Search for SM Higgs Boson in H→bb at the LHC

Second MCTP Spring Symposium on Higgs Boson Physics

April 16-20, 2012

Song-Ming Wang Academia Sinica

On behalf of the ATLAS and CMS Collaborations

Introduction

H→bb has highest decay BR at low mass $(m_H < \sim 135 \text{ GeV})$

Search for Low Mass Higgs Boson

•
$$\sigma$$
(m_H=120 GeV) ~ 17 pb

•
$$\sigma(m_H = 120 \text{ GeV}) \sim 1.3 \text{ pb}$$

- •Search in bb or qqbb final state will encounter huge multi-jet background
- •Higgs production in association with W or Z
 - •3rd and 4th highest production rate ($\sigma(WH)\sim0.66$ pb, $\sigma(ZH)\sim0.36$ pb @ m_H=120 GeV)
 - •Final states with leptonic decays of W and Z can help to reduce contribution from multi-jet background

Detectors

B field: 2T solenoid, 4T toroid B field: 3.8T solenoid ATLAS **CMS ATLAS CMS** Inner tracker : $|\eta|$ coverage 2.5 2.5 $\sigma(P_T)/P_T$ at $P_T=100$ GeV 3.8% 1.5% EM calorimeter: $|\eta|$ coverage 3.2 3.0 $10\%/\sqrt{E+0.7\%}$ $3\%/\sqrt{E+0.5\%}$ $\sigma(E)/E$ 4.9 5.2 **HAD** calorimeter: |η| coverage $50\%/\sqrt{E+3\%}$ $85\%/\sqrt{E+7\%}$ $\sigma(E)/E$ (EM+HAD combined) Muon system: $|\eta|$ coverage 2.4 2.7

 $12\% (|\eta| \le 1.5)$

 $\sigma(P_T)/P_T$ at $P_T=1$ TeV (standalone)

15-40% (depend on η range)

A Toroidal LHC AppartuS (ATLAS) DETECTOR

Search for Higgs Boson in Associated Production

 $WH \to l\nu \; bb$

 $ZH \rightarrow 1^+1^- bb$

 $ZH \rightarrow \nu \nu bb$

WH (lvbb)

- 1 high p_T lepton
 - e or μ
- Missing Transverse Energy (E_T^{miss})
- •2 b jets

ZH (llbb)

- 2 high p_T leptons
 - e^+e^- or $\mu^+\mu^-$
 - Z resonance peak
- small E_Tmiss
- •2 b jets

ZH (vvbb)

- 0 lepton
- Large E_Tmiss
- •2 b jets

- •CMS: Phys. Lett. B 710 (2012) 284-306
- •ATLAS: ATLAS-CONF-2012-015

Background Sources

Main Physics Background

- •Top quark production (ttbar, single top)
- •Z + jets (Z + light-flavor (LF) jets, Z + heavy-flavor (HF) jets)
- •Diboson (WW, WZ, ZZ)

•QCD multi-jet

only for WH(lvbb) and ZH(vvbb) searches

Other Sources

- •Extra jets from pile-up
- •Fake large E_T^{miss} sources
 - •Noise in calorimeter
 - •Beam gas, beam halo

Data Samples

•Perform searches on data samples with $\int L=4.7$ fb⁻¹ at $\sqrt{s}=7$ TeV, collected in 2011

•Average number of interactions per p-p bunch crossing is ~10

Triggers to collect data samples:

- WH(lvbb) : single e/μ triggers (efficiency ~90-100%)
- **ZH(llbb)** : single or double e/μ triggers (efficiency ~95-100%)

Efficiency measured w.r.t. offline selections

•**ZH**(vvbb):

- •CMS : E_T^{miss} and E_T^{miss} +jet triggers (efficiency ~98% at E_T^{miss} (offline)=160 GeV)
- •ATLAS: E_T^{miss} trigger (efficiency ~50% at E_T^{miss} (offline)=120 GeV, 100% at E_T^{miss} (offline)=170 GeV)

Physics Objects Reconstruction

Muon

- Inner detector track from primary vertex matched to track in muon system
- $\bullet |\eta| < 2.5$
- •Pt>~20-25 GeV, isolated

Electron

- Inner detector track from primary vertex matched to energy cluster in electromagnetic calorimeter
- $|\eta|$ <2.5
- •Pt>~20-30 GeV, isolated

Jets

- Reconstructed using anti-kt algorithm (cone size: 0.5 (CMS), 0.4 (ATLAS))
- Minimum Pt(jet)>~20-30 GeV, $|\eta|$ <2.5
- Subtract extra energy from pile-up
- Remove extra jets coming from pile-up interactions (not from the main hard interaction)

JVF: fraction of momentum of tracks associated to the jet from main primary vertex

Missing Transverse Energy (E_T^{miss})

CMS

 E_T^{miss} : negative vector sum of transverse momentum of all particle flow objects in event

ATLAS

 \vec{E}_T^{miss} : negative vector sum of cluster transverse energy in calorimeter.

