
ar
X

iv
:1

20
5.

31
30

v3
  [

he
p-

ex
]  

23
 O

ct
 2

01
2

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

CERN-PH-EP-2012-082

Published in: Physics Letters B 717 (2012) 330-350

Measurement of the t-channel single top-quark production cross
section in pp collisions at

√

s = 7 TeV with the ATLAS detector

The ATLAS Collaboration

Abstract

We report a measurement of the cross section of single top-quark production in the t-channel
using 1.04 fb−1 of pp collision data at

√
s = 7 TeV recorded with the ATLAS detector at the LHC.

Selected events feature one electron or muon, missing transverse momentum, and two or three jets,
exactly one of them identified as originating from a b quark. The cross section is measured by fitting
the distribution of a multivariate discriminant constructed with a neural network, yielding σt = 83±
4 (stat.) +20

−19 (syst.) pb, which is in good agreement with the prediction of the Standard Model. Using the
ratio of the measured to the theoretically predicted cross section and assuming that the top-quark-
related CKM matrix elements obey the relation |Vtb| ≫ |Vts|, |Vtd |, the coupling strength at the W-t-b
vertex is determined to be |Vtb| = 1.13+0.14

−0.13. If it is assumed that |Vtb| ≤ 1 a lower limit of |Vtb| > 0.75 is
obtained at the 95% confidence level.
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We report a measurement of the cross section of single top-quark production in thet-channel using 1.04 fb−1 of pp
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a b quark. The cross section is measured by fitting the distribution of a multivariate discriminant constructed with
a neural network, yieldingσt = 83± 4 (stat.) +20

−19 (syst.) pb, which is in good agreement with the prediction of the
Standard Model. Using the ratio of the measured to the theoretically predicted cross section and assuming that the
top-quark-related CKM matrix elements obey the relation|Vtb| ≫ |Vts|, |Vtd|, the coupling strength at theW-t-b vertex
is determined to be|Vtb| = 1.13+0.14

−0.13. If it is assumed that|Vtb| ≤ 1 a lower limit of |Vtb| > 0.75 is obtained at the 95%
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1. Introduction

At hadron colliders top quarks are predomi-
nantly produced in pairs (top-antitop) via the flavour-
conserving strong interaction. Alternative production
modes proceed via the weak interaction involving aW-
t-b vertex, leading to a single top-quark intermediate
state. Three subprocesses contribute to single top-quark
production: the exchange of a virtualW boson in the
t-channel, or in thes-channel, and the associated pro-
duction of a top quark and an on-shellW boson. The
process with the highest cross section at the Tevatron
and at the LHC is thet-channel modeq + b→ q′ + t.

In 2009, single top-quark production was observed
by the CDF [1] and DØ [2] Collaborations based on
analyses counting thet-channel ands-channel processes
as signal. The observation of thet-channel production
mode has also been recently reported by DØ [3], while
the CMS Collaboration has published evidence of this
process at the LHC [4].

The single top-quark final state provides a direct
probe of theW-t-b coupling and is sensitive to many
models of new physics [5]. The measurement of the
production cross section constrains the absolute value of
the quark-mixing matrix elementVtb [6, 7] without as-
sumptions about the number of quark generations (see
Ref. [8] for a recent measurement from the DØ Col-
laboration). Alternatively, it allows theb-quark parton
distribution function (PDF) to be measured.

At the LHC, colliding protons at
√

s = 7 TeV, the
sum of t and t̄ cross sections is predicted to be:σt =

64.6+2.7
−2.0 pb [9] for the leadingt-channel process,σWt =

15.7 ± 1.1 pb [10] for Wt associated production, and
σs = 4.6± 0.2 pb [11] for thes-channel. The analyses

presented in this Letter consider only thet-channel pro-
cess as signal, while the other two single top-quark pro-
cesses are treated as backgrounds, assuming the Stan-
dard Model (SM) theoretical cross sections for these
processes.

The W boson from the top-quark decay is recon-
structed in its leptonic decay modeseν, µν or τν, where
the τ decays leptonically. Thus, selected events con-
tain one charged lepton candidate,e or µ; two or three
hadronic high-pT jets; and missing transverse momen-
tum Emiss

T . Two jets are expected from the leading-order
(LO) process, while a third jet may arise from higher-
order processes. Exactly one of the jets is required to be
identified as originating from ab-quark.

The measurement ofσt is based on a fit to a multi-
variate discriminant constructed with a neural network
(NN) to separate signal from background and the result
is cross-checked using a cut-based method, which ad-
ditionally provides a breakdown for thet and t̄ cross
sections.

2. Data and simulated event samples

The analyses described in this Letter use proton-
proton LHC collision data at a centre-of-mass energy
of 7 TeV collected with the ATLAS detector [12] be-
tween March and June 2011. The selected events were
recorded based on single electron and muon triggers.
Stringent detector and data quality requirements are ap-
plied, resulting in a data set corresponding to an inte-
grated luminosity of 1.04± 0.04 fb−1 [13, 14].

