijet	11 ±4	6±3
Total Expected (SM)	191^{+26}_{-30}	127^{+17}_{-21}
$\mathcal{B}(t \rightarrow H^+ b) = 10\%$:		
$t\bar{t} \rightarrow H^+ b W^- \bar{b}$	20^{+3}_{-4}	14^{+2}_{-2}
$t\bar{t} \rightarrow W^+ b W^- \bar{b}$	127^{+19}_{-23}	86+13
Total Expected ($\mathcal{B} = 10\%$)	181+21	120^{+14}_{-17}

Systematic Source				
Jet energy scale	+11, -13% (SM tt)			
	+9, -12% (signal)			
b-Jet energy scale	±0.5%			
Jet energy resolution	±1%			
b-tagging efficiency	+4, -9%			
MC generator	±4%			
Parton shower	±3%			
ISR/FSR	±1%			
Additional Interactions	±4%			
Luminosity	±3.4%			
Electron reconstruction	±1.6%			
Muon reconstruction	±0.2%			
Electron trigger	$\pm 0.2\%$			
Muon trigger	$\pm 0.5\%$			
tī cross section	+7, -9%			
t quark mass	±7%			

NMSSM Higgs search

	Relative Uncertainty (%) at $m(a_1)$ (GeV)								
Source	6.0	6.5	7.0	7.5	8.0	8.5	11.0	11.5	
Luminosity	±3								
PYTHIA VS MC@NLO	±67	±55	±49	±40	±36	±32	± 20	±20	
Dimuon Efficiency	+14 -13	+14	+14 -13	+14	+14	$^{+14}_{-13}$	+15	+15	
Trigger Correction	±8								
MC Statistics	±10	±10	±10	±10	±10	±10	±9	±9	
Likelihood Ratio Modeling	±3								
Total (Pythia vs MC@NLO)	±70	±59	±53	±45	±41	±37	±28	±28	