
A
TL

-D
A

Q
-P

R
O

C
-2

01
2-

01
5

12
Ju

ne
20

12

Use of expert system and data analysis technologies
in automation of error detection, diagnosis and

recovery for ATLAS Trigger-DAQ Control
framework

Andrei Kazarov, Alina Corso Radu, Luca Magnoni and Giovanna Lehmann Miotto

Abstract—Trigger and Data Acquisition (TDAQ) System of
the ATLAS experiment on LHC at CERN is a very complex
distributed computing system, composed of O(10000) applications
running on a farm of commodity CPUs. The system is being
designed and developed by dozens of software engineers and
physicists since end of 1990’s and it will be maintained in
operational mode during the lifetime of the experiment. The
TDAQ system is controlled by the Control framework, which
includes a set of software components and tools used for system
configuration, distributed processes handling, synchronization of
Run Control state transitions etc. The huge flow of operational
monitoring data produced is constantly monitored by operators
and experts in order to detect problems or misbehavior. Given
the scale of the system and the rates of data to be analyzed, the
automation of the Control framework functionality in the areas
of operational monitoring, system verification, error detection
and recovery is a strong requirement.
The paper describes requirements, technologies choice, high-level
design and some implementation aspects of advanced Control
tools based on knowledge-base technologies. The main aim of
these tools is to store and to reuse developers expertise and
operational knowledge in order to help TDAQ operators to
control the system with maximum efficiency during life time of
the experiment.

I. INTRODUCTION

THE paper describes advanced Control tools based on
knowledge-base technologies. First, we introduce the

Control framework for the TDAQ system [1] of the ATLAS
experiment [2] on LHC at CERN, then we describe mo-
tivations and requirements for the use of knowledge-based
intelligent monitoring and diagnostics tools in the framework.
In Section III we present the high-level design and some im-
plementation aspects of the Control components carrying out
the functionality of error detection and analysis (AAL), error
diagnosis and verification (DVS) and error recovery (OR).
More attention is payed to AAL and OR components, which
were actively developed in last years. The section includes
discussion on the choice of knowledge-based technologies
used for implementation of the described components.

Manuscript received May 31, 2012.
A. Kazarov is with CERN, on leave from Petersburg Nuclear Physics

Institute, Kurchatov NPI, Gatchina, Russian Federation (e-mail: An-
drei.Kazarov@cern.ch).

A. Corso Radu is with UCI California Irvine(e-mail: Alina.Radu@cern.ch).
L. Magnoni is with CERN, Geneva, Switzerland (e-mail:

luca.magnoni@cern.ch).
G. Lehmann Miotto is with CERN, Geneva, Switzerland (e-mail: gio-

vanna.lehmann@cern.ch).

II. MOTIVATIONS AND REQUIREMENTS

Control framework in TDAQ System

The TDAQ Control framework [3] was developed in the
scope of the TDAQ system for the ATLAS experiment at LHC,
CERN. Its main objectives are to process control commands of
TDAQ operators and to steer the whole TDAQ system through
run control transitions, guaranteeing synchronous execution
of commands and smooth error recovery. The TDAQ Control
framework is composed of a number of services, starting from
the basic ones as resource, access and process management
and ending with integrated GUI tools for TDAQ operators.
Control components widely use other core TDAQ services,
namely the Configuration Service and the Monitoring Infras-
tructure.
The following factors had an important impact on the design
of the TDAQ Control system:

• system complexity and heterogeneity
• use of commodity hardware which fails quite often
• long development and maintenance time-line
• involvement of a big number of developers, high rate of

staff rotation

Operational aspects

The TDAQ system is operated by a non-expert shift crew
of operators assisted by a set of experts providing knowledge
for specific subsystems and components. The daily work of
operators is made of procedures to run the system, periodic
checks and controls on system status, well defined reaction in
case of known problems and interaction with experts in case
of non standard issues.
During a typical physics run, tens of thousands of messages
can be produced by different applications (especially in case
of some operational problems), and the rate of information
objects updates can be as much as tens of kHz. In this
conditions, prompt reaction to the errors can hardly be done
by a human operator, and Control tools must include tools for
automation of most critical operational tasks.