Samples of simulated events for all three single top-
quark processes are produced with the AcerMC pro-
gram (version 3.7) [15] using MRST 2007LO∗ parton
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distribution functions (PDFs) [16]. The computation of
the t-channel single top-quark process in AcerMC in-
corporates theq+b→ q′+t andq+g→ q′+t+b̄ subpro-
cesses and features an automated procedure to remove
the overlap in phase space between them [17]. Sam-
ples of the top-quark pair (tt̄) process are generated us-
ing MC@NLO (version 3.41) [18], with the CTEQ6.6
set of PDFs [19]. The top-quark mass is assumed to
be 172.5 GeV. Generator default values of 0.999105
and 0.999152 are used for|Vtb| to produce the AcerMC
and MC@NLO samples, respectively. At higher orders
in perturbation theory, interference effects between the
single-topWt channel andtt̄ processes occur, but are
found to be small [20] and can therefore be safely ne-
glected. The ALPGEN leading-order generator (version
2.13) [21] and the CTEQ6L1 set of PDFs [19] are used
to generateW+jets, Wbb̄, Wcc̄, Wc andZ+jets events
with up to five additional partons. To remove overlaps
between then and n + 1 parton samples the “MLM”
matching scheme [21] is used. The double count-
ing between the inclusiveW + n parton samples and
samples with associated heavy-quark pair-production
is removed utilising an overlap removal based on a
∆R =

√

(∆η)2 + (∆φ)2 matching1. The diboson pro-
cessesWW, WZ andZZ are generated using HERWIG
(version 6.5.20) [22]. For all single top-quark sam-
ples the hadronisation is performed by PYTHIA (ver-
sion 6.4.25) [23]; in all other cases HERWIG in con-
nection with the JIMMY [24] underlying event model
(version 4.31) is used. After the event generation, all
samples are passed through the full simulation of the
ATLAS detector [25] based on GEANT4 [26] and are
then reconstructed using the same procedure as for col-
lision data. The simulation includes the effect of mul-
tiple pp collisions per bunch crossing and is weighted
to the same distribution as observed in the data with 5.6
interactions per bunch crossing on average.

3. Object definition and event selection

Electron candidates are reconstructed offline using a
cluster-based algorithm and are required to haveET >

25 GeV and|ηcl| < 2.47, whereηcl denotes the pseudo-
rapidity of the calorimeter cluster. Clusters in the transi-
tion regions between the calorimeter barrel and endcaps,

1 ATLAS uses a right-handed coordinate system with its originat
the nominal interaction point in the centre of the detector and thez-
axis along the beam direction. Thex-axis points towards the centre
of the LHC ring, they-axis points upwards. The pseudorapidity is
defined in terms of the polar angleθ asη = − ln tan(θ/2).

corresponding to 1.37< |ηcl| < 1.52, are ignored. High-
quality electron candidates are selected using a set of
cuts [27] which include stringent requirements on the
matching between the track and the calorimeter clus-
ter. Electrons must also be isolated: the sum of the
calorimeter transverse energy within a cone of radius
∆R = 0.3 (excluding the cells associated with the elec-
tron) must be less than 15% of the electronET, and the
pT of all tracks within the same cone radius around the
electron direction, again excluding the track associated
to the electron, must be less than 10% of the electron
ET.

Muon candidates are reconstructed by combining
track segments found in the inner detector and in the
muon spectrometer. We only consider muon candidates
that havepT > 25 GeV and|η| < 2.5. Selected muons
must additionally satisfy a series of cuts on the num-
ber of track hits present in the various tracking sub-
detectors [28]. Muon candidates are required to be iso-
lated using the equivalent criteria as applied to electron
candidates.

Jets are reconstructed using the anti-kt algorithm [29]
with a radius parameter of 0.4, using clusters of adja-
cent calorimeter cells [30] as inputs to the jet cluster-
ing. The response of the calorimeter is corrected by
pT- and η-dependent factors [31], which are applied
to each jet to provide an average energy scale correc-
tion. Jets overlapping with selected electron candidates
within ∆R < 0.2 are removed, as in these cases the jet
and the electron are very likely to correspond to the
same physics object. Only jets havingpT > 25 GeV
and|η| < 4.5 are considered. Jets originating from bot-
tom quarks are tagged in the region|η| < 2.5 by recon-
structing secondary and tertiary vertices from the tracks
associated with each jet and combining lifetime-related
information with a NN [32]. A threshold is applied to
the b-tagging algorithm output corresponding to ab-
tagging efficiency of about 57% and a light-quark jet
rejection factor (the reciprocal of the efficiency tob-tag
light quarks) of about 520 for jets intt̄ events. TheEmiss

T
is calculated using clusters of adjacent calorimeter cells
and corrected for the presence of electrons, muons, and
jets [33].

Events are selected if they contain at least one good
primary vertex candidate [34] with a minimum of five
associated tracks each withpT > 400 MeV. Events con-
taining jets failing quality criteria [35] are rejected.

The event selection requires exactly one charged lep-
ton, e or µ, exactly two or three jets, andEmiss

T >

25 GeV. A trigger matching requirement is applied
where the lepton must lie within∆R < 0.15 of its
trigger-level object. Since the multijet background is
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difficult to model precisely, its contribution is addition-
ally reduced through a requirement on the transverse
mass of the lepton-Emiss

T system2: mT(W) > (60 GeV−
Emiss

T ) [36].
The following samples are defined for this analysis:

a “b-tagged sample” with two jets or three jets, exactly
one of which isb-tagged, and a “pretag sample” with
two or three jets, without making anyb-tagging require-
ment. We also use a sample containing exactly oneb-
tagged jet to estimate theW+jets flavour composition.

