
C
ER

N
-T

H
ES

IS
-2

00
9-

25
9

Abstract

The field of high energy physics is on the verge of several remarkable scientific
breakthroughs due to the imminent startup of the Large Hardron Collider
(LHC) at CERN. This machine will provide proton collisions at 14 TeV –
an energy scale that no other man–made accelerator could reach so far and
thus allowing a deeper insight into the smallest particles of which matter
is composed as well as better understanding of the creation of the universe
itself.

The energy scale of the accelerator is by far not the only unique thing
about this extraordinary machine. The data that will be produced by the
LHC amounts to 15 petabytes (15 million gigabytes) per year. This posed
and still poses a challenge not only for all software used to reconstruct the
collisions (events), be it the trigger, that will decide if an event is kept for fur-
ther reconstruction or discarded, or the reconstruction algorithms themselves
but also for the storage of the accumulated data.

This work starts giving a general overview over CERN and the LHC
collider, zooming then inwards, introducing one of the LHC experiments,
namely the CMS detector, in greater detail. Moving in further, the trig-
ger software handling the decision about whether to keep events or not is
presented. Finally the core of the work, the presentation and performance
studies of a vertex reconstruction algorithm, the Multi Vertex Fitter (MVF)
for the CMS inner tracker is introduced. Implemented optimizations in this
algorithm are presented, their effects on the performance of the algorithm
are discussed and compared to another already well–tested reconstruction
algorithm, the Adaptive Vertex Reconstructor (AVR).

Alltough a considerable increase in the performance of the MVF algorithm
could be obtained it will be shown that this algorithm cannot be better
than the already very well–working AVR. Nevertheless, the MVF delivers an
output that is at least in some settings comparable to the AVR.

1

Kurzfassung

Die bevorstehende Inbetriebnahme des bislang größten Teilchenbeschleunigers,
des Large Hadron Collider (LHC), wird zu wesentlichen Erkenntnissen im
Gebiet der Hochenergiephysik führen. Diese einzigartige Maschine wird Pro-
tonen mit einer Energie von je 7 TeV zur Kollision bringen und bewegt sich
damit in einem Energieniveau, das kein von Menschenhand gebauter Be-
schleuniger je erreicht hat. Dadurch wird nicht nur ein tieferer Einblick in
den Aufbau der Materie möglich, sondern es werden auch wesentliche Infor-
mationen über die Entstehung des Universums zugänglich sein.

Neben den nie dagewesenen Energien, die im LHC erzeugt werden, war
und ist auch die Verarbeitung und Speicherung der anfallenden Daten eine
Herausforderung an die beteiligten Wissenschaftler. Das von LHC erzeugte
Datenvolumen beläuft sich auf 15 Petabyte (15 Millionen Gigabyte) pro Jahr.
Sowohl die zur Auswahl interessanter Kollisionen (Events) verwendeten Algo-
rithmen als auch die verwendeten Rekonstruktionsalgorithmen müssen enorm
schnell und hoch effektiv sein um die für die Physik interessanten Events zu
gewinnen.

Die vorliegende Arbeit gibt als Einleitung einen Überblick über den Be-
schleuniger selbst und beschreibt dann den Aufbau und die verwendeten De-
tektortechnologien eines der vier großen Experimente – des Compact Muon
Solenoid (CMS) Experiments. Darauf folgt ein kurzer Überblick über die
Triggersoftware, die die Entscheidung trifft, ob ein Event zur weiteren Rekon-
struktion behalten wird oder nicht. Nach einer kleinen, allgemeinen Einführung
in das Gebiet der Statistik wird dann der Kern der Arbeit, die Präsentation
und schrittweise Optimierung eines Algorithmus (des Multi Vertex Fitters
– MVF) zur Rekonstruktion von Vertices, erreicht. Die Ergebnisse werden
mit denen eines bereits gut funktionierenden Rekonstruktionsalgorithmus,
des Adaptive Vertex Reconstructors (AVR), verglichen und auf dieser Basis
evaluiert.

2

Contents

1 Introduction 5
1.1 The Large Hadron Collider (LHC) 5

1.1.1 The accelerator chain - from source to collision 6
1.1.2 The Beam . 8

1.2 The CMS Experiment . 9
1.2.1 The Inner Tracker . 9
1.2.2 The Calorimetry . 11
1.2.3 The Solenoid . 15
1.2.4 The Muon Chambers 16

2 Data Analysis 18
2.1 Collisions - What now? . 18
2.2 Online Analysis . 18

2.2.1 Event Selection - The CMS Trigger 18
2.3 Offline Analysis . 22

2.3.1 CMS Software . 22
2.4 Simulation . 25

2.4.1 Why Simulation? . 25
2.4.2 CMS Software . 26
2.4.3 Frameworks and data used in this Thesis 26

3 Vertex Fitting 29
3.1 A Little Statistics . 29

3.1.1 Definitions . 29
3.1.2 Parameter Estimation 34

3.2 Mode Finding . 41
3.2.1 Algorithms for mode finding in one dimension 41
3.2.2 Algorithms for mode finding in three dimensions 42

3.3 Vertex Finding . 42
3.4 Vertex Fitting . 45

3

4 Optimization of the Multi Vertex Fitter 51
4.1 The Multi Vertex Fitter . 51

4.1.1 The Algorithm . 51
4.1.2 Implementation of the Multi Vertex Fitter 52

4.2 Performance Studies . 53
4.3 The Original Algorithm . 54
4.4 Inclusion of Beamspot Constraint 57

4.4.1 Performance Studies 57
4.5 Comparison of Different Seeding Algorithms 57

4.5.1 Performance Studies 62
4.6 Test of the MBS Seeding Algorithm 62
4.7 Inclusion of the Ghost Track Formalism 68

4.7.1 Performance Studies 68
4.7.2 Adjustment of the σcut 73

5 Conclusion 76

4

Chapter 1

Introduction

1.1 The Large Hadron Collider (LHC)

At the European Nuclear Research Center (Conseil Européen pour la Recherche
Nucléaire — CERN) in Geneva, Switzerland, the probably most important
particle accelerator has been constructed — the Large Hadron Collider, which
has gone in operation for the first time in September 2008. It is going to pro-
duce data in an energy region exceeding the highest energy level reached by
any other man-made accelerator so far. This introduction will give a short
insight into the requirements and efforts made in order to make this extraor-
dinary machine possible. The interested reader is referred to [5, 15, 26] or
[27] for more details.

The LHC reuses the tunnel of the former LEP (Large Electron Positron)
collider, located 50 – 175 m underground. It has a circumference of 27 km
spanning nearly from Mount Jura (France) to Lac Leman (Switzerland)
(Fig. 1.1).

Unlike LEP, where electrons and positrons were accelerated, LHC uses
two counter rotating beams of protons or, alternatively, lead ions. The pro-
tons are accelerated to an energy of 7 TeV per beam, resulting in a center
of mass energy of 14 TeV (lead ions: 1150 TeV at center of mass). At this
energy the protons are traveling with 99.999999 % of the speed of light. In
order to achieve this velocity, the protons are preaccelerated in the already
existing preacceleration chain of CERN (Fig. 1.3), discussed in the follow-
ing subsection. All the information presented in the following subsection are
taken from [35].

5

Figure 1.1: Location of the LHC (Source: http://www.phys.ufl.edu/

~matchev/LHCJC/lhc.html)

1.1.1 The accelerator chain - from source to collision

The protons are generated using a dual plasma source [35] (Fig. 1.2). The
source ionizes hydrogen, leaving a proton plasma which is then ejected with
90 kV into the RFQ (radio frequency quadrupole).

The RFQ is basically a linear collider of 1.75 m length, that focuses the
protons (using electrical quadrupoles) and accelerates them to an energy of
750 keV. The protons are then injected into the LINAC2, a linear accelera-
tor (30 m length), after which they reach the first circular accelerator, the
Proton Synchrotron Booster (PSB), at an energy of 50 MeV. After being ac-
celerated to 1.4 GeV, they are injected into the Proton Synchrotron (PS) and
then (at 25 GeV) into the SPS (Super Proton Synchrotron). The SPS has a
circumference of 6912 m and is able to accelerate the protons to an energy
of 450 GeV. Via two transfer lines, the protons are finally fed into the LHC.
For further details on the accelerator chain see Fig. 1.3 and [35].

6

Figure 1.2: The dual plasma source (left) and a schematic drawing of it
(right). (Source: [35])

Figure 1.3: The accelerator complex at CERN (Source: http://public.

web.cern.ch/Public/en/Research/AccelComplex-en.html)

7

1.1.2 The Beam

At the LEP accelerator a single beam tube for the electrons and positrons
was sufficient, since these particles are of equal mass and opposite charge.
The LHC has to use two separate beam tubes, one for each proton beam
(Fig. 1.4).

Figure 1.4: An LHC dipole with two beam pipes (Source: http:

//mediaarchive.cern.ch/MediaArchive/Photo/Public/1998/9809007/

9809007/9809007-Icon.jpg)

Electrons are much smaller than protons and can be regarded as pointlike
particles, so electron/electron (as well as electron/positron) collisions always
are head-on collisions. Protons on the other hand do have an intrinsic struc-
ture, so it is not granted that every collision is a hard (head-on) one. The
direct consequence is that not every collision is interesting for physics anal-
ysis — the relevant ones have to be filtered out. To increase the probability
for a head-on collision, the beam is focused to 16µm at the interaction point
(IP).

The main reason for the LHC using protons is that the effect of syn-
chrotron radiation is inversely dependent on the mass (∝ m−4). Due to their
small mass, synchrotron radiation is the main effect for energy loss of elec-
trons. The center of mass energy of the LHC would be impossible to reach by
accelerating electrons in a circular collider. For protons, the energy loss due
to synchrotron radiation in a ring is smaller by a factor of O(1013). Therefore
protons can be accelerated to far higher energies.

To keep the beam focused and bent, 1104 superconducting dipole mag-
nets, operating at a temperature of 1.9 K and providing a field of 8.4 T, as
well as 736 quadrupole magnets are used along the beam line.

When referring to a beam of protons, one has to keep in mind that the
beam is not continuous. It consists of 2808 proton bunches, spaced with

8

25 ns. Each bunch contains the amount of 1.15 ∗ 1011 protons. The bunches
cross at the IP at a rate of 4 ∗ 107 times per second. Since not all bunches
are filled, an effective event rate of 32 MHz is obtained.

Those facts were a real challenge since not only new solutions for treating
such an enormous amount of data had to be found, but also the design of
a detector fit for working under such harsh conditions as well as materials
chosen for detector and electronics were no simple matter. The next section
and chapters will illustrate how these challenges were met.