Requirements

In the described conditions, in order to guarantee the high
run efficiency of the experiment and to minimize downtime
resulting from failures, the TDAQ Control systems must

include advanced intelligent tools to help TDAQ Operators and
to automatize the important and complex control operations,
typically manned by humans, in particular in the following
important areas: system verification, error detection and anal-
ysis, error diagnosis and error recovery. From this perspective,
the principal requirements to the TDAQ Control system are:

• to analyze information flow and error messages in the
system and to perform diagnostics of the operational
errors

• to recover from possible system failures with minimal
disturbance to the running system

• to perform verification of the state of system components
• to keep and reuse the expertise of system developers

experts and to allow storing of the operational experience
acquired during the years of system maintenance

• to allow flexibility in defining Control system behavior
in order to adapt promptly to changing experiment con-
ditions and requirements

III. DESIGN AND IMPLEMENTATION ASPECTS

A. Choice of technologies

Given the requirements it was decided that Control com-
ponents responsible for error detection, analysis, diagnosis
and recovery shall be based on knowledge-base software
technologies, namely on a rule-based expert system (ES) and
a complex event processing (CEP) engines. The use of such
techniques allows to formalize, to acquire, to store and to reuse
the system developer’s knowledge and expertise in automation
of complex controls tasks. Also, the non-procedural program-
ming paradigm allows easy modification and extension of
the knowledge base (KB) (which is maintained as a set of
human-readable text files) without need to reprogram system
components.

Expert system: CLIPS: CLIPS [4] is a forward-chaining
expert system framework originally developed by NASA. It is
open-source and the ES engine can be embedded into other
applications that allows to use it as part of TDAQ software.
The CLIPS engine implements the Rete algorithm to match
facts (e.g. the run-time messages and information updates
coming from the Monitoring system) to the set of rules loaded
into the engine. The rules are kept in readable text files, so
the KB can be easily maintained and extended independently
by the experts. CLIPS features object-oriented (OO) language
called COOL allowing you to define classes and instantiate
objects. This maps very well to the OO configuration approach
used in TDAQ software and thus allows experts to speak in
”TDAQ language” when developing the rules.
CLIPS is used as an expert system engine for the OR and
DVS components.

Complex Event Processing: ESPER: Complex Event Pro-
cessing [5] is one of the fundamental techniques in the so
called Operational Intelligent procedures, where the goal is
to provide insight into dynamic operations by running query
analysis against live feeds and event data. In the last decade
it has been adopted in very different context, from financial
analysis to intelligent system monitoring. CEP systems are
meant to analyze and correlate streams of events, but the great

advantages they offer is to abstract events and to provide a
standard language to express pattern and correlation as queries.
ESPER [6] is a CEP engine written in Java that offers a very
powerful Event Processing Language with built-in capabilities
for analysis over time and event correlation. ESPER is able
to handle very high flow of data, thanks to a non-persistent
approach where events pass through memory and the engine
continuously check for the one matching criteria expressed by
queries. This characteristic perfectly fit with Control software
needs, so we adopted it for the event analysis.
CEP event processing model, where streams of events are
queried by the rules, can be seen as extension of traditional
expert system ”rules-to-facts” matching model: time dimen-
sion is added to ”flat” field of facts, thus adding the power to
make more complex queries over the time dimension, retaining
the possibility to correlate and to join different facts in the
forward-chaining manner of traditional expert system. Given
the fact that the TDAQ system is trigger-driven where events
occur at predictable rates, the possibility to analyze events
over time axis is an important addition to the analysis and
diagnostics capabilities of the Control tools.

Knowledge gathering and maintaining: Knowledge is gath-
ered from experts, formalized in CLIPS or ESPER rules
and stored in the KB which is a set of text files. This
task is carried out by a small group of experts (knowledge-
engineers) which are communicating closely with the TDAQ
and detectors experts providing their expertise. After a rule is
implemented, it can be adjusted directly by an expert, willing
to tune some parameters like constants, thresholds or message
text. The development foresees storing the rules in a database
and providing more advanced expert-oriented editing facilities,
which may include possibility to create new rules, based on
common templates.