4. Background estimation

A large background to the single top-quark final state
comes from QCD-produced multijet events in which ei-
ther one of the jets is misidentified as an isolated lep-
ton or a non-prompt lepton (for example from ab-quark
semileptonic decay) appears isolated. Other significant
backgrounds originate fromW-boson production in as-
sociation with jets andtt̄ production. Smaller back-
grounds come fromZ+jets, Wt-channel ands-channel
single top-quark production, and diboson production.
These smaller backgrounds and thett̄ background are
normalised to their theoretical predictions. ForZ+jets
background the inclusive cross sections are calculated to
next-to-next-to-leadingorder (NNLO) with FEWZ (ver-
sion from March 15, 2009) [37]. The diboson cross sec-
tions are normalised to next-to-leading order theoretical
calculations [38]. Thett̄ cross section is normalised to
the approximate NNLO-predicted value obtained using
HATHOR (version 1.2) [39].

The multijet background normalisation is obtained
using a binned maximum-likelihood fit to theEmiss

T dis-
tribution in the data, before the application of the
Emiss

T cut, using a data-derived template for the multi-
jet background and templates from Monte-Carlo simu-
lation for all other processes (top quark,W/Z+jets, di-
bosons). The multijet template is created using collision
events that are triggered by a single low-pT jet. Sev-
eral prescaled trigger streams with differentpT thresh-
olds are used for that purpose. In the offline selection
of these events the electron requirement is replaced by a
jet requirement (jet-electron model). This jet must have
pT > 25 GeV, the same acceptance in|η| as the signal
electron, and (80–95)% of the jet energy deposited in
the electromagnetic section of the calorimeter. The last
requirement ensures the orthogonality of the jet-electron

2 Defined as

mT(W) =
√

(pT(ℓ) + Emiss
T )2 − (px(ℓ) + Emiss

x )2 − (py(ℓ) + Emiss
y )2,

whereℓ denotes the lepton.

data set to the sample of events with electron candidates
which feature an electromagnetic energy fraction larger
than 95%. The jet must also contain at least four tracks,
thus reducing the contribution from converted photons.
When selecting the jet-electron sample, events contain-
ing electron or muon candidates in addition to the jet-
electron are vetoed. The same model is also used in
the muon channel. A systematic uncertainty of 50% on
the multijet background rates was estimated by study-
ing the impact of pile-up events on the fit results and
by performing likelihood fits on themT(W) distribution.
The jet-electron model is also used to model the shape
of kinematic distributions of the multijet background.

The kinematic distributions of theW+jets back-
ground, which comprises contributions fromW+heavy
flavour jets (Wbb̄+jets, Wcc̄+jets andWc+jets) and
W+light jets, are taken from samples of simulated
events, while the normalisation of the flavour compo-
sition is derived from data. The NN analysis simultane-
ously determines the normalisation of theW+light jets
and W+ heavy flavour processes when fitting the NN
discriminant distribution to measure thet-channel sin-
gle top-quark rate. The cut-based analysis derives nor-
malisation factors for theW+jets processes using the
event yields in the 1-jetb-tagged, 2-jet pretag, and 2-jet
b-tagged sample, excluding events selected by the cuts
defined in Section 5. Since the 2-jetb-tagged sample
includes somet-channel signal events, despite requiring
that the events fail the selection of the cut-based anal-
ysis, an uncertainty of 100% on the expectedt-channel
single top-quark rate is assumed in this normalisation
procedure. Both estimates of theW+jets backgrounds,
the one of the NN analysis and the one of the cut-based
analysis, are in very good agreement with each other.

The predicted and observed event yields, after the ap-
plication of the selections described in Section 3, are
given in Table 1, separately for the electron and muon
channels, in the 2-jet and 3-jetb-tagged samples. For
the purpose of this table and the histograms of kine-
matic distributions the contributions of thett̄, Wt ands-
channel processes have been grouped together into one
category called “tt̄, other top”. In the subsequent analy-
sis the electron and muon channels are combined.

5. Signal and background discrimination

To separatet-channel single top-quark signal events
from background several kinematic variables are com-
bined into one discriminant by employing a NN, that
also exploits correlations between the variables. The re-
sult of the NN analysis is corroborated by a cut-based

3



Table 1: Predicted and observed event yields, after selection, in the electron and muon 2-jet and 3-jetb-tagged samples. The multijet event yields
are determined with data-driven technique. Contributionsfrom W+jets events are normalised to observed data in control regions as used in the
cut-based analysis. The uncertainties on the multijet and theW+jets yields are also estimated from data (see Section 6). Allother backgrounds and
thet-channel signal expectation are normalised to theoreticalcross sections. Uncertainties on these predictions are only reflecting the uncertainties
on the theoretical cross section prediction and do not include experimental uncertainties (such as the jet energy scaleuncertainty, etc.).