1.2 The CMS Experiment

The goal of collider experiments is to measure the energies and momenta of
the particles created in the collisions. These quantities have to be extracted
from the detector data e. g. the momenta of charged particles are computed
from the curvature of the particle tracks in a magnetic field. Since this
curvature becomes smaller with higher energy, it is crucial to measure the
tracks as accurately as possible. Huge detectors, mostly in cylindrical form,
are needed to measure all the created particles in sufficient detail. The CMS
Detector (Fig. 1.5) described here has such a cylindrical form, with a length
of 22 m and a diameter of 15 m. It weighs approximately 12 500 t. In the
following subsections the subdetectors (inner tracker, calorimeters, solenoid,
muon chambers) of the CMS Experiment and the technologies used for them
are presented. In [8, 9] the CMS experiment is discussed in greater detail.

1.2.1 The Inner Tracker

The inner tracker is closest to the IP. Its purpose is to detect all the charged
particle tracks originating at the primary and all secondary vertices in its
volume with the highest possible resolution.

The CMS inner tracker is 5.8 m long and has a diameter of 2.5 m. The
detector consists of several layers of high resolution semiconductive silicon
detectors. They are radiation hard, and since they are based on the same
production process as microchips, the detectors are quite easy and cheap to
produce compared to other detector technologies used in CMS.

The innermost three layers of the CMS inner tracker barrel consist of
pixel detectors (Fig. 1.7). The next four layers form the inner barrel with two
double-sided and two single-sided silicon strip detectors, and the outermost
six layers form the outer barrel, with again two double-sided and four single-
sided silicon strip detectors. The endcaps consist of two discs with pixel
detectors and ten discs with silicon strip detectors (Fig. 1.6).

9

Figure 1.5: Overview of the CMS experiment (Source: http:

//esmane.physics.lsa.umich.edu/wl/umich/phys/um-cern-reu/2004/

20040805-umwlap002-08-wagner/real/sld003.htm)

Figure 1.6: Cross section of one inner tracker barrel quarter and an endcap
half. Double-sided silicon strip detectors are depicted in blue, the single-sided
ones in red. (Source: http://www.ba.infn.it/~zito/cms/tvis.html)

10

Figure 1.7: The CMS pixel detector. (Source: http://cmsinfo.cern.ch/

outreach)

With a total of 1440 pixel detector modules and 15148 strip detector
modules (∼= 200 m2 of active silicon) it is the largest silicon tracker ever
built.

Figure 1.8: A single pixel detector (left) and a closeup of a silicon strip
detector from an endcap disc (right). (Sources: http://cmsinfo.cern.ch/

outreach and [23])

1.2.2 The Calorimetry

In the calorimeters the energy of the incoming particles is measured by com-
plete absorption. In a high energy physics experiment, two different types of
calorimeters are used — the electromagnetic and the hadronic calorimeter.

The Electromagnetic calorimeter

The electromagnetic calorimeter (ECAL) detects photons as well as electrons
and positrons. When these particles enter the calorimeter, they create an

11

electromagnetic cascade or shower (Fig. 1.9). Electrons (and positrons) that
enter the dense material of the calorimeter emit bremsstrahlungsphotons.
These photons can then create electron/positron pairs if they have enough
energy (more than 1.022 MeV) which will again emit bremsstrahlungspho-
tons. The shower stops if the energy of the photons falls below the threshold
for pair production. A photon that enters the calorimeter immediately starts
the showering with pair production.

Figure 1.9: Schematic drawing of an electromagnetic shower. (Source: [24])

In CMS the ECAL is made of 80 000 PbWO4 monocrystals (Fig. 1.10).
These scintillating crystals have a short radiation length (0.89 cm), a small
molière radius (2.2 cm) and a high density (8.28 g/cm3) making the calorime-
ter very compact. Furthermore PbWO4 is very radiation hard although the
crystals get opaque when exposed to radiation. The reason for this are color
centers forming inside the crystals which absorb a part of the transmitted
light. At a temperature of 18◦C1 these centers anneal again establishing an
equilibrium in optical transmission depending on the dose rate. The change
in optical transmission will be 1 to 2 % in the barrel at low luminosity and a
few 10 % in the endcaps at high luminosity. To account for the performance
loss due to the behavior of the crystals, the optical properties of the crystals
are monitored via a light-injection system. This system sends laser pulses
via optical fibers into the crystals and measures their optical transmittance.

1This is the working temperature of the calorimeter.

12

Figure 1.10: A single PbWO4 crystal (left) and a module of crys-
tals (right). (Sources: http://cmsinfo.cern.ch/outreach and
http://doc.cern.ch//archive/electronic/cern/others/PHO/

photo-cms/oreach//oreach-2005-003_08.jpg)

Figure 1.11: Crystal modules in the detector. (Source: http:

//doc.cern.ch//archive/electronic/cern/others/PHO/photo-cms/

oreach/oreach-2006-019.jpg)

13

The Hadronic calorimeter

The second calorimeter is the hadronic calorimeter (HCAL). It absorbs the
hadrons created in the collisions by creating a hadron shower. This shower is
much more complex than its electromagnetic equivalent, because more types
of interactions are occurring. Since exploiting these in greater detail would
exceed the scope of this thesis the interested reader is referred e. g. to [24]
for more information.

The CMS detector uses a sampling calorimeter (Fig. 1.12 and 1.13). In
this type of calorimeter the absorbing and the active detector layers are
arranged alternately. The absorbers are solid copper (thickness of each ab-
sorber: 50 mm) and the active detector layers are made of scintillators (thick-
ness of each scintillator: 4 mm).

The HCAL needs to be thick enough to contain the entire hadronic
shower. The design of CMS is such that both calorimeters are fitted inside
a solenoid magnet (see next section). Since copper has a very high density,
most of the showers are contained in the calorimeter although its width is
limited by the size of the magnet. Nevertheless, especially in the central
region of the CMS detector the thickness of both calorimeters together is
not enough to stop the particles. Therefore an outer (outside the solenoid)
hadronic calorimeter exists. This outer detector is a scintillator embedded
in the first layer of the return yoke using the solenoid as absorber.

Figure 1.12: The single wedges of the HCAL (left) and the wedges in
the HCAL barrel (right). (Source: http://doc.cern.ch//archive/

electronic/cern/others/PHO/photo-cms/hcal/hcal-2003-009.jpg

and http://doc.cern.ch//archive/electronic/cern/others/PHO/

photo-cms/hcal/hcal-2002-007.jpg)

14

Figure 1.13: Whole HCal barrel. (Source: http://doc.cern.ch//archive/
electronic/cern/others/PHO/photo-cms/hcal/hcal-2005-001.jpg)

1.2.3 The Solenoid

As said before, one of the most important characteristics of a particle is its
momentum. In order to measure it, a strong magnetic field is crucial. In
CMS the magnetic field is provided by a gigantic superconducting solenoid
(Fig. 1.14 (left)). It is the largest superconducting solenoid ever built, with
a length of 12.5 m, a diameter of 6 m and a weight of 220 t. It is cooled with
liquid helium to 3 – 4 K and provides a magnetic field of 4 T in its center.
The solenoid is supported by the middle ring of the magnet (or return) yoke
(Fig. 1.14 (right)). The yoke consists of five iron rings (Fig. 1.15) and two
endcaps with three discs each. It has a mass of 10 000 t.

Figure 1.14: The superconducting solenoid (left) is held by a yoke ring (right).
(Source: http://cmsinfo.cern.ch/outreach)

15

Figure 1.15: One of the five yoke rings. (Source: http://cmsinfo.cern.

ch/outreach)

1.2.4 The Muon Chambers

Muons are the only detectable particles that are able to traverse both calorime-
ters. They are heavier than electrons and therefore the probability for an
interaction via emission of bremsstrahlung is much lower, but it increases
with the thickness of the traversed material. Therefore, the muon chambers
are the outermost and hence the largest part of the CMS detector. They are
embedded in the rings of the magnet yoke.

Three different types of detectors are used in the experiment: Drift tubes
(DT) (Fig. 1.16 left) and Resistive Parallel Plate Chambers (RPC) (Fig. 1.16
right) are used in the barrel region, and Cathode Strip Chambers (CSC)
(Fig. 1.16 middle) as well as RPCs are used in the endcaps.

16

(a) (b)

(c)

Figure 1.16: The drift tubes (a), the cathode strip chambers (b) and the
resistive parallel plate chambers (c). (Source: http://cmsinfo.cern.ch/

outreach)

17

Chapter 2

Data Analysis

2.1 Collisions - What now?

The creation of the accelerated particles and the detection of the particles
produced in events was discussed in the previous chapter. This chapter will
give an overview how events interesting for physics (e.g. creation of particles
or jets with high transverse energies) are selected and how they are recon-
structed and analyzed to gain the desired physics information. In CMS, the
selection of an interesting event is done in real time via a trigger system
consisting of two different steps, using algorithms that need to fulfill differ-
ent requirements than those used in offline reconstruction. CMS software
frameworks are presented that provide not only the algorithms for online
and offline reconstruction, but also the tools for full as well as fast event
simulation. The final section of this chapter will briefly present the different
simulation possibilities of the CMS software and will show the importance of
simulation in high energy physics.

2.2 Online Analysis

2.2.1 Event Selection - The CMS Trigger

Due to the intrinsic structure of protons not all collisions are going to be hard
(head-on) ones. Since only those are interesting to physics analysis, a filter is
needed that discards the unwanted and keeps the interesting events. This has
to be done in real time at a rate of ≈ 40 MHz and therefore fast algorithms
are needed that provide a minimum dead-time as well as maximum flexibility
for new and hence unforeseen physics events. The filter used in CMS is the
so-called trigger (Fig. 2.1). It is organized into two steps:

18

• a hardware implemented Level 1 trigger, using low level analysis on
custom processors, and

• a High Level Trigger, which is a software filter executed in a multi-
processor farm.

Figure 2.1: Structure of the CMS trigger and DAQ system (Source: [6])

Both trigger systems do not use the whole detector information of the
event to reach their decision whether to keep an event for further analysis or
not. Instead they use selective information coming from all subsystems of the
CMS detector. The trigger then relates this information to physics objects.
There are four basic objects that are already defined at Level 1 which the
trigger uses to make its decision:

a) electrons/photons

b) muons

c) τ - jets

d) jets combined

For a detailed discussion and performance studies the reader is referred to [2,
14].The two steps of event selection are now briefly discussed in the following
section. For further details see [13].