B. High-level design

The TDAQ Control system includes the following intelligent
components designed on these principals: Automated AnaLy-
sis (AAL) project, Diagnostics and Verification System (DVS),
Online Recovery System (OR). These components cover all
aspects of the error handling in the Control system, as shown
on the Figure 1. A typical cycle of error handling is started
with error detection and analysis of the operational information
from monitoring systems. The filtered and analyzed informa-
tion is used at the next step of the error diagnosis which usually
involve deep testing of a faulty subset of the system, in order
to complement monitoring information with more precise
knowledge about state of the system components. Finally the
error handling is completed by recovery actions that shall bring
the system back to its normal operational state. At every stage,
passive monitoring information may be not enough in order
to make the correct evaluation of the error conditions. A more
complete picture about the status of the system is acquired by
means of executing the tests which are developed by experts
and made available to the Control components via the Test
Repository and DVS framework, as described in Section III-D.
Experts contribute the knowledge which is stored in the KB.
The tools are making evaluations and decisions by applying

Fig. 1. Use of expert knowledge in automation of error handling in TDAQ
Control system

Fig. 2. High-level architecture of AAL component

the knowledge to the run-time operational monitoring data and
to the results of tests execution.

C. Error detection and analysis: AAL component and Shifter
Assistant

During data taking runs, streams of messages sent by appli-
cations together with data published via information services
are the main sources of knowledge about the correctness of
running operations. The huge flow of data produced (with
an average rate of O(1-10KHz)) is constantly monitored by
experts using variety of monitoring tools to detect problems or
misbehavior. This requires strong competence and experience
in understanding and discovering problems and root causes,
and often the meaningful information is not in the single
message, but in the aggregated behavior in a certain time-line.
The AAL (Automated AnaLysis) component was developed
in order to automatize routine system checks, to aggregate
and correlate error messages and monitoring data coming from
different information sources, to detect complex event patterns
over time and finally to provide TDAQ operators with more
pertinent and meaningful information. AAL guide the shift
crew operators and experts in their daily work, for this reason
it is also known as The Shifter Assistant.

Architecture: The high-level architecture of AAL compo-
nent is shown in Figure 2. Information updates and application
messages received from different sources via the monitoring
infrastructure are injected into the AAL engine as streams of
events with certain properties. Directives (rules) developed by
experts are loaded into the engine at start-up and applied to
the streams of events as they come in, in real-time manner.
As result, engine produces alerts which are then routed to
the users by different means or can be re-injected back to the
TDAQ messaging system for benefit of other applications.

Knowledge Base: The rules implemented for the TDAQ
AAL engine can be grouped in the following categories:

• selecting most important events (like error messages),
correlating the messages with the experiment conditions
and TDAQ system state, i.e. putting the messages into
the context of ongoing activity

• reacting on absence of certain events in a time window,
which indicates some system misbehavior or a service
being down

• interpreting certain messages, making them more user-
friendly

• aggregating over certain types of events, making statis-
tical calculations (average, maximum, sums) over infor-
mation properties

• correlating (joining) certain type of events and making
diagnostics deductions

• detecting complex time-based patterns of events, like
detecting repetitive bursts of events in a certain time
period, or detecting sequences of events following (or
not following) each other

An example of a simple rule is presented below. It checks if the
value of information object DFM-1.deadtime averaged in
last minute is exceeding a given threshold. When the condition
occurs, an alert is sent to TDAQ.RunControl domain and
the corresponding shifter is notified that an action is to be
taken.
<directive name="DFM-high-occupancy">
<epl>select
avg(attributes(’deadtime’).double) as AverageOccupancy
from
ISEvent(partition=’ATLAS’, name=’DFM-1’).win:time(60 sec)
having avg(attributes(’deadtime’).double) > 0.08
and ATLAS_IS_RUNNING
output first every 2 minutes
</epl>
<listener type="alert">
<domain>TDAQ.RunControl</domain>
<severity> WARNING </severity>
<message>DFM average occupancy is high
($AverageOccupancy$) in last 60 seconds</message>
<action>Investigate.
Check DAQ summary for busy source.</action>
<details>true</details>
<writer type="jms"><format>XML</format>
</writer></listener>
</directive>

At present, AAL KB contains more then 100 rules or
directives covering not only TDAQ areas, but also ATLAS
subdetector areas. The deployment of ALL allowed to sup-
press one of the shifter desks in the ATLAS control room:
all the checks normally done by shifters at this desk were
implemented as SA directives and the output was directed to
other desks or experts.