Electron Muon
2-jet 3-jet 2-jet 3-jet

single-topt-channel 447± 11 297±7 492±12 323±8
tt̄, other top 785± 52 1700±120 801±53 1740±130
W+light jets 350± 100 128±56 510±150 209±91
W+heavy flavour jets 2600± 740 1100±400 3130±880 1270±480
Z+jets, diboson 158± 63 96±44 166±61 80±31
Multijet 710± 350 580±290 440±220 270±140
Total expected 5050± 830 3900±520 5530±930 3900±520

Data 5021 3592 5592 3915

analysis that applies additional criteria to the basic se-
lection described in Section 3.

Neural network based discriminant. The Neu-
roBayes [40, 41] tool (version 3.3) is used for
preprocessing the input variables and for the training of
the NN. A large number of input variables is studied,
but only the highest-ranking variables are chosen for
the training of the NN. The ranking of variables is
automatically determined as part of the preprocessing
step and is independent of the training procedure. The
total correlationκtotal

t of a set of variables to the target
function, that assumes the value 1 for signal and 0 for
background events, is computed as a measure of the
discrimination power of these variables. In an iterative
procedure, the variables are sorted according to the
loss in κtotal

t that is induced due to their removal from
the set. Considering the number of simulated events
used to determine the ranking, one can compute the
significance of the information loss caused by the
removal of a certain variable. For the training of the
NN we use only variables that contribute with more
than 20 (10) standard deviations toκtotal

t in the 2-jet
(3-jet) data set. This choice is a compromise between
the achievable discrimination power, that increases
with the number of variables, and the practical aim of
keeping the number of variables at a manageable level.

As a result of this optimization procedure 12 kine-
matic variables are identified that serve as inputs to the
NN in the 2-jet data set. The most discriminating vari-
able is the invariant mass of theb-tagged jet, the charged
lepton, and the neutrino,m(ℓνb), which is an estimator
for the top-quark mass for signal events. In this calcu-

lation the transverse momentum of the neutrino is given
by the x- andy-components of theEmiss

T vector, while
the unmeasuredz-component of the neutrino momen-
tum, pz(ν), is inferred by imposing aW-boson mass
constraint on the lepton-neutrino system. Since the con-
straint leads to a quadratic equation forpz(ν), a two-
fold ambiguity arises. In the case of two real solutions,
the one with the smaller|pz| is chosen. If the solutions
are complex, those are avoided by a kinematic fit that
rescales the neutrinopx andpy such that the imaginary
radical vanishes, but keeps the transverse components
of the neutrino as close as possible to theEmiss

T . The
second and third most discriminating variables are the
absolute value of the pseudorapidity of the highestpT

untagged jet|η( ju)| and the transverse energy of the un-
tagged jetET ( ju). Other variables used by the NN in the
2-jet data set are: the absolute value of∆η between the
b-tagged jet and the reconstructedW boson|∆η(b,W)|;
the absolute value of∆η between theb-tagged jet and
the highestpT untagged jet|∆η(b, ju)|; the transverse
momentum of the charged leptonpT(ℓ); the scalar sum
of the transverse momenta of the lepton, jets, andEmiss

T ,
HT(ℓ, jets, Emiss

T ); mT(W); the pseudorapidity of the lep-
ton η(ℓ); the invariant mass of theb-tagged jetm(b);
Emiss

T ; and the invariant mass of the untagged jet and the
b-tagged jetm( jub).

For events with three jets 18 variables are used, the
most discriminating ones being the invariant mass of the
two leading jets,m( j1 j2), m(ℓνb), and the absolute value
of the difference in the pseudorapidity of the leading and
lowest pT jet, |∆η( j1, j3)|. Figure 1 shows distributions
of some of the most discriminating variables in theb-
tagged 2-jet or 3-jet samples, used in both the NN anal-
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Figure 1: Discriminating variables in theb-tagged sample for 2-jet events and 3-jet events. Multijet event yields are determined with data-driven
techniques. Contributions fromW+jets events are derived from simulation and normalised to data in control regions with the method employed in
the cut-based analysis. All other backgrounds and thet-channel signal expectation are normalised to theoreticalcross sections. The last histogram
bin includes overflows. The figures shown are for 2-jet or 3-jet events, respectively: (a), (e) the invariant mass of theb-tagged jet, the charged
lepton, and the neutrino; (b), (f) the scalar sum of the transverse momenta of the lepton, the jets, andEmiss

T ; (c), (g) the absolute value of the
pseudorapidity of the highestpT untagged jet. For 2-jet events Figure (d) shows the absolutevalue of∆η between theb-tagged jet and the highest
pT untagged jet; and for 3-jet events Figure (h) displays the invariant mass of the three selected jets.
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Figure 2: Additional discriminating variables used in the NN analysis for 2-jet and 3-jet events. The rate of multijet events is normalized to the
estimate obtained from the fit to theEmiss

T distributions. All other component distributions are normalised to the result of the maximum-likelihood
fit of the NN output. The last histogram bin includes overflows. The figures shown are, for 2-jet events: (a) invariant mass of the highestpT
untagged jet and theb-tagged jet; (b) transverse mass of the lepton-Emiss

T system; and for 3-jet events: (c) invariant mass of the two leading jets; (d)
absolute value of∆η between the leading jet and the lowestpT jet.

ysis and the cut-based analysis. The variablem( j1 j2 j3)
denotes the invariant mass of all selected jets in the 3-jet
data set. Distributions of additional variables used only
in the NN approach are shown in Figure 2.