19

Level 1 Trigger

The Level 1 (LV1) Trigger (Fig. 2.2) reduces the data by a factor of O (1000)
from 40 MHz to 100 kHz, needing 3µs of latency for each decision. It consists
of three major subsystems

1. LV1 muon trigger

2. LV1 calorimeter trigger

3. LV1 global trigger

The LV1 muon trigger itself consists of four further subsystems, three rep-
resenting each one of the three different muon detectors used in CMS (see
previous chapter), and one global muon trigger. This global muon trigger
combines all the information from the three subsystems into consistent data
and sends this information to the LV1 global trigger.

The LV1 calorimeter trigger consists of a local, a regional and a global
trigger. The local calorimeter trigger computes the energy deposit in the
different calorimeter sections. The regional calorimeter trigger (RCT) uses
the output of the local trigger and finds electron and positron candidates
as well as candidates for jets and isolated hadrons. It also calculates the
transverse energy sums. The RCT transmits the sums and the candidates to
the global calorimeter trigger (GCT). It computes the total transverse energy,
the total missing energy and jet multiplicities for different thresholds. The
information obtained by the GCT is then passed on to the global LV1 trigger.

The LV1 global trigger decides if an event is accepted or discarded and
generates the corresponding L1 Accept signal (L1A) in the first case. It
reaches its decision by synchronizing the data coming from the subsystems at
different times and runs up to 128 algorithms in parallel. The final acceptance
decision is a logical combination of the data sent by the global muon and
calorimeter triggers. The trigger decision is sent to all detector subsystems
and readout systems.

All the data used by the Level 1 trigger, the complete event data as well
as all trigger objects, even those not responsible for the L1A are transmitted
to the Data Acquisition system (DAQ) where they are stored temporarily for
further processing.

High Level Trigger

The High Level Trigger (HLT) is a software filter running on a farm consisting
of a cluster of about 7200 PCs, each using dual quadcore processors. It
reduces the event rate once again by a factor of O (1000), leaving an output

20

Figure 2.2: Schematic drawing of the LV1 trigger (Source: [6])

of 102 Hz that has to be stored for further physics analysis. The CPU time
available to reach a HLT decision is about 1 s.

Since nearly all of the events discarded by the HLT are lost forever to
analysis (few discarded events are kept to monitor the performance of the
HLT), the requirements the HLT has to fulfill are high efficiency and high
acceptance for possible unexpected situations. The algorithms used must
therefore be able to reconstruct the events with nearly equal or equal quality
as the offline software, which consumes a considerable amount of processing
time. In order to save CPU time, the algorithms used reconstruct the event
regionally and conditionally. This means that the events are reconstructed
only in regions already considered interesting by the LV1 trigger, and that
the reconstruction is stopped as soon as enough information has been gained
to discard the event. This way it is possible to reject an event as fast as
possible without sacrificing the quality of the reconstruction.

Because the HLT is not really a multi-level filter executed in several levels
but is executed on a single processor farm there is no sharp distinction be-
tween a Level 2 (LV2) and a Level 3 (LV3) trigger. Nevertheless it is common
to speak of a LV2 or LV3 at the HLT.

By convention Level 2 refers to algorithms based on the faster subdetec-
tors, e.g. the muon chambers and the calorimeters, while Level 3 refers to

21

the full reconstruction of tracks in the tracker. Since CPU time is a key issue
here and reconstruction of the total tracker information consumes a lot of
time due to the high number of channels and the resulting complex pattern
recognition, it is reasonable to use only partial information of the tracker.
Algorithms that do so are referred to as Level 2.5.

Once an event is accepted by the HLT, it is stored for offline physics
analysis. All stored events are tagged to indicate the reason of its selection
in order to aid the offline reconstruction algorithms.

2.3 Offline Analysis

The process of offline analysis reconstructs all the events selected by the trig-
ger delivering as output the desired physics results. All detector information
is used to build the total event, and since the data analyzed is stored perma-
nently the execution time of the algorithms used is not as important as in the
online reconstruction. The results obtained by the offline reconstruction are
interpreted and taken into account to verify or falsify theories and therefore
an excellent performance and reconstruction quality is crucial.

In the subsequent section the software frameworks used in CMS offline
event reconstruction are presented and discussed.

2.3.1 CMS Software

Since the development of the CMS software framework started about a decade
ago, the algorithms provided by this framework were first based on FOR-
TRAN. Today all of the framework is implemented in the object orientated
language C++, although the FORTRAN based simulation tool CMSIM is
still used by the CMS community [36], since its physics output can still be
called more reliable than its object oriented successor. For further details on
CMS software see [7, 10] or [11].

COBRA

The Basis of the software framework is formed by COBRA (Coherent Object
orientated Base for Reconstruction, Analysis and simulation). It provides a
few helper classes as well as various interfaces e.g. for magnetic field, data
acquisition and event generators.

22

CARF

The heart of COBRA is the application framework CARF (CMS Analysis
and Reconstruction Framework). It offers not only tools for the offline re-
construction but also for the HLT. To make it suitable for this task CARF
operates on the ”action on demand principle”, so nothing is done unless it is
needed.

ORCA

ORCA (Object orientated Reconstruction for CMS Analysis) is a software
framework which can be used for the complete reconstruction chain. Func-
tionally, it is based on CARF. Alltough a successor, CMSSW, exists, ORCA
is mentioned in this thesis because parts of it (mainly the vertex subsystem)
are reused in CMSSW and other frameworks such as RAVE (see below) that
are important for this thesis.

Figure 2.3: From ORCA to CMSSW (Source: http://wwwhephy.oeaw.ac.

at/p3w/ilc/talks/Projektberichte/WW_060608.pdf)

CMSSW

CMSSW [12] is a collection of software implementing a software bus model.
Instead of several executables, as it was the case in the former frameworks,
it has got only one executable, cmsRun and many plug-in modules. Modules
simply are a piece of CMSSW code providing a specific functionality. For
example, there is an output module that creates a ROOT file to analyse and
store the data. The executable cmsRun is the same for detector data as well
as simulated data.

CmsRun is configured by the user via a configuration file in run time.
Through this file the user can specify the source (an event generator, a file
etc.), the output (a ROOT file), the modules and services that shall be loaded
while execution as well as the order of execution. It can also be specified if
other parameters than the default values shall be used.

23

IGUANA

IGUANA (Interactive Graphics for User ANAlysis) [1, 21] is a generic toolkit
implemented in C++. It is mainly used for developing high performance two
and three dimensional graphics, as they are needed in interactive detector and
event visualisation. Due to its architecture a wide variety of external tools
can be integrated smoothly. IGUANA provides e.g. visualisation programs
to display simulated or real events with the full or with parts of the detector.
An example of an event visualized with IGUANA is given in Fig. 2.4.

Figure 2.4: Snapshot of an event visualized with IGUANA (Source: http:

//iguana.web.cern.ch/iguana/gallery.html)

ROOT

ROOT is an analysis framework that provides a lot of tools especially for high
energy physics. Like IGUANA, ROOT is implemented in the object oriented
programming language C++. It was developed by high energy physicists for
high energy physics, and therefore offers useful tools for the data analysts,
such as histogramming and fitting, creating 2 and 3 dimensional graphics or
even writing a Graphical User Interface.

The data analyst can either use ROOT from command line or write
C/C++ macros that can be executed in ROOT.

24

2.4 Simulation

This section is dedicated to one of the most important aspects of collider
experiments — simulation. An explanation why and how it is used in online
and offline reconstruction is given and CMS simulation tools are presented.
The reader is referred to [36] for a more detailed overview.

2.4.1 Why Simulation?

The simulation of realistic data is crucial not only for testing online and offline
algorithms, but also for physics analysis. In the following a brief explanation
as to why this is the case is given.

Online analysis

In online analysis separate simulations for each of the four trigger objects
(see 2.2.1) are created in order to test the performance of the HLT recon-
struction algorithms. Special care has to be taken here when simulating the
expected background, since e. g. many processes produce a muon that can
be mismeasured as a high pT muon due to multiple scattering in the return
yoke. For further detail see [14].

Offline analysis

Simulated data is created using different defined physics models, and it can
be decided which model is the most accurate or probable by comparing the
real data to the simulated.

For developing and testing reconstruction algorithms physics realism is
unimportant. It is necessary to have data without or with low, controlled
background where the user has complete control over the simulated data.
CMS software offers the VertexSimPackage, where the user can define the
location of the decay vertices, the multiplicity of these vertices (number of
tracks originating in the vertex), the track momenta, and the reconstruction
method of the tracks.

In this package reconstruction is done by smearing the simulated tracks
according to a statistics model, giving them Gaussian or non-Gaussian errors.
The non-Gaussian errors are obtained by combining two or more Gaussian
distributed errors.

25

2.4.2 CMS Software

PYTHIA

The standard event generator in CMS is PYTHIA. It creates data according
to various standard model processes as well as many physics scenarios be-
yond the standard model such as e.g. supersymmetry or string theory. The
simulation applications described in the following use the output of an event
generator as input.

CMSIM

CMSIM is a non object-orientated application for detector simulation written
in FORTRAN and based on GEANT3. CMSIM simulates events using the
description of the detector geometry, the materials used in the detector as
well as information of the magnetic field.

Although an object orientated successor (OSCAR – see below) already
exists, it has been used until very recently, and nearly all papers referenced
in this thesis use data produced via CMSIM.

OSCAR

OSCAR (Object oriented Simulation for CMS Analysis and Reconstruction)
[4] is the object orientated successor of CMSIM and is written in C++.
OSCAR traces particles through the detector using the GEANT4 package
enabling it e.g. to track a charged particle through a magnetic field.

FAMOS

It is not always necessary to simulate an event in depth bearing in mind
that full simulation is a very CPU intensive task. Since simulation is not one
large application running from beginning to end but is performed in distinct
steps, shortcuts in the simulation chain do exist. These are implemented in
FAMOS (Fast Monte Carlo Simulation).

2.4.3 Frameworks and data used in this Thesis

Although CMS software provides the data analyst with a huge amount of
tools other applications that are independent of the underlying detector hard-
ware do exist. For this thesis, two such applications were used and are pre-
sented in this section. The interested reader is referred to [30, 31, 37] or [37]
for further information.

26

Figure 2.5: From CMSSW to RAVE (Source: http://wwwhephy.oeaw.ac.

at/p3w/ilc/talks/Projektberichte/WW_060608.pdf)

RAVE

RAVE (Reconstruction in Abstract Vertexing Environment) is an upgrade-
able toolkit for Vertex Reconstruction that is independent of an underlying
detector setup. It includes vertex finding as well as vertex fitting algorithms
(see), using a given set of reconstructed tracks as input.