•Correct cluster energy if associate to physics objects (e, μ , τ , γ)

Pile-up Effect:

•Additional interactions in bunch crossing can degrade E_T^{miss} resolution

- •E_t miss (from high p_T multi-jet events) broaden with increase in multiple interactions
- •Simulation needs right pile-up profile as seen in data

Missing Transverse Energy (E_T^{miss})

- Simulated events re-weighted to have pile-up profile matches data
- E_T^{miss} performance in simulation is under control for 2011 analyses

$p_{T}^{miss}(ATLAS)$:

- Alternative quantity to E_T^{miss}
 - Based on tracks
- \vec{p}_T^{miss} : negative vector sum \vec{p}_T of tracks
- E_T^{miss} and p_T^{miss} point in same direction for events with real E_T^{miss}
 - •Use correlation in directions of E_T^{miss} and p_T^{miss} to reduce multi-jet background
- Apply in ATLAS's ZH(vvbb) analysis to reduce QCD multi-jet background

B-Jet Tagging

- b-jet : identified base on relatively long lifetime ($c\tau \sim 450 \mu m$) of B hadron
- Construct single discriminant using information from track impact parameters and secondary vertices reconstructed in jet
 - •to separate b-jet from light, c and gluon jets

•CMS :

•apply b-tagging algorithm at several working points in Higgs search

	Eff(B) (%)		Reject LF rate
"Loose" (CSV>0.244)	82	2.5	8.3
"Tight" (CSV>0.90)	50	17	670

•ATLAS:

- •apply b-tagging algorithm at 1 working point
- •Eff(B)=70%, reject C~5, reject LF~130

Event Selection

•CMS has two approaches:

- •"BDT Analysis"
 - Pre-select events with looser cuts and apply boosted-decision-tree (BDT) algorithm to further separate signal from background
 - Search for signal in the output of the BDT discriminant
- "Mjj Analysis"
 - Apply tighter selection cuts and search for signal in the di-jet mass distribution (Mjj) of the H→bb candidates
- •ATLAS employs the "Mjj Analysis" approach
- •CMS performs search in 5 channels :
 - •WH(evbb), WH(μνbb), ZH(eebb), ZH(μμbb) and ZH(ννbb)
- •ATLAS performs search in 3 channels :
 - •WH(e/μνbb), ZH(ee/μμbb) and ZH(ννbb)

Event Selection (CMS)

channel	WH(lvbb)	ZH(llbb)	ZH(vvbb)
lepton	e or μ	e ⁺ e ⁻ or μ ⁺ μ ⁻	0
Invariant mass (GeV)	-	75 <m(l<sup>+l⁻)<105</m(l<sup>	-
E _T ^{miss} (GeV)	>35 (only for electron)	-	>160
NJet	≥2 [=2]	≥2 [2-3]	≥2 [=2]
p _T (JJ) (GeV)	>150 [>160]	>100	>160
$p_{T}(V)$ (GeV)	>150 [>160]	>100	-
$\Delta \phi(V,H)$ (rad)	- [>2.95]	- [>2.90]	- [>2.90]
B-tagging	medium,medium [tight,medium]	loose,loose [tight,medium]	medium,medium [tight,medium]
$\Delta \phi(E_T^{\text{miss}}, \text{Jet}) \text{ (rad)}$	-	-	>0.5 [>1.5]

- •"[]": tighter thresholds use for "Mjj" analysis
- Events pass loose selection are used for "BDT" analysis
- Requiring significant boost in V and H (high pT(V) and $p_T(JJ)$) help to reduce background from W/Z+Jets

Event Selection (ATLAS)

channel	WH(lvbb)	ZH(llbb)	ZH(vvbb)
lepton	e or μ	ee or μ ⁺ μ ⁻	0
Transverse or Invariant mass (GeV)	M _T >40	83 <m(l+l-)<99< td=""><td>-</td></m(l+l-)<99<>	-
E_{T}^{miss} (GeV)	>25	<50	>120
p _T ^{miss} (GeV)	-	-	>30
NJet	=2	≥2	=2
B-tagging	Exactly 2 b-tagged jets (@ Eff(b)=70%)		