The agreement between the background model and
collision data is tested in the large pretag sample for
each input variable used in the analysis, for various ad-
ditional control variables, and the NN output distribu-
tions, which are shown in Figs. 3(a) and (b). In this
control sample, where theb-tagging algorithm has not
yet been applied, theb-tagged jet is substituted by the
most central jet, with the requirement that it is within
|η| < 2.5. Good agreement is found overall, except for
the |η| distribution of the jet with the highest|η| in the
pretag data set for which an additional systematic mod-
elling uncertainty is taken into account (see Section 6).

The NeuroBayes tool combines a three-layer feed-
forward NN with a complex preprocessing of the input
variables. By transforming the variables in the prepro-
cessing step the influence of outliers is largely reduced
and statistical fluctuations are damped. NeuroBayes ap-

plies Bayesian regularisation techniques for the train-
ing process to damp statistical fluctuations in the train-
ing sample and to avoid overtraining. A certain fraction
of simulated events (20%) is not included in the train-
ing sample and is used as an independent test sample to
check that there is no overtraining. The ratio of signal
to background events in the training is chosen to be 1:1,
while the different background processes are weighted
according to the number of expected events.

To extract the signal content of the selected sam-
ple a maximum-likelihood fit is performed to the com-
plete NN output distributions in the 2-jet and 3-jet data
sets (see Section 7). Fitting all bins of the distribution
has the advantage of making maximal use of the signal
events remaining after the event selection, and also al-
lows the background rates to be constrained by the data.
The sensitivity to the background rates is given by the
background dominated region close to zero. The ob-
served NN output distributions scaled to the fit result
are shown in Figs. 3(c) and 3(d) forb-tagged events with
two or three jets, respectively.
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Figure 3: (a) and (b): Neural network output distribution for the pretag sample, including the JES uncertainty on the prediction (hatched region).
The multijet component is normalized to the estimate obtained from the fit to theEmiss

T distributions. All other components are normalised such that
the total number of expected events in the pretag sample is equal to the observed number of events. The ratio beween the data and the total predicted
distributions is also shown. (c) and (d): NN output distribution for the 2-jet and 3-jetb-tagged samples, respectively. All component distributions
are normalised to the result of the maximum-likelihood fit, except for the component of multijet events that is normalized to the estimate obtained
from the fit to theEmiss

T distributions.

Cut-based selection. In the cut-based analysis addi-
tional selections are applied to a subset of five variables
used by the NN analysis:|η( ju)| > 2, HT(ℓ, jets, Emiss

T ) >
210 GeV, and 150 GeV< m(ℓνb) < 190 GeV. The 2-jet
selection requires|∆η(b, ju)| > 1, while the 3-jet selec-
tion requires thatm( j1 j2 j3) is higher than 450 GeV, to
further reduce the largett̄ contribution in this channel.
The selection cuts were chosen in order to increase the
expected significance of thet-channel single top-quark
signal, taking into account systematic uncertainties on
the background estimate [42].

The positive and negative lepton-charge samples
are considered separately, as more single-top quarkt-

channel events are expected in thee+/µ+ samples than
in the e−/µ− samples due to the dominance of valence
u quarks in the proton overd quarks. The 2-jet and 3-jet
data sets are also considered separately.

The signal and background event counts for the pos-
itive and negative lepton-charge samples are given in
Table 2. The observed event yields are consistent with
the SM expectation in each channel. Figure 4(a) shows
the distribution of the lepton charge for events with two
or three jets after the application of all cut-based selec-
tions. Figures 4(b) and 4(c) display the variablem(ℓνb)
for 2-jet and 3-jet events respectively after applying all
selections except for the cut onm(ℓνb). In these fig-

7



Table 2: Event yield for the 2-jet and 3-jetb-tagged positive and negative lepton-charge channels after the cut-based selection. The multijet and
W+jets backgrounds are normalised to observed data in controlregions, all other samples are normalised to theory cross sections. Uncertainties
shown include all sources of systematic errors, summed quadratically and without taking into account possible anticorrelations between systematic
sources and between processes.

Cut-based 2-jet Cut-based 3-jet
Lepton+ Lepton – Lepton+ Lepton –

single-topt-channel 85± 29 39±13 33.6±7.0 14.6±6.2
tt̄, other top 14.0± 6.4 12.8±4.2 10.5±4.2 10.7±7.9
W+light jets 3.3± 1.9 2.0±1.2 0.8±1.3 0.3±0.3
W+heavy flavour jets 39± 11 27.1±7.5 8.7±6.0 3.4±3.1
Z+jets, diboson 1.1± 0.8 1.0±0.8 0.3±0.2 0.2±0.3
Multijet 0.2± 0.2 0.3±0.3 1.5±1.1 3.1±2.0
Total expected 143± 31 83±16 56±10 32±11
S/B 1.5 0.9 1.6 1.0

Data 193 101 53 39

ures, thet-channel single top-quark contribution is nor-
malised to the observed cross section as measured from
the combination of all four channels.