Since RAVE inherited its algorithms from the CMSSW vertex package
(Fig. 2.5), it is fully compatible with with the CMS vertexing routines, but
it is also easily embeddable in a variety of other software environments.

VERTIGO

VERTIGO (Vertex reconstruction and Interfaces to Generic Objects) is a
stand-alone framework offering the user quick implementation, debugging
and analysis of RAVE algorithms (Fig. 2.6). In VERTIGO the user has com-
plete control over the reconstructed tracks as well as the track multiplicity.
Different sources can be chosen, e.g. different vertex guns that are provided
by VERTIGO itself or files containing simulated or real data.

These vertex guns can create different environements using Monte Carlo
(MC) simulation, ranging from very simple events with just one vertex and
a fixed number of tracks (track multiplicity) to a more ”dirty” environment
with two or more vertices, a variable track multiplicity including outlayer
tracks (tracks that do not belong to any vertex). When using these guns
the ”true” values of the vertex positions and track parameters are known,
making VERTIGO a convenient testing and debugging tool for reconstruction
algorithms.

The user can now apply constraints as for example the beam spot con-
straint (primary vertex position and covariance ellipsoid), or set the number
of events to be generated by the guns. One can also choose between dif-
ferent types of output. The reconstructed parameters can be displayed on

27

the screen, visualized in a graphical interface or simply stored in a ROOT
file. Since all these features are accessible via commandline, VERTIGO is a
comfortable and highly useful tool for the data analyst.

Figure 2.6: From RAVE to VERTIGO (Source: http://wwwhephy.oeaw.

ac.at/p3w/ilc/talks/Projektberichte/WW_060608.pdf)

Figure 2.7: The data flow in VERTIGO and RAVE. Since both frameworks
are independent of the underlying detector, the input data may originate from
different sources (Source: http://wwwhephy.oeaw.ac.at/p3w/ilc/talks/

Projektberichte/WW_060608.pdf)

For this thesis all data used for tests and performance studies on the
MultiVertexFitter have been created using VERTIGO standard vertex guns
as well as vertex guns implemented in VERTIGO by the author.

28

Chapter 3

Vertex Fitting

3.1 A Little Statistics

In this section a few statistical terms and estimation methods are explained,
since they are needed in order to understand the working principle of a vertex
finding respectively fitting algorithm. The interested reader may find the
basic definitions in any book on statistic, e.g. [3] or books on measurement
techniques in high energy physics such as [18] or [28].

3.1.1 Definitions

Random Process

A random process is a process whose outcome can not be predicted with cer-
tainty. Each possible result of a random process is represented by a random
variable commonly denoted as x. Random variables can either be continuous
or discrete. An example for such a process is rolling a (perfect) die since the
outcome of each cast can not be predicted. In this case x is discrete and
ranges from 1 to 6.

Probability Density Function

A random process is described by a probability density function (pdf) w(x).
The pdf gives the frequency with which an outcome of a random process is
expected to occur. Considering rolling a die again w(x) would be 1

6
for each

x (Fig. 3.1).
Depending on the random variable the pdf can be discrete or continuous

(Fig. 3.2 left and right).

29

Figure 3.1: Probability distribution for rolling a perfect die.

Figure 3.2: Examples of a discrete in this case a binomial (left) and a contin-
uous (gaussian) probability density function (right). (Sources: http://www.
rossmanchance.com/iscam/exampleCh3.html and http://zoonek2.free.

fr/UNIX/48_R/07.html)

30

If it is discrete then w(xi) gives the probability of the value xi. For a
continuous distribution it does not make sense to ask for the frequency of
a single value. Instead the probability of finding x in a finite interval e.g.
(x, x+ ∆x) is of interest. It equals to:

W (x ≤ x′ ≤ x+ ∆x) =

x+∆x∫
x

w(x′) dx′. (3.1)

The pdf is normalized by convention:∫
w(x) dx = 1, (3.2)

or in the case of a discrete distribution∑
i

w(xi) = 1. (3.3)

Furthermore a pdf is characterized by its moments. The n-th moment about
a point x0 of a pdf is defined as

〈(x− x0)n〉 =

∫
(x− x0)nw(x) dx. (3.4)

The most important moments are the first and the second moments of the
distribution.

Since continuously distributed random variables are more important to
this thesis, all further definitions will assume a continuous underlying dis-
tribution. The definitions can be easily rewritten for the discrete case by
replacing the occurring integrals by sums.

Mean

The mean or expectation value of a random variable x is the first moment
about zero of its pdf. It is defined as

〈x〉 = E[x] =

∫
xw(x) dx. (3.5)

This definition can also be applied to obtain the expectation of a function
f(x):

E[f(x)] =

∫
f(x)w(x) dx (3.6)

If the underlying distribution is symmetric, the mean value is the most prob-
able value (Fig. 3.3).

31

Variance

The second moment about the mean is the variance

σ2 = E[(x− 〈x〉)2] =

∫
(x− 〈x〉)2w(x) dx. (3.7)

The variance is the expected squared deviation of x to the mean value and
gives the width of a distribution (Fig. 3.3).

Figure 3.3: Gaussian Distribution. The mean and the standard deviation
are shown. (Source: http://hubpages.com/hub/Probability_Glossary)

Higher Moments

The third moment about the mean of a pdf is a measure of the symmetry
of a distribution. It is referred to as skewness, but since this moment or
the higher ones have not much importance in practice they are not further
mentioned here.

Median

The median is the middle value of an ordered list of data or of a pdf that
splits the list or the pdf in an upper and an lower half of same size. To
illustrate this, it is useful to consider a set of discrete data for example
M = {2, 6, 1, 3, 5, 4, 7}. The ordered set would be M = {1, 2, 3, 4, 5, 6, 7} and
the median of the set is 4.

32

The median does not need to be a true element of a data set. Consider
a set consisting of an even number of data the median is defined as the
arithmetic mean of the two central values: e.g. if M = {1, 2, 3, 4, 5, 6} the
median is 3+4

2
= 3.5

In the case of continuous data, the median is defined as Fr(xα) = 0.5
where F is the integrated probability density function, the so called cumula-
tive distribution function (cdf)

F (x) =

∫ x

∞
w(x′) dx′. (3.8)

In this case the median is always unique.

Mode

The mode of a pdf is the global maximum of the pdf and hence the most prob-
able value. The task of finding the mode of a set of data being either discrete
or continuous is not an easy one since the mode is not necessarily an unique
value and the underlying pdf is not always known. As mentioned above the
mode differs from the expectation value if the underlying pdf is asymmetric.
A good example is the Landau distribution where the mean value is shifted
off the maximum because of the pdf’s asymmetric ’tail’ (Fig. 3.4).

Covariance

So far only distributions of a single random variable have been discussed.
But since a random process might depend on several variables x1, x2, ..., xn
one has to consider multivariate distributions w(x1, x2, ..., xn). In this case
besides the mean and the variance of the distribution (calculated as before
just the integration has to be done over each variable now) a third important
quantity can be defined, the covariance:

cov(xi, xj) = E[(xi − 〈xi〉)(xj − 〈xj〉)] (3.9)

This quantity is a measure for the linear correlation of two variables. If
the covariance is divided by the standard deviations (the square root of the
variance) of the two values one gets the correlation coefficient ρ. If the
variables are not correlated, the covariance and the correlation coefficient
are zero. In case of a perfect linear correlation | ρ | equals 1. All the possible
covariances can be written as an n × n dimensional matrix — the so called
covariance matrix.

33

Figure 3.4: Landau distribution. (Source: [28])

3.1.2 Parameter Estimation

The task of fitting an unknown parameter (or unknown parameters) to mea-
surement data is widely used in experimental physics in general and espe-
cially in experimental particle physics. For example in collider experiments,
the track parameters of the created particles have to be estimated from the
detector hits, and the coordinates of a vertex have to be determined from
the reconstructed tracks.

The goal of such an estimation is to find the best value of the parameter,
this being the value minimizing the variance of the estimate with respect to
the true value. The determination of this value consists of two parts:

1. finding the best estimate and

2. determinating its error.

Various principles exist to accomplish this task. In the following the two
most important ones for this thesis are presented.

34

The Maximum Likelihood Method

The Maximum Likelihood Method (MLM) applies if the distribution under-
lying the data is known. Consider a sample of n independent measurements
(x1, x2, ..., xn) from which it is known (or assumed) that the underlying dis-
tribution is w(x | ϑ) and ϑ is the parameter that is estimated. Then the
likelihood function equals

L(ϑ | x) =
n∏
i=1

w(xi | ϑ). (3.10)

This function can be interpreted as the probability to observe the sequence
x1, x2, ..., xn, given ϑ. To illustrate this, consider five measurements with an
underlying Gaussian distribution where the mean value of this distribution
should be estimated. The likelihood function in this case would be

L(ϑ | x) =
5∏
i=1

1

σ
√

2π
exp(−(xi − 〈ϑ〉)2

2σ2
) (3.11)

This probability should now be a maximum, given the observed values, and
therefore the parameter has to satisfy

dL

dϑ
= 0 (3.12)

or
d lnL

dϑ
= 0, (3.13)

since lnL and L have the same maximum. Solving this equation yields the
estimated value ϑ̂. The hat indicates that this value is the estimate. If more
parameters are estimated from the sample one has to take partial derivatives
and solve the resulting system of equations.

Applying this principle renders the ”best” value and therefore the first
part of the estimation problem is solved. The simplicity of the method might
strike the reader but it has to be said that solving the resulting system
of equation often can’t be done analytically. In the majority of cases the
equations have to be solved numerically.

If we consider now another set of measurements with the same underly-
ing distribution and apply again the MLM principle, another value will be
obtained for ϑ̂. Thus ϑ̂ itself follows a distribution (which is of course imme-
diately evident since ϑ̂ depends on the xi). The error of the estimate is then
the square root of the variance of the distribution of ϑ̂:

σ2(ϑ̂) =

∫
(ϑ̂− ϑ)2L(ϑ | x) dx1 dx2 · · · dxn (3.14)

35

So the second part of our estimation problem is solved.
Again the solution sounds quite easy and straightforward, but again σ2 is

analytically obtainable only in very few rather special cases. To make things
easier and a lot less CPU intensive an approximation of σ2 can be made that
works very well in the limit of large n:

σ2 ∼= −
[

d2 lnL

dϑ2

]−1

(3.15)

This formula is called the Rao–Cramer theorem. For deduction and further
information on this theorem, the interested reader is referred to any hand-
book on statistics, for example [3]. If more than one parameter is fitted, then
the diagonal of the inverse matrix of the derivatives yields the error for each
parameter:

Uij = − ∂
2 lnL

∂ϑi∂ϑj
(3.16)

σ2(ϑ̂i) ∼= (U−1)ii (3.17)

If the expectation value of ϑ̂ is the true value, the estimation is said to be
unbiased. In case of the MLM this is in general the case only for infinite size
of the sample, hence for n→∞.