•Addition cuts for ZH(vvbb) channel to suppress QCD multi-jet and W/Z+Jets

•
$$\Delta \phi(E_T^{miss}, p_T^{miss}) \le \pi/2 \text{ rad}$$

•
$$\Delta$$
R(Jet1, Jet2) < 1.7 - 2.0

•
$$\Delta \phi(V,H) > 2.7-2.9 \text{ rad}$$

•
$$\Delta \phi(E_T^{\text{miss}}, \text{ Jet}) > 1.8 \text{ rad}$$

Event Selection (ATLAS)

- •Search for H signal in 4 $p_T(V)$ bins and 3 E_T^{miss} bins :
- •WH(lvbb), ZH(llbb):
 - •p_T(V): <50 GeV, 50-100 GeV, 100-200 GeV, >200 GeV
- •**ZH**(νν**bb**) :
 - $\bullet E_{T}^{miss}$: 120-160 GeV, 160-200 GeV, >200 GeV

Background Estimation

- W+Jet, Z+Jet, Top, Diboson background contributions are estimated from simulation
- Corrections to background normalization are obtained from control regions with negligible signal contamination

Multi-jet Background Estimation

- •QCD multi-jet background is estimated from data
- •WH(lvbb) (ATLAS)
 - •Obtain multi-jet template shape in events failing lepton identification
 - •Determine normalization by fitting template to E_T^{miss} distribution of signal region (but loosening the E_T^{miss} and M_T cuts)
- •ZH(vvbb) (CMS, ATLAS)
 - •Use control regions defined by two un-correlated variables to estimate multi-jet background in signal region
 - •CMS : sum of b-tagging discriminating weights vs $\Delta \phi(E_T^{miss}, Jet)$
 - •ATLAS : $\Delta \phi(E_T^{miss}, p_T^{miss})$ vs $\Delta \phi(E_T^{miss}, Jet)$
 - •Both CMS and ATLAS estimated negligible QCD multi-jet background in signal region of ZH(vvbb), not included in the limit calculation.

BDT Discriminant Output (CMS)

•Cut on BDT distribution to define signal region to search for Higgs signal

BDT Discriminant Output and Di-Jet Mass (CMS)

M_{bb} distribution for "MJJ" analysis

M_{bb} Distribution (ATLAS)

M_{bb} Distribution (ATLAS)

•Better sensitivity at higher p_T^W , p_T^Z , E_T^{miss}

Systematic Uncertainties

	CMS (%)	ATLAS (%)
Luminosity	4.5	3.9
Lepton Efficiency	3 (include trigger, per lepton)	1-6
Trigger (ZH(vvbb))	2	5 (120 <e<sub>T^{miss}<160 GeV)</e<sub>
Jet Energy Scale	2-3	
Jet Energy Resolution	3-6	~2-17
E_{T}^{miss}	3	
B-Tagging	3-15	3-20
Signal cross section	6-14	5-13
Background estimation	10-35	3-24

Limits from Individual Channel (ATLAS)

Combined Limits from All Channels (CMS, ATLAS)

[•]CMS "MJJ analysis" is ~10% less sensitive than the "BDT analysis"

Summary

- •CMS and ATLAS have searched for SM Higgs boson in the associated VH production via H→bb decay channel, using 5 fb⁻¹ data sample
- No evidence of Higgs signal is observed
- •Both experiments have similar search sensitivity for 110<M_H<130 GeV
 - •Expected limit :
 - •CMS: 2.7 5.3 times the SM
 - ATLAS: 2.6 5.1 times the SM
 - •Observed limit:
 - CMS : 3.1 9 times the SM
 - ATLAS : 2.7 5.3 times the SM
- Main systematic uncertainties are dominated by jet/E_T^{miss} reconstruction, b-tagging and background estimation
- Started taking data in 2012 at \sqrt{s} =8TeV, face new challenges (e.g. higher pile-up)
- If the Higgs boson is indeed light, H→bb will be an important channel to estimate the Higgs parameters

Multi-jet Background Estimation

- •QCD multi-jet background is estimated from data
- •WH(lvbb) (ATLAS)
 - •Obtain multi-jet template shape in events failing lepton identification
 - •Determine normalization by fitting template to E_T^{miss} distribution of signal region (but loosening the E_T^{miss} and M_T cuts)
- •ZH(vvbb) (CMS, ATLAS)
 - •Use control regions defined by two un-correlated variables to estimate multi-jet backgound in signal region

•Both CMS and ATLAS estimated negligible QCD multi-jet background in signal region of ZH(vvbb), not included in the limit calculation.