6. Systematic uncertainties

Systematic uncertainties on the normalisation of the
individual backgrounds and on the signal acceptance af-
fect the measured single top-quarkt-channel cross sec-
tion. In the NN analysis the shape of each individual
prediction is also affected; both the rate and the shape
uncertainties are taken into account by generating cor-
related pseudo-experiments. The impact of the system-
atic uncertainties on thet-channel cross-section mea-
surement is estimated from these pseudo-experiments.
The uncertainties can be split into the following cate-
gories:
Object modelling. Systematic uncertainties due to the
residual differences between data and Monte-Carlo sim-
ulation for the reconstruction and energy calibration of
jets, electrons and muons are propagated in the analysis.
The main source of object modelling uncertainty comes
from the jet energy scale (JES), including the modelling
of pile-up, as well asb-jet identification. Other com-
ponents include lepton energy scale and lepton and jet
identification efficiencies. The JES uncertainty has been
evaluated using 2010 data [31]. Additional contribu-
tions to this uncertainty due to the larger pile-up effects
in 2011 data are included and range from less than 1%
to 5% as a function of jetpT andη. For b-quark jets
a JES uncertainty of 0.8% to 2.5%, depending on the
jet pT, is added in quadrature to the JES uncertainty.
Scale factors, determined from collision data [32], are

applied to correct theb-tagging performance in simu-
lated events to match the data. Bothb-jets andc-jets in
simulation use the sameb-tagging scale factors with un-
certainties that depend on thepT andη of the jet. The
uncertainties on the scale factors vary from 10% to 15%
for b-quark jets and from 20% to 30% forc-quark jets.
For light-quark jets the mis-tagging uncertainty ranges
from 20% to 50% as a function of jetpT andη. Other
minor uncertainties are assigned to the reconstruction of
Emiss

T and to account for the impact of pile-up collisions
on Emiss

T . Finally, a systematic uncertainty was also as-
signed to account for temporary failures of parts of the
LAr calorimeter readout during part of the data-taking
period, which was not modelled in the MC samples.
Monte-Carlo generators and PDFs. Systematic uncer-
tainties arising from the modelling of the single top-
quark signal and thett̄ background are taken into ac-
count. The largest contributions come from the mod-
elling of parton showers and hadronisation, estimated
by interchanging the modelling between PYTHIA and
HERWIG, and from the amount of initial-state and
final-state radiation (ISR/FSR), estimated using dedi-
cated AcerMC samples interfaced to PYTHIA where
parameters controlling the ISR/FSR emission are var-
ied in a range3 consistent with those used in the Peru-
gia Hard/Soft tune variations [43]. The uncertainty due

3 The default PYTHIA values of these parameters are : PARP(67)
= 4.0 and PARP(64)= 1.0 for ISR and PARP(72)= 0.192 GeV,
PARJ(82)= 1.0 GeV for FSR. To decrease (increase) ISR, the param-
eters PARP(67) and PARP(64) are set to 0.5 and 4.0 (6.0 and 0.25), re-
spectively. To decrease (increase) FSR, the parameters PARP(72) and
PARJ(82) are set to 0.096 GeV and 2.0 GeV (0.384 GeV and 0.5 GeV),
respectively. Samples of simulated events are produced with six dif-
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Figure 4: (a) Distribution of the lepton charge after the full cut-based selection for 2-jet and 3-jet events. (b,c) invariant mass of theb-tagged jet,
the charged lepton, and the neutrino,m(ℓνb), for theb-tagged sample for 2-jet (b) and 3-jet (c) events after applying all cut-based selections except
for the cut onm(ℓνb). In all three distributions thet-channel single top-quark contribution is normalised to the observed cross section obtained with
the cut-based analysis. The last histogram bin includes overflows.

to the choice of the single top-quarkt-channel signal
generator is estimated from the difference between Ac-
erMC and MCFM predictions [44]. The modelling un-
certainty for thett̄ background is evaluated by compar-
ing the generators MC@NLO and POWHEG [45, 46]
(with HERWIG showering). For theW+jets back-
ground a shape uncertainty is assigned based on the
variation of the choices of the matching scale and of
the functional form of the factorisation scale in ALP-
GEN. Systematic uncertainties related to the parton dis-
tribution functions are taken into account for the signal
and for all background processes which are modelled
by simulated events. In addition to the nominal PDF set
the alternative MSTW2008nlo68cl [47] and CTEQ6.6
PDF sets are investigated. Events are reweighted ac-
cording to each of the PDF uncertainty eigenvectors and
the total uncertainty is evaluated following the proce-
dure described in Ref. [36]. An additional uncertainty
is assigned for the mis-modelling of jets in the forward
|η| regions. A weight function is derived from the pre-
tag sample by dividing the observed|η| distribution in
data by the distribution obtained from simulated events,
for 2-jet and 3-jet events. The event weights defined in
this way are then applied to all simulated samples in the
b-tagged data set. The systematic uncertainty is derived
from the one-sided difference between the weighted and
the nominal samples. The impact of using simulation
samples of limited size is also taken into account.
Theoretical cross section normalisation. Thett̄, single-
top quark Wt- and s-channel backgrounds are nor-
malised to their theory predictions with theoretical un-
certainties of+7

−10%, 7% and 4%, respectively [48, 10,

ferent sets of parameters settings: ISR increased (decreased), FSR
increased (decreased), and a simultaneous increase (decrease) of ISR
and FSR.