A useful property of a MLM estimator is its invariance under trans-
formation. Consider for example a differentiable parameter transformation
ϑ = ϕ(ϑ′) for which dϕ

dϑ′
6= 0 holds then

L(ϑ) = L(ϕ(ϑ′)) = L′(ϑ′) (3.18)

Proof :
Since

dL′

dϑ′
=

dL(ϕ(ϑ′))

dϑ′
=

dL

dϕ

dϕ

dϑ′
(3.19)

it follows that
dL

dϕ
= 0⇔ dL′

dϑ′
= 0 (3.20)

leading to
ϑ̂ = ϕ(ϑ̂′) (3.21)

The Least Squares Method

Sometimes one is not interested in the distribution of a sample but rather in
a function f(x1, x2, ...) (model) depending on the sample data. Probably the
best known example for such a case is a linear fit or regression line through

36

a set of data points. The model is then a linear function and two parameters
have to be estimated. This special case will be discussed now to illustrate
the Least Square Method (LSM).

Consider measurements of variable y at n points (x1, x2, ..., xn). So yi(i =
1, ..., n) with the error σi are obtained. A function ŷi = f(x, a1, a2, ..., am)
is now fitted where the aj(j = 1, ...,m) are the parameters to be estimated.
Of course the condition m < n has to be satisfied since it is impossible to
estimate more parameters than there are data points.

According to the LSM the best estimate of the parameters aj are the ones
for which the sum of the squared difference of the yi from the estimate ŷi
weighted by the error of the variable yi is minimal1:

S =
n∑
i=1

[
yi − f(xi, aj)

σi

]2

→ min (3.22)

The function S is the so called objective function. To determine the param-
eters aj one has to solve the following system of equations:

∂S

∂aj
= 0, j = 1, ...,m. (3.23)

As in case of the MLM those equations usually have to be solved numerically,
since only for a few functions f(x) an analytic solution exists.

To illustrate this estimation problem, consider a set of n coordinates xi
that will be fitted with a linear function f(x, a1, a2) = a1x+ a2.It is obvious
that we need at least two points in order to determine the two parameters.
Applying the LSM yields

S =
∑
i

[
yi − (a1x+ a2)

σi

]2

(3.24)

and therefore the system of equations

∂S

∂a1

= −2
∑
i

(yi − a1xi − a2)xi
σ2
i

= 0 (3.25)

∂S

∂a2

= −2
∑
i

(yi − a1xi − a2)

σ2
i

= 0 (3.26)

1The squared differences are also known as residuals while the weighted differences are
called the standardized residuals. So the best estimate is the minimum of the sum of the
standardized residuals.

37

Solving this equations one finds:

a1 =

∑ xiyi
σ2
i

∑
1
σ2
i
−
∑ yi

σ2
i

∑
xi
σ2
i∑ x2

i

σ2
i

∑
1
σ2
i
− (
∑

xi
σ2
i
)2

(3.27)

a2 =

∑ x2
i

σ2
i

∑ yi
σ2
i
−
∑ xiyi

σ2
i

∑
xi
σ2
i∑ x2

i

σ2
i

∑
1
σ2
i
− (
∑

xi
σ2
i
)2

(3.28)

The first part of the estimation problem, finding the best values, is solved
now.

The errors on the parameters aj form the covariance matrix:

(V −1)ij =
1

2

∂2S

∂ai∂aj
=

 ∑ x2
i

σ2
i

∑
xi
σ2
i∑

xi
σ2
i

∑ x2
i

σ2
i

 (3.29)

The least squares method is optimal for linear functions which means that
it is the linear unbiased estimator with the least variance if the covariance
matrix of the errors is non-singular. (Gauss-Markov theorem). Unfortunately
it is not robust to outliers or noise (Fig. 3.5).

Robustifications of the LSM exist and a few algorithmic realizations to
solve the problem of mode finding are discussed in the following.

Test for Goodness of a Fit — the Chi-Square Distribution

The chi-square of n random variables xi following Gaussian distributions with
mean value µi and standard deviation σi is defined as

χ2 =
n∑
i=1

(
xi − µi
σi

)2

. (3.30)

The distribution of the χ2 is

P (χ2) dχ2 =
(χ

2

2
)
ν
2
−1e−

χ2

2

2Γ(ν
2
)

dχ2 (3.31)

Here the only parameter of the distribution, ν, is the number of degrees
of freedom of the distribution, and Γ(ν

2
) is the gamma function. The degrees

of freedom are simply the number of independent random variables in the χ2

sum.

38

Figure 3.5: Linear regression through a set of data points. It can be seen
how an outlayer distorts the estimate. (Source: [16])

39

Since the χ2 is the sum of standardized residuals, the χ2 distribution pro-
vides a measurement of the fluctuations of the data xi. When the standard-
ized residuals of the xi and a theoretical mean value and standard deviation
are calculated, the chi square provides a measure of the goodness of a fit.

In case of the least squares method parameter estimation, the value of
the function (3.22) at the minimum is the χ2. A commonly used test is to
form the reduced χ2, which is just the χ2 divided by its number of degrees of
freedom ν. In case of n data points and m parameters estimated from these,
ν = n−m. For a good fit the reduced χ2 should be close to 1. One can also
calculate the probability of P (χ2 ≥ S) (S being the calculated value of the
χ2). If it is greater than 5%, the fit is acceptable. To illustrate the use of
the χ2, here an example similar to the one in [28].

Consider a set of given data points through which the best linear function
should be fitted:

x 0 1 2 3 4 5
y 0.92 4.15 9.78 14.46 17.26 21.9
σ 0.5 1.0 0.75 1.25 1.0 1.5

The parameters of such a linear fit are calculated using equations 3.27 and
3.28. In case of the data above, the parameters are found to be

a1 = 4.227

a2 = 0.878.

So the fit function is
f(x) = 4.227x− 0.878.

The χ2 is then calculated to be

χ2 =
∑
i

(
yi − f(xi)

σi

)2

= 2.078.

The set consists of 6 data points and for the linear fit, 2 parameters had
to be estimated. So the degrees of freedom of the χ2 distribution are 6 - 2 =
4. The reduced χ2 equals

χ2

ν
=

2.078

4
≈ 0.5.

The probability P (χ2 > 2.07) with ν = 4 is

P (χ2 > 2.07) =≈ 0.975 = 97.5%

Since in this case the reduced χ2 is close to one and the probability P is much
greater than 5 %, the fit can be considered as good.

40

3.2 Mode Finding

Mode finding [36] is an estimation problem, where one parameter, the maxi-
mum of a data sets unknown distribution, is to be estimated. For this thesis
the problem of mode finding can be divided into two classes

1. mode finding in one dimension

2. mode finding in three dimension

For greater details on the algorithms in one as well as three dimensions
presented in the following, the reader is referred to [36].

3.2.1 Algorithms for mode finding in one dimension

One approach for solving the problem of mode finding in one dimension is
the Least Median of Squares Method (LMS). It minimizes the median
of the residuals (see Eq. 3.22):

S = med

[
yi − f(xi, aj)

σi

]2

→ min (3.32)

But, like the LSM, it is not robust to noisy data and a general and
fast algorithmic solution for (3.32) is not known, except splitting the data
points into subsets and trying out every possible combination. One can
imagine of course, that this is a very CPU intensive task and therefore not
applicable in high energy physics. Faster solutions exist for example selecting
few combinations of data points at random (Least Trimmed Squares –
LTS).

Another approach is the so called Half Sample Mode (HSM) which is
a recursive LMS. Iteratively an LMS is performed on each points in the inter-
val that has been found in the step before. A generalization of this algorithm
is the Fraction of Sample mode with Weights (FSMW). In this algo-
rithm weights are associated with the data points and the ”weighted” interval
(length of the interval divided by the sum of all weights of the contained data
points) covering k% of the data is determined.

A very simple algorithm is the Maximum Two Values (MTV) algo-
rithm. Here too, weights are assigned to the data points. The estimated
mode is then the weighted mean of the two consecutive data points with the
highest sum of weights. There are similar algorithms that use only one or
three such data points — the former being called Maximum Single Value
(MSV) the latter Maximum Three Values (M3V).

41

3.2.2 Algorithms for mode finding in three dimensions

One has to distinguish between true three–dimensional mode finders and
coordinate–wise mode finders. The latter splits the three dimensional (more
general an n dimensional) mode finding into three (n) one–dimensional prob-
lems.

Only one family of true three–dimensional mode finders does exist: the
Small Median of Squares (SMS) algorithm. This algorithm computes the
median of the distances for each data point to the other data points. Then
the data points are sorted according to this median distance. The mode is
then the mean of the top k% of the data points, k being user–defined.

A recursive SMS algorithm does exist, the Iterated Median of Squares
(ISMS). It is the three–dimensional analogon to the HSM, performing itera-
tively the SMS algorithm using the former output as new input. Introducing
weights in the latter algorithm one gets the Iterated Small Median of
Squares with Weights (ISMSW) algorithm. The weight, which simply is
the sum of the weights of two data points, are associated with the distance
between these two points. The distances are then sorted according to the
length for each data point. The weights of the distances are now summed
up, starting from the top of the list until the sum is > 50 % of the total sum
of all weights. This is then the average weighted distance by which the data
points are finally sorted. The median is now the weighted mean of k% of
the data points.

3.3 Vertex Finding

Vertex Finding is the task of grouping all tracks into subsets that have
common points of origin. This section will give an overview of concepts and
algorithms used for vertex finding. The interested reader is referred to [36]
for further details.

The input for any vertex finding algorithm is a set of tracks. It has to
be said that for the minimum distances between these tracks, the triangle
inequality is generally violated. So since these tracks have such unpleasant
metric properties different concepts do exist on how to deal with the input
tracks. One such concept is the introduction of apex points and it will briefly
be discussed here.

The apex points are simple points in a three–dimensional Euclidean space
that represent the tracks. So the problem of vertex finding is split into two
problems: Finding these representative points and then searching for a vertex
in the set of them. Since the apex points exist in ordinary three dimensional

42

space, all algorithms presented in the last section can be applied. Since there
is no track information such as track direction in the apex points, this concept
simply trades information for metricity.