Fig. 3. Snapshot of Shifter Assistant web page for Run Control desk, filled
with alerts for the ongoing run.

Interaction with users: The information is provided to
shifters on an dynamic web page in form of alerts, which
contain precise description of a detected issue and suggested
action for the shifter to take. Alerts are routed to different
domains, such that each domain is presented on a dedicated
page on the subsystem shifter desk in the experiment control
room. A snapshot of this page with a number of alerts is shown
in Figure 3. The aim of the AAL web page is to provide the
TDAQ operator with shifter-friendly and action-oriented view
on TDAQ operational monitoring information.
In addition, selected alerts can be routed directly to particular
responsible persons e.g. experts on-call in form of e-mail or
SMS messages. This guarantees maximum responsiveness of
the support team in critical situations. Alerts can also be
injected back to the TDAQ messaging system where they
are available to other TDAQ components, for instance to OR
component.

The engine of the AAL is based on a Java implementation
of CEP technology ESPER, primarily developed for business
processes analysis applications. Rules in CEP are independent
SQL-like directives which are applied to the streams of data
injected in the engine.

D. Error diagnosis and system verification: Diagnostics and
Verification Framework

Understanding the root causes of a problem is an important
aspect of error handling in complex controls systems. Collect-
ing additional precise and detailed information about the status
of faulty components, and also performing verification testing
of the system for preventive error detection is an essential
part of the error-handling procedures. A knowledge-based
diagnostics and verification framework DVS was developed
in order to automatize these tasks in the scope of TDAQ
Control system. The framework allows configuring specific
tests with different levels of details for any TDAQ component
and to define test sequences and diagnostics rules for detection
and diagnosis of faults of the TDAQ components. Tests for
components are developed by subsystem experts and added to

Fig. 4. Integration of OR into Run Control tree

the framework, such that they are used later by the operators
and experts willing to automate verification of the system. The
framework has embedded ES (CLIPS engine), so it can also
load set of rules which typically describe a) tests sequences for
particular components; b) what to do in case a test fails (for
instance additional tests to be launched); c) error diagnosis, by
correlating tests results for different components and deducing
the diagnosis, if possible or simply the log of the completed
testing sequences. The outcome of the verification procedures
is presented to the users in a GUI, or it is made available to
the OR component which uses it to perform further recovery
decisions and actions.
More details on implementation of the DVS component is
given in [7]. The present test repository for ATLAS contains
about 40 tests for different elements of the system, which
are launched regularly to ensure the healthiness of the overall
system status.

E. Error recovery: Online Recovery in Run Control

Online Recovery system is a distributed rule-based expert
system integrated into the TDAQ Run Control framework.
TDAQ Run Control is organized as an hierarchical tree of
Controllers and managed applications, as shown on Figure 4.

Each Controller in the tree controls a particular sub-domain
(a Segment) of the whole system. It contains an embedded
expert system engine which loads and executes a subset of
the KB specific to that particular Segment or subsystem. The
rules define local error-recovery scenarios, like reacting on
error conditions, restarting or ignoring of faulty applications.
In addition to local recovery units embedded in Controllers, a
top-level OR component is implemented. Its task is to coordi-
nate recovery scenarios which can not be handled on local
level and involves actions across different subsystems. OR
also automates different important routine actions otherwise
performed by the Run Control shifter manually.
Examples of the implemented recovery scenarios are: restart-
ing and disabling of failing applications, trigger clock changes,
resources reallocation, stop-less disabling of faulty parts of
the system read-out, stop-less re-inclusion of recovered com-
ponents. OR uses testing capabilities of DVS in order to
execute specific tests for re-assuring the error conditions or
for confirming the status of the components after completion
of the recovery actions.
An example of an OR recovery rule is listed below:

Fig. 5. Growth of OR knowldge base size during the last years of deployment
and maintanance.