11]. The uncertainty on the diboson background is
5% [38].

Background normalisation to data. The multijet back-
ground estimate has an uncertainty of 50%. The NN
analysis places an uncertainty of 50% on the rate of
events withW+heavy flavour jets and 30% on the rate
of W+light jets events. These uncertainties are used
as constraints on the predictions when simultaneously
determining theW+jets rates and the signal cross sec-
tion. The cut-based analysis does not apply a global un-
certainty on theW+heavy flavour andW+light flavour
rates, but considers separately the impact of the domi-
nant sources of uncertainty on the data-derivedW+jets
normalisation factors. This treatment allows the correla-
tion between each component of uncertainty on the nor-
malisation factors and the uncertainties on theW+jets
rates to be taken into account. TheZ+jets background
normalisation has an uncertainty of 60%.

Luminosity. The uncertainty on the integrated luminos-
ity is 3.7% [13, 14].

Table 3 shows the contribution of each source of un-
certainty to the total uncertainty on the measuredt-
channel cross section (∆σobs/σobs) for the neural net-
work analysis and for the cut-based analysis.

7. Cross section measurements

Both the cut-based and neural network analyses em-
ploy a maximum-likelihood fit method to measure the
single top-quarkt-channel cross section. The general
likelihood function is given by the product of the Pois-
son likelihoods in the individual channels. The back-
ground rates are constrained by Gaussian priors. We
use the following equations:
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Table 3: Breakdown of the contribution of each source of uncertainty
to the total uncertainty of the measuredt-channel cross section in data
for the NN analysis and the cut-based analysis. Theoreticaluncertain-
ties are included in the “Other backgrounds” uncertainty category.

∆σobs/σobs [%]
Source NN Cut-based

Data statistics ±5 ±8
Object modelling

Jets ±6 +3/–4
b-tagging efficiency ±13 ±12
Mistagging rate ±1 ±1
Lepton ±2 ±4
Emiss

T , calorimeter readout ±2 ±2
Monte-Carlo

PDF ±3 ±4
Generator ±4 ±7
Parton shower ±5 ±11
ISR/FSR ±14 +19/–18
Forward jet modelling +6/–4 +7/–5
MC statistics ±3 ±4

Background normalisation
Multijets ±4 ±2
Other backgrounds ±1 ±6

Luminosity ±4 ±4

Total systematic uncertainties+24/–23 +30/–27
Total uncertainty ±24 +31/–28

L(βs; βb
j ) =

M
∏

k=1

e−µk · µnk

k

nk!
·

B
∏

j=1

G(βb
j ; 1,∆ j) with

µk = µ
s
k+

B
∑

j=1

µb
jk , µ

s
k = β

s·ν̃s·αs
k , and µb

jk = β
b
j ·ν̃ j·α jk ,

whereM is the number of channels andB the number
of background processes. The cut-based analysis uses
M = 4 channels separated by lepton charge and the
number of jets, while in the NN-based analysisM is
equal to 28, namely the number of bins of the NN dis-
criminant in the 2-jet channel plus the number of bins of
the NN discriminant in the 3-jet channel. Here ˜νs andν̃ j

are, respectively, the predicted number of signal events
and the number of events of backgroundj in the selected
data set. The number of observed (expected) events in
channelk is denoted bynk (µk). The expected number of
events in channelk is µs

k for the signal andµb
jk for each

backgroundj. The fraction of events falling in channel

k is given byαs
k andα jk for signal and background re-

spectively. For the NN-based analysis the sets ofαs
k and

α jk constitute the probability densities (shapes) of the
NN discriminants. The scale factorsβs for signal andβb

j
for the backgrounds are the parameters of the likelihood
function that are fitted to the data. The Gaussian con-
traints on the background scale factors,∆ j, are set to the
theoretical cross section uncertainty for all background
processes that do not use data-based estimates (tt̄, Wt,
s-channel and diboson), whileW+jets backgrounds are
constrained within their data-derived uncertainties. The
multijet background is fixed to the value estimated from
data.

The systematic uncertainties on the cross section
measurement are determined using a frequentist method
based on a large number of pseudo-experiments. For
each pseudo-experiment the expectation values of the
backgrounds ˜ν j and of the signal ˜νs as well as the rel-
ative distribution of events across the channels (αs

k and
α jk) are varied including all sources of uncertainties de-
scribed in Section 6 and thet-channel cross section is
measured with the maximum-likelihood fit. The distri-
bution of measured cross sections is an estimator of the
probability density function of all possible outcomes of
the measurement and it is used to estimate the uncer-
tainty on the actual measurement.

The NN-based analysis yields, from a simultaneous
measurement in the 2-jet and 3-jet channels, a cross sec-
tion of

σt = 83± 4 (stat.) +20
−19 (syst.) pb= 83± 20 pb.

The significance of the observed signal corresponds to
7.2 standard deviations (6.0 expected). This is com-
puted using as a test statistic theQ-value, which is de-
fined as the ratio of the value of the likelihood function
maximized for the Standard Model signal cross section
to the value of the likelihood function maximized for
zero signal.