Of course track information can be introduced in the apex points via a
covariance matrix. But the distances between two tracks weighted with these
covariance matrices again do not form a metric space.

The algorithms used for vertex finding can be divided into two classes:

• hierarchic and

• non–hierarchic algorithms.

Hierarchic algorithms have a strict clustering hierarchy while non–hierarchic
algorithms lack such a hierarchy. The former can be subdivided further
into agglomerative and divisive clusterers. Only a brief overview over these
algorithms is given here. For more information on the implementation of
those clusterers in CMS software, the reader is referred to [36].

Agglomerative clusterers start by assigning each track to an own subset.
These subsets are then called singleton groups. Singletons that are most
compatible are then merged iteratively, until a stopping condition is reached.
Of course it is assumed implicitly that at least two tracks have to be com-
patible enough with each other. The definition of compatibility is a direct
consequence of the employed metric.

Divisive clusterers work the other way round. The start by assigning
all tracks to one big cluster. This cluster is split up into smaller ones that
are again split up and so on till the stopping condition is reached. The
implicit assumption here is that at least two tracks must be incompatible
with the primary vertex in order to find a secondary vertex. Furthermore
those incompatible tracks have to be compatible enough with each other.

As mentioned above, non–hierarchic clusteres lack a strict clustering hi-
erarchy. There will be four algorithms briefly discussed here.

The vector quantization algorithm [20] uses code vectors or vertex
prototypes as a representation of the input data vectors. In the case of
fitting, these data vectors are the apex points. The code vectors are taken
from a code book and do not necessarily live in the same space as the data
vectors. In the fitting process however, the prototypes live in the apex space
too. They are attracted by the apex points and the final position of them are
the locations of the vertex candidates. It is possible to introduce different
learning procedures to improve the algorithm. For details on this, see [36].

The KMeans algorithm works in a similar fashion as the vector quan-
tization. The difference is, that there is a fixed number of code vectors to
which the apex points are associated. The apex points belonging most likely

43

to one prototype form a cluster. In each cluster the center is computed via
apex fit. The apex points are then reassociated to this new centers, new clus-
ter are formed and their centers refitted. This procedure is repeated until
convergence. For more information the reader is referred to [36].

Both of the afore mentioned algorithms need initial prototypes that pro-
vide good starting positions, or in short, they need seeding.

The next two algorithms discussed here use metaphors of physical models.
The deterministic annealing [33, 34] exploits a metaphor to a ther-

modynamical system consisting of data points that cools down. Clusters of
those points move and split with each phase transition.

The gravitational clustering [25] assumes an attractive force between
the weighted data points that follows an 1/r2 rule, r being the distance
between two vincinated data points. When two data points clash, a larger
point is obtained and its weight simply is the sum of the weights of the former
points.

Another type of vertex finders are the Superfinders [36]. Those algo-
rithms combine the results of other vertex finding algorithms into a new and
improved solution.

The output of the superfinder can be simply the value that minimizes a
formal criterion as for example the global association criterion (for further
details on this, see [36]) or a real combination of the input results and hence a
new solution. The latter is done by a voting algorithm that will be presented
briefly now.

The voting algorithm

The voting algorithms starts by finding the two most similar clusters in the
input solutions. Similarity is defined as

sim(α, β) ≡ n(α ∩ β)2

n(α)n(β)
(3.33)

where n(α) is the number of tracks in the cluster α. The two clusters are
merged into a new cluster containing the tracks of both with assigned weights.
Then the two previous clusters are erased and the process is repeated. The
weights assigned in each step are calculated as follows. When the first two
clusters are merged, each track present in both clusters receives a weight
equal to one, while the others receive a weight of 1

2
. In the n-th step, the

cluster with the tracks of n− 1 clusters is assigned a weight of n−1
n

while the
other is assigned a weight of 1

n
. To illustrate this, I will give a short example

similar to the ones in [36]:

44

Consider three solutions s1, s2 and s3, each consisting of three or four
clusters containing one to four tracks2:

s1 = {AB}{CDEF}{G}{H}
s2 = {ABC}{DEFG}{H}
s3 = {ABE}{CD}{FGH} (3.34)

When the solutions s1 and s2 are merged, one yields

s′1 =
1

2
s1 ⊕

1

2
s2 =

{
AB

C

2

}{
C

2
DEF

G

s

}{
G

2

}
{H} (3.35)

Then the new cluster s′1 is merged with solution s3 giving the new and
hopefully better solution send:

send =
2

3
s′1 ⊕

1

3
s3 =

{
AB

C

3

E

3

}{
2C

3
D

2E

3

2F

3

G

3

}{
G

3

}{
F

3

G

3
H

}
(3.36)

For further details as for example resolving possibly occurring ambigui-
ties3 see [36].

3.4 Vertex Fitting

Vertex Fitting [36] is the task to estimate a vertex position and its covari-
ance matrix out of the already determined subsets of tracks. Basically there
are two types of fitters:

• non robust4 and

• robust fitters.

Every fitter also needs an initial guess of the vertex position, the so called
linearization point or seed. The necessary quality of the seed is determined
by the type of algorithm used. Non-robust algorithms do not need a good
seed since the tracks are relinearized if the calculated vertex candidate is too
far off the linearization point. Robust fitters however are local optimization
algorithms and therefore they need an accurate initial guess.

2The tracks are denoted with capital letters.
3This is the case when no unique pair of most similar clusters exists.
4In this thesis exclusively least square fitters are referred to as non robust fitters.

45

The input of each fitter is a set of tracks. In the first step, these tracks
need to be linearized. Therefore they are re-parameterized. Although the
choice of the parameters is not unique, only a few parameterizations are of
practical use as for example the perigee parameters5.

Algorithms that provide an initial guess are called Linearization Point
Finders. They can be divided in two groups:

• those using the concept of apex points (see 3.3.1) and

• those that are based on so called crossing points between the tracks.

The crossing points are the arithmetic mean of the points of closest approach
(PtCAs) between the tracks. Those crossing points are used as an input in a
three dimensional mode finder. Algorithms that find crossing points do not
solely provide the position of these points but also a weight. This weight is
simply dependent on the distance6 between two PtCAs.

Two non robust least square fitting methods and three robustifications
of these are briefly discussed in the following. For further information the
reader is referred to [36].

Non Robust Fitting methods

The Linear Vertex Fitter computes the impact points of the tracks with
respect to the initial seed as well as their error. Should the calculated vertex
change very much during an iteration a relinearization of the tracks is done.
The tracks are linearized in the track phase space.

The Kalman Vertex Fitter uses tracks in perigee parametrization
(ε, zp,Θ,Φp, ρ) [29]. Fig. 3.6 illustrates these parameters. The tracks are
linearized in these five parameters and then a Kalman filter technique is ap-
plied. The working principle of a Kalman filter in the task of vertex fitting
will be described here briefly. The reader is referred to [18, 32, 17] or [38] for
further details.

A Kalman filter is a recursive application of least squares estimators. It
minimizes the standardized residuals of all tracks to the vertex candidate.
The goal of such a fit is to determine the state vector, containing the es-
timated vertex position x and the momenta of all tracks belonging to the
vertex candidate. Therefore the tracks are treated as so called virtual mea-
surements, that contain the total information of the tracker.

5The perigee parameters will be discussed in greater detail in the following.
6It is ∝ 1

d2 where d denotes the distance between the PtCAs.

46

Figure 3.6: Illustration of the perigee parameters (ε, zp,Θ,Φp, ρ) with respect
to a reference position O (e.g. an initial vertex position) with the coordi-
nates(PRGX / PRGY / PRGZ). The minimal distance between O and the
track (OP) is ε, zp is the z coordinate of P, Θ is the trajectories’ polar angle,
Φp is the azimuthal angle of the trajectory at P and ρ is the inverse radius
of the track curvature. (Source: [29])

47

At the beginning of the iteration the state vector consists only of an
initial guess of the vertex position x0 and its covariance matrix. A first track
is added, leaving the initial vertex position unaltered and adding the tracks
momentum vector q1 to the state vector. The way the track parameters pk
depend on the vector is given by the equation of motion and described by a
usually nonlinear measurement equation (see also [17]).

pk = hk (x,qk) + εk (3.37)

with

cov(εk) = Vk (3.38)

where Vk is the to the track model corresponding error matrix. This
equation can be approximated by a linear Taylor expansion

hk ≈ hk(xe,qk,e) + Ak(x−xe) + Bk(qk−qk,e) = ck,e + Akx + Bkqk. (3.39)

Where Ak and Bk are the matrices of derivatives evaluated at (xe,qk,e)
and ck,e is a constant matrix.

When a track is added, the vertex position is refitted and the momentum
of the track is added to the state vector both according to the Kalman filter.
For the addition of the track k to the state vector obtained by fitting with
k − 1 tracks, the Kalman filter would be

x̃k = Ck

[
C−1
k−1x̃k−1 + AT

kGB
k (pk − ck,e)

]
(3.40)

q̃k = WkB
T
kGk (pk − ck,e −Akx̃k) (3.41)

(3.42)

with

Wk =
(
BT
kGkBk

)−1

GB
k = Gk −GkBkWkB

T
kGk.

Here x̃k is the estimated vertex position fitted with k tracks, Ck is the co-
variance matrix of the parameters of track k and Gk is the inverse covariance
matrix of the vertex position after adding track k.

This procedure is repeated until no more tracks are left.

48

Robustifications of Least Squares Fitting Methods

The Trimming Vertex Fitter uses only a certain fraction of the tracks. In
order to return the global minimum of the objective functionall combinations
of tracks should be tried out, but since we have an initial guess of the vertex
position, one can always find a certain number of tracks most compatible
with this seed. The compatibility of the tracks with the seed is determined
by a χ2 test. The vertex is then refitted with these tracks and again the most
compatible tracks are found. This is repeated until convergence is reached.

The Least Median of Squares (LMS) Fitter does not minimize the
sum of the squared residuals but their median. Neither a simple analytic
solution nor a satisfactory algorithmic implementation exists to solve this
problem.

The Adaptive Vertex Fitter (AVF) does not discard outlayers like
the trimmer, but down-weights them. Weights are assigned to each track
according to the weight function

wi(χ
2
i) =

e
−χ2

i
2T

e
−χ2

i
2T + e

−χ2
cutoff
2T

(3.43)

where χ2
i denotes the χ2 compatibility of track i with the vertex candidate

and T is the temperature according to an annealing schedule. Since it is an
iterative algorithm, the vertex is re-fitted and the tracks are re-weighted in
each iteration step.