(defrule l2sv-died
(declare (salience ?*salience_highest*))
?problem<-(object (is-a PROBLEM)
(TYPE APPLICATION_DIED_UNEXPECTEDLY)
(OBJECT ?name)(HANDLED FALSE))
?l2sv <-(object (is-a OR-APPLICATION)(UID ?name)
(CLASS-NAME "L2SVApplication")
(RUNS-ON ?host)(MEMBERSHIP IN))
?ctrl <-(object (is-a CONTROLLER)(STATE RUNNING)
(TRANSITION NONE)
(RC-COMMAND ˜TERMINATE &˜SHUTDOWN))
=>

(ers-log "[L2SV-Recovery::l2sv-died] L2SV ’" ?name "’
on host " ?host " is dead. Recovery action is being taken")

(l2sv-died ?l2sv)
(send ?problem put-HANDLED TRUE)
(send ?problem put-DECISION L2SV-RECOVERY))

The rule detects a fault of an L2SV application (a trigger
supervisor, one type of TDAQ applications), and asserts other
facts which make other rules to fire so the recovery actions
gets completed.
At present, more then 150 rules were implemented for OR
local and global components during the development and first
years of maintenance of TDAQ Control system, and the size
of KB was growing as shown on Figure 5. During a typical
run (which lasts 10-20 hours) OR is very active, recovery
actions are triggering regularly. Figure 6 shows the statistics
of invocations of most frequently used rules, gathered during
all runs taken in March-May of 2012. Most of the activity of
OR is related to the stop-less recovery operations, which aim
is to keep data-taking on-going while being recovering from
unavoidable failures of different components in the complex
TDAQ and detector read-out systems. Such operations are
subsystem-specific, input conditions and subsystem behavior
were changing frequently and the KB were modified on daily
basis.

IV. RESULTS AND CONCLUSIONS

Knowledge-based components are widely used in the Con-
trol software of the ATLAS TDAQ system. These components
make use of rule-base Expert System and Complex Event
Processing software technologies. Used all together, they assist
TDAQ operators to steer the system without frequent manual
interventions by automatizing control procedures, related to
error detection, analysis, diagnosis and recovery.
Use of the intelligence in Control of TDAQ system sub-
stantially reduced the load on TDAQ control shift crew, and
contributed a lot to the impressive TDAQ run efficiency of
95% during 2010-2011 years of system operations. About

OnlRec::UnstableClock

rc::HostFailed

OnlRec::LBIncreaseRequest

OnlRec::WarmStart

OnlRec::AutoWarmStop

OnlRec::ROSxoff

OnlRec::ClockChange

OnlRec::ApplicationRecovery

OnlRec::Hardw areRecovery

OnlRec::StoplessRemoval

OnlRec::StoplessRecovery

0 200 400 600 800 10001200 1400 1600 1800

N of occurences

O
R

 r
u

le

Fig. 6. Statistics of invocations of OR automation rules, during data-taking
runs in March-May 2012.

half of the remaining 5% inefficiency is still coming from
the manual and often mistaken interventions from the shifters,
so there is still a room for improving the automation of the
control operations.
Deployment of Shifter Assistant component allowed to sup-
press one of the shifter desks in the ATLAS control room.
After the deployment of the component started, more ATLAS
subdetectors expressed interest in using this approach to assist
shifters on other control room desks.
The KBs used by CLIPS and ESPER-based components
presently contain about 300 rules and directives, which where
gathered by a small team of engineers taking the input from
a dozen of experts. The chosen approach has shown to be
a powerful and flexible way to automate complex error-
handling operations, otherwise performed manually by TDAQ
operators.

REFERENCES

[1] The ATLAS Collaboration, ATLAS high-level trigger, data-acquisition
and controls : Technical Design Report (Geneva : CERN, 2003

[2] The ATLAS Collaboration, The ATLAS experiment at the CERN Large
Hadron Collider J.Instrum. 3 S08003, 2008

[3] Lehmann Miotto G et al. Configuration and control of the ATLAS trigger
and data acquisition NIMA 623 549-551, 2010

[4] Gary Riley CLIPS: A Tool for Building Expert Systems. Available:
http://clipsrules.sourceforge.net/.

[5] Luckham, D. The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Boston, MA : Addison-
Wesley, 2002. - ISBN 978-0-201-72789-0

[6] Bernhardt T. Where Complex Event Processing meets Open Source.
Available: http://esper.codehaus.org/

[7] Kazarov A, CorsoRadu A, Lehmann Miotto G, Sloper J.E., Ryabov Y.
A rule-based verification and control framework in ATLAS Trigger-DAQ.
IEEE Transaction on Nuclear Science, 54 (2007) 604-608.