The cut-based analysis measures, by combining four
different channels (positive and negative lepton charge,
with two and three jets) a cross section ofσt =

92+29
−26 pb, in good agreement with the NN-based mea-

surement. The separation of candidate events according
to the lepton charge allows individual measurements of
the top-quark and top-antiquark cross sections, yield-
ing the resultsσ(t) = 59+18

−16 pb andσ(t̄) = 33+13
−12 pb,

that can be compared to the theoretically predicted cross
sections of 41.9+1.8

−0.8 pb and 22.7+0.9
−1.0 pb, respectively [9].

To test the compatibility, the two measurements from
the NN-based and cut-based analyses are combined
using the Best Linear Unbiased Estimator (BLUE)
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method [49]. The correlation coefficient of the two anal-
yses is 75% and was determined with ensemble tests
including all systematic uncertainties. Based on the en-
semble tests the two results are found to be compatible
within one standard deviation. However, the combined
result and its uncertainty for the observed cross section
measurement does not significantly differ from the re-
sult obtained with the NN analysis alone.

8. Vtb measurement

Single top-quark production in thet-channel pro-
ceeds via aW-t-b vertex and the measured cross section
is proportional to|Vtb|2, whereVtb is the relevant CKM
matrix element. In the Standard Model|Vtb| is close to
one, but new physics contributions could alter its value
significantly.

The|Vtb|measurement is independent of assumptions
about the number of quark generations or about the uni-
tarity of the CKM matrix. The only assumptions re-
quired are that|Vtb| ≫ |Vtd|, |Vts| and that theW-t-b inter-
action is an SM-like left-handed weak coupling. There-
fore, the tt̄ background rate is unaffected by a varia-
tion of |Vtb| since decays to a potential higher genera-
tion are prohibited by kinematics. On the other hand,
rates of single-top quarkWt ands-channel backgrounds
also scale with|Vtb|2, but their contributions are small in
the signal region that drives the maximum-likelihood fit
measurement. The resulting variation on the total top-
quark background yield is less than its systematic un-
certainty and thus considered negligible.

The value of|Vtb|2 is extracted by dividing the ob-
served single top-quarkt-channel cross section, mea-
sured using the NN method, by the SM expecta-
tion [9]. The experimental and theoretical uncertain-
ties are added in quadrature. The result obtained is
|Vtb| = 1.13+0.14

−0.13 (exp.) ± 0.02 (theo.) = 1.13+0.14
−0.13. Re-

stricting the range of|Vtb| to the interval [0, 1], as re-
quired by the SM, a lower limit on|Vtb| is extracted:
|Vtb| > 0.75 at the 95% confidence level.

9. Conclusion

In summary, we present a measurement of the cross
section of single top-quark production in thet-channel
with the ATLAS detector inpp collisions at

√
s =

7 TeV. The measurement is based on a neural network
discriminant separating signal events from background
and yields a cross section of 83±20 pb. The correspond-
ing coupling at theW-t-b vertex is|Vtb| = 1.13+0.14

−0.13 and
the 95% confidence level lower limit on the CKM ma-
trix element|Vtb| is 0.75.
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D. Levin86, L.J. Levinson170, M.S. Levitski127, A. Lewis117, G.H. Lewis107, A.M. Leyko20, M. Leyton15, B. Li82,
H. Li171,s, S. Li32b,t, X. Li86, Z. Liang117,u, H. Liao33, B. Liberti132a, P. Lichard29, M. Lichtnecker97, K. Lie164,
W. Liebig13, C. Limbach20, A. Limosani85, M. Limper62, S.C. Lin150,v, F. Linde104, J.T. Linnemann87, E. Lipeles119,
L. Lipinsky124, A. Lipniacka13, T.M. Liss164, D. Lissauer24, A. Lister49, A.M. Litke136, C. Liu28, D. Liu150, H. Liu86,
J.B. Liu86, M. Liu32b, Y. Liu32b, M. Livan118a,118b, S.S.A. Livermore117, A. Lleres55, J. Llorente Merino79,
S.L. Lloyd74, E. Lobodzinska41, P. Loch6, W.S. Lockman136, T. Loddenkoetter20, F.K. Loebinger81, A. Loginov174,
C.W. Loh167, T. Lohse15, K. Lohwasser48, M. Lokajicek124, J. Loken117, V.P. Lombardo4, R.E. Long70, L. Lopes123a,
D. Lopez Mateos57, J. Lorenz97, N. Lorenzo Martinez114, M. Losada161, P. Loscutoff14, F. Lo Sterzo131a,131b,
M.J. Losty158a, X. Lou40, A. Lounis114, K.F. Loureiro161, J. Love21, P.A. Love70, A.J. Lowe142,e, F. Lu32a,
H.J. Lubatti137, C. Luci131a,131b, A. Lucotte55, A. Ludwig43, D. Ludwig41, I. Ludwig48, J. Ludwig48, F. Luehring60,
G. Luijckx104, W. Lukas61, D. Lumb48, L. Luminari131a, E. Lund116, B. Lund-Jensen146, B. Lundberg78,
J. Lundberg145a,145b, J. Lundquist35, M. Lungwitz80, G. Lutz98, D. Lynn24, J. Lys14, E. Lytken78, H. Ma24, L.L. Ma171,
J.A. Macana Goia92, G. Maccarrone47, A. Macchiolo98, B. Maček73, J. Machado Miguens123a, R. Mackeprang35,
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