Also an annealing schedule to invoke deterministic annealing is used. So
the AVF starts with the initial vertex candidate computed by a seeding
algorithm. At an initial temperature a weight is assigned to each track. Then
the vertex is refitted using a Kalman Vertex Fitter and the temperature is
multiplied with a factor ≤ 1.7 Then the tracks are re-weighted. This is
repeated until convergence.

The Adaptive Vertex Reconstructor (AVR) uses the AVF method itera-
tively to fit one vertex at a time. It starts by refitting the initial vertex guess
with the most compatible tracks, then reweighs those tracks with respect to
the newly found vertex candidate and refits it again with its most compati-
ble tracks. This is done until convergence is reached. Then the procedure is
repeated using the tracks that have not been assigned to any vertex yet.

The AVR qualifies as a general purpose algorithm that performs well using

7According to the used annealing schedule.

49

pure data as well as noisy data. For greater details as well as performance
studies of the AVR, the reader is referred to [36].

The Multi Vertex Fitter (MVF) can be regarded as a generalization of
the adaptive vertex fitting method. The next chapter discusses this algorithm
in detail as well as its performance.

50

Chapter 4

Optimization of the Multi
Vertex Fitter

This chapter will present the Multi Vertex Fitter algorithm and its imple-
mentation details. Furthermore changes and extensions of the MVF im-
plemented by the author are presented along with studies illustrating the
results yielded by them. These results are then compared with the already
well–tested Adaptive Vertex Reconstructor algorithm.

4.1 The Multi Vertex Fitter

4.1.1 The Algorithm

The Multi Vertex Fitter (MVF) is quite similar to the adaptive vertex fitter
mentioned before, and in case of a single vertex to be reconstructed, the two
are equivalent. The difference between the MVF and other algorithms is that
it fits n vertices simultaneously. As it does not deliver only one vertex at a
time it is technically not a vertex fitter at all, but its own category.

The iterative Multi Vertex Fitter does not use prototypes, instead it as-
signs a dynamic list to each track containing the assignment probabilities for
each track to each vertex. These lists change with every iteration enabling
the algorithm to keep track of the assignment probabilities. The clusters of
tracks that are the input for the MVF are computed by a voting algorithm,
as are the initial weights. The MVF uses a special seeding algorithms, the
Multi Vertex B Seeder (MBS), that is supposed to work well in b-jet se-
tups. During the optimization process of the MVF, the author has tested
and expanded this seeder.

51

The Vertex Fitting Process

The input seeds are refitted with the initial clusters, with the assignment
probabilities of the tracks as initial weights. The refitting is done using a
set of weighted Kalman filters running in parallel. The weights are then
recomputed with the new vertex positions.

So in each iteration, the Multi Vertex Fitter computes the weights, using
the weight function1:

wij =
e
−χ2

2T

e
−χ2

cutoff
2T +

∑n
k=1 e

−χ2
ik

2T

, (4.1)

where wij denotes the weight of the i-th track with respect to the j-th vertex,
χ2
ij is the χ2 compatibility between the i-th track and the j-th vertex and
T is the temperature set according to an annealing schedule. In the Multi
Vertex Fitter there are two annealing schedules available, the step–by–step
annealing and the geometric annealing schedule.The process of refitting and
reweighing is then repeated until convergence is reached.

4.1.2 Implementation of the Multi Vertex Fitter

The Multi Vertex Fitter does not derive from any super class, but reuses
classes already implemented for other fitters. As mentioned above, it reuses
the annealing schedules implemented for the Adaptive Vertex Fitter and also
many classes implemented for linear fitters, such as the Kalman Vertex Fitter.

The MVF is organized in methods2 that represent the individual tasks
of the algorithm. The central method is called vertices. This method calls
createSeed and fit. In createSeed the seeding algorithm is called and the
initial vertex positions and the initial track weights are returned. The method
fit recalculates the vertices as well as the weights by calling updateSeeds
and updateWeights. The method fit returns an STL vector with entries of
the type CachingVertex that includes the reconstructed vertices, the tracks
and their weights. Said vector is then returned as final result of the MVF.

Many other small methods exist inside the MVF code and a few important
ones will be presented here. Method minWeightFraction fixes the minimal
weight a track must have in order to belong to a certain vertex. Method
discardLightWeights discards tracks that are beneath that threshold so
that they are not used for the fit in the next iteration step. Furthermore

1This function can be motivated statistically, via effective energy or even by using a
quantum mechanical analogy. For further details on this, see [36].

2The methods described here are printed boldly.

52

method validWeight checks that the weights do not exceed 1 or fall below
0.

4.2 Performance Studies

The data used to study the performance of the MVF were generated in
VERTIGO, using VERTIGO’s standard bjet gun as well as bjet–like guns
implemented by the author. All the guns used create a primary vertex and
a single bjet–like secondary vertex. The track multiplicity at the primary
vertex is 9 to 11 tracks with an angular spread of 1.3 rad for all guns, and
the multiplicity at the second vertex is 3 to 5 tracks with an angular spread
of 262 mrad. The standard gun creates data with some contamination3 while
the guns implemented by the author create unbiased data. The distance
between the two created vertices ranges from the actual flight distance of a
b meson, which is about 2 mm up to an enormous distance of 1 meter. 4

These setups, unrealistic as they may be, are merely a means to test the
performance of the algorithms, starting with easily distinguishable vertices
at very large distances, and systematically moving the two vertices closer to
each other. The distances used in each case will be given explicitly in the
appropriate sections.5

In this work the quality of the reconstruction will be determined by two
criteria:

1. The number of reconstructed vertices that could be associated6 with
the Monte Carlo truth.

2. The standard deviation of the position of the reconstructed vertices.

The latter is obtained via a Gaussian fit through the cumulated deviations
of every single event. In each presented scenario a number of 5001 events
were simulated.

As mentioned before, within the VERTIGO framework, the user is free
to provide the reconstruction algorithm with individually set parameters.

3Two outlayer tracks are created.
4Note that in this case the term distance refers to an average value corresponding to

the mean value of the even distribution underlying the simulation algorithm.
5A general remark: In some of the graphs presented here the abbrevations wb and wob

will occurr. In this thesis wb stands for with beamspot constraint and wob for without
beamspot constraint.

6Association is done via the actual physical distance between the simulated and recon-
structed vertex.

53

Among these only two parameters have an influence on the aforementioned
weight function:

1. The σcut which is the square root of the χ2
cutoff in Eq. (4.1), and

2. the temperature T .

The default values of these parameters are:

• σcut = 9

• T = 8

For testing the MVF algorithm the value σcut = 2.5 and the default value
for T were chosen using the default values of the AVR as guideline. In section
4.7 the influence of the σcut on the reconstruction quality will be discussed
in more detail.

4.3 The Original Algorithm

The performance of the original algorithm could in neither of the scenarios
used for testing compete with the already optimized and thoroughly tested
adaptive vertex fitter.

The graph in Fig. 4.1 (a) shows the amount of reconstructed and actu-
ally associated primary and secondary vertices (in percent) using the MVF
reconstruction algorithm. It can clearly be seen that especially in the case
of secondary vertex reconstruction the performance of the MVF is in no
way competitive with the performance of the AVR reconstruction algorithm
(Fig. 4.1 (b)). It can also be seen that the performance of the MVF drops
when going to larger distances. This is a highly unintuitive behavior since the
reconstruction should be facilitated at larger distances between the vertices.

In Fig 4.2 the position resolution in x direction (transverse to the beam
direction) obtained with the MVF (left graph) is compared to the one ob-
tained using the AVR. In both cases the resolution of the primary vertices are
significantly better (nearly one order of magnitude) than for the secondary
vertices. They both show a similar development going to larger distances al-
though the resolution of the AVR is slightly better than in case of the MVF.
Looking at the resolution of the secondary vertices the MVF again shows an
unintuitive behavior since the resolution improves towards larger distances
at first but gets worse again. In case of the AVR the resolution improves
slightly but steadily with larger distances.

54

(a)

(b)

Figure 4.1: Performance of the MVF reconstruction algorithm (a) compared
to the AVR algorithm (b).

55

(a)

(b)

Figure 4.2: Position resolution of the primary and secondary vertices ob-
tained using MVF (a) and AVR (b)

56

4.4 Inclusion of Beamspot Constraint

The first means to improve the performance of the Multi Vertex Fitter was
the inclusion of the beamspot constraint. This delivers the position of the
primary vertex, with along covariance matrix. This information is derived
from the beam interaction profile, depending on the accelerator itself. As
mentioned before (see subsection 3.3.2) a good initial guess of the vertex
position is crucial for any robust fitting method. So the inclusion of the
beam spot constraint is expected to increase the performance of the MVF
considerably.

4.4.1 Performance Studies

As can be seen in Fig 4.3, the inclusion of the beamspot constraint does not
show any significant improvement in the performance of the MVF concerning
the number of reconstructed and associable vertices. In Fig. 4.4 however the
influence of the beamspot constraint is clearly visible. Not only an improve-
ment in the position resolution of the primary vertex (Fig. 4.4 (a)) but also
in the secondary vertex (Fig. 4.4 (b)) could be obtained.

In order to gain more insight into the behavior of the MVF the author
decided to evaluate the algorithm at larger distances.

Evaluation at larger distances showed that the number of associated and
reconstructed primary vertices drops continuously (Fig. 4.5 (a)) while in case
of the secondary vertices it reaches a minimum around a vertex distance
of 150 mm (Fig. 4.5 (b)). At distances larger than 150 mm the number of
associable reconstructed vertices rises again but does not exceed the number
of such vertices at smaller distances. It can also be seen that this behavior
is independent of the usage of the beamspot constraint, which again is very
counterintuitive.

The position resolution again shows an improvement in case of the asso-
ciated reconstructed primary vertices, whereas in the case of the secondary
vertices no enhancement could be obtained (Fig. 4.6).

4.5 Comparison of Different Seeding Algo-

rithms

As shown above, the inclusion of the beamspot constraint could not improve
the number of associable reconstructed vertices. Only an improvement in
the position resolution could be obtained. The counterintuitive behavior of
the MVF with increasing distance however was not influenced. In order to

57

(a)

(b)

Figure 4.3: Comparison of the number of associated reconstructed primary
(a) and secondary vertices (b) using the beamspot constraint and not using
it.

58

(a)

(b)

Figure 4.4: Comparison of the position resolution of the associated recon-
structed primary (a) and secondary vertices using the beamspot constraint
and not using it.

59

(a)

(b)

Figure 4.5: Comparison of the number of associated reconstructed primary
(a) and secondary vertices (b) with and without using the beamspot con-
straint.

60

(a)

(b)

Figure 4.6: Comparison of the position resolution of the associated recon-
structed primary (a) and secondary vertices with and without using the
beamspot constraint.

61

explore this behavior the AVR was used as an alternative seeding algorithm
for the MVF, and the result was compared to the outcome of the MVF using
its default seeding algorithm, the MBS.

4.5.1 Performance Studies

In case of only four different distances as well as at seven different distances
it can be seen that the improvement of the MVF using the AVR as seeding
algorithm is huge. The number of associated reconstructed vertices is signif-
icantly increased in all scenarios. For the secondary vertex reconstruction it
is even improved by an order of magnitude at certain distances (Fig. 4.7 and
4.8).

The position resolution is slightly increased in case of the primary vertex
but for the secondary vertex an improvement is obtained(Fig. 4.9 and 4.10).

4.6 Test of the MBS Seeding Algorithm

Since using a different seeder did improve the performance of the MVF sig-
nificantly, the functionality of the MBS seeding algorithm was tested and
checked. Since the MBS is a reconstruction algorithm itself it could be tested
in the same way as the MVF or AVR algorithms.

From Fig. 4.11 it is evident that the performance of the MBS is not sat-
isfactory. The reconstruction of the primary vertices (Fig. 4.11 (a)) lies way
below the reconstruction quality of the AVR. Not even for a single distance
is the MBS able to associate all vertices. In case of the secondary recon-
structed and associable vertices (Fig. 4.11 (b)) the MBS fails completely. In
some cases not even a single secondary vertex is found (reconstructed and
associated). Furthermore it can be seen that the unintuitive behavior al-
ready observed in case of the MVF is displayed here too and hence it can be
assumed that the reason for it lies inside the MBS.

After thoroughly debugging the MBS the author found the reason for the
bad performance of the algorithm inside the OutermostClusterizer method
which was used as linearization point finder inside the MBS. This method
should compute the points of closest approach between all tracks and should
then pass on the two outermost points (impact points – IP’s) along with the
weighted tracks to a Kalman fitter. The result of the fit is then passed on to
the MVF as initial guesses.

However, the method passed on two points that were very close around
the primary vertex instead, even at a distance of 1 meter between the two
simulated vertices. This of course explains nicely the reduction of recon-

62

(a)

(b)

Figure 4.7: Comparison of the associated reconstructed primary (a) and
secondary vertices (b) using the AVR (red) or the MBS (blue) as seeding
algorithm.

63

(a)

(b)

Figure 4.8: Same as 4.7 but for more distances.

64

(a)

(b)

Figure 4.9: Position resolution of the associated reconstructed primary (a)
and secondary vertices (b) using the AVR (red) or the MBS (blue) as seeding
algorithm.

65

(a)

(b)

Figure 4.10: Same as 4.9 but for more distances.

66

(a)

(b)

Figure 4.11: The reconstructed and associated primary (a) and secondary
(b) vertices using the MBS as reconstruction algorithm.

67

structed associated vertices when going to larger distances. The author fixed
this problem by introducing a jet axis (ghost track). Details will be presented
in the next section.

4.7 Inclusion of the Ghost Track Formalism

A ghost track simply is a jet axis originating in the primary vertex and going
through the secondary vertex. The jet axis is directly produced by the guns
implemented by the author. In case of real data, the direction and energy of
the jet axis is extracted from data delivered by the calorimeter.

As mentioned above, the seeding algorithm of the MVF was found to
deliver poor initial guesses. In order to improve these guesses, the impact
points where now calculated using the ghost track.

Inside the MVF, the weights of the tracks with respect to this seed were
calculated using the KalmanChiSquare method and the already implemented
annealing schedule. The weighted tracks along with the initial seeds were
then passed on as usual.

4.7.1 Performance Studies

The performance of the MVF using the MBS seeder with the aforementioned
implementations will be presented below.

The MVF using the improved MBS seeding algorithm clearly shows a
steep increase in performance. The number of reconstructed and associated
primary vertices is increased and the counterintuitive drop at larger distance
disappears (Fig. 4.12 (a)). In case of the secondary reconstructed and associ-
ated vertices, the performance improvement is even more dramatic (Fig. 4.12
(b)). Furthermore no decrease going to larger vertex distances can be ob-
served.

The position resolution is improved too, especially in the case of the
primary vertices (Fig. 4.13). In case of the secondary vertices only an im-
provement at larger distances is observed. At smaller distances the position
resolution is slightly deteriorated.

In Fig. 4.14 it can be seen that the MVF can not only compete but indeed
beats the AVR in case of large distances. However in the interesting case of
smaller distances, the improved MVF cannot outperform the AVR.

Comparing the position resolution of the original MVF to the MVF using
the improved seeding algorithm and the AVR it can be seen that in case of
the reconstructed and associated primary vertices the AVR delivers slightly

68

(a)

(b)

Figure 4.12: Comparison of the percentage of reconstructed and associated
primary (a) and secondary vertices (b) between the former MVF and the
MVF using the improved MBS.

69

(a)

(b)

Figure 4.13: Comparison of the position resolution in the primary (a) and
secondary vertices (b) between the former MVF and the MVF using the
improved MBS.

70

(a)

(b)

Figure 4.14: Comparison of the percentage of reconstructed and associated
primary (a) and secondary vertices (b) between the MVF using the improved
MBS and the AVR.

71

(a)

(b)

Figure 4.15: Comparison of the position resolution in the primary (a) and
secondary vertices (b) between the MVF using the improved MBS and the
AVR.

72

better results (Fig. 4.15 (a)). However the improved MVF shows better per-
formance than the AVR considering the reconstructed associated secondary
vertices. Only at large distances the AVR is slightly better again (Fig. 4.15
(a)).

4.7.2 Adjustment of the σcut

The influence on the performance of different values for the σcut were now
studied in order to find a suitable default value.

It can be seen that the number of reconstructed and associated primary
and secondary vertices improves slightly when going to higher σcut values.
This holds also true for the position resolution. Therefore the choice σcut = 9
as default value is justified.

73

(a)

(b)

Figure 4.16: The influence of the σcut on the number of reconstructed and
associated primary (a) and secondary vertices (b). It was studied for three
different distances – 0.75 mm, 13 mm and 1 m.

74

(a)

(b)

Figure 4.17: The influence of the σcut on the position resolution of the primary
(a) and secondary vertices (b). It was studied for three different distances –
0.75 mm, 13 mm and 1 m.

75

Chapter 5

Conclusion

The poor initial performance of the Multi Vertex Fitter algorithm could be
identified as a consequence of the malfunctioning of a method used inside the
MBS seeding algorithm. This caused the passing on of the wrong initial seeds
from the MBS to the MVF. A considerable improvement in the performance
of the MVF could be obtained after this problem was eliminated.

Nevertheless, the improvement thus obtained could increase the perfor-
mance of the MVF over that of the AVR only in case of large distances
between the two vertices. In the relevant case of small distances the im-
proved MVF does not give better results than the AVR. Also, since Monte
Carlo truth in form of a ghost track was used for improving the MBS, and
consequently the MVF, it cannot be followed that the MVF will lead to
better results than the AVR when handling real data.

Future research may include introducing more realistic information, e. g. in
form of a ghost track with errors, to the MFV algorithm; while exceeding the
scope of this thesis the principle of the MFV still holds interesting research
possibilities.

76

Acknowledgments

First of all I want to thank my family for making it possible for me to follow
my studies, never complaining or even mentioning the great personal efforts
and austerity it caused them. Thank you for always supporting me 100%.
Secondly I want to thank my supervisor Univ. Doz. DI Dr. R. Frühwirth and
DI Dr. W. Waltenberger for their help and many valuable comments and
discussions. I also want to thank all my colleagues and fellow students not
only for countless fruitful discussions but also for not only conserving but
increasing my interest in physics. Especially I want to thank M. Bartel for
always helping me with the small and not so small problems that occurred
writing this work. Thank you for your patience. Furthermore thanks to
everybody that helped me and accompanied me on my way so far, be it
academically or privately. You are the reason I have become the person that
I am today.

77

Bibliography

[1] G. Alverson, G. Eulisse, S. Muzaffar, I. Osborne, L. Tuura and L. Taylor,
The IGUANA Interactive Graphics Toolkit with Examples from CMS
and D0. Proceedings of the 2003 Conference on Computing in High
Energy and Nuclear Physics. http://www.slac.stanford.edu/econf/
C0303241/proc/papers/MOLT008.PDF

[2] G. Bagliesi, on behalf of the CMS collaboration. CMS High Level Trig-
ger Selection. Eur. Phys. J. C 33, Supplement 1 (2006) s1035. DOI:
10.1140/epjcd/s2004-03-1804-1.

[3] S. Brandt, Datenanalyse. BI Wissenschaftsverlag, Mannheim, 1992.

[4] T. Boccali. The Geant4 Simulation in CMS: OSCAR. Pisa,
2002. http://moby.mib.infn.it/~cmsweb/old_site/lectures/

NicolaTommaso/OSCARTutorial_Boccali.pdf

[5] CERN. www.cern.ch

[6] CERN School of Computing, Gjøvik, Norway, 2008

[7] CMSDOC. http://cmsdoc.cern.ch/cms.html

[8] The CMS experiment at the CERN LHC. The CMS Collaboration,
S. Chatrchyan et al . JINST 3 (2008) S08004. DOI: 10.1088/1748-
0221/3/08/S08004.

[9] CMS Homepage. http://cms.cern.ch/

[10] CMS Software. http://cmsdoc.cern.ch/cms/cpt/Software/html/

General/

[11] CMS Software Guide. https://twiki.cern.ch/twiki/bin/view/CMS/
SWGuidePreface

78

[12] CMSSW Application Framework. https://twiki.cern.ch/twiki/

bin/view/CMS/WorkBookCMSSWFramework

[13] CMS, The TriDAS Project. Technical Design Report, Volume 1: The
Trigger systems. CERN/LHCC 2000-38, CERN, Geneva, 2000. http:
//cmsdoc.cern.ch/cms/TDR/TRIGGER-public/CMSTrigTDR.pdf

[14] The CMS Trigger and Data Acquisition Group. The CMS High Level
Trigger. Eur. Phys. J. C 46 (2006) 605.

[15] Lyndon Evans and Philip Bryant (eds). LHC Machine. JINST 3 (2008)
S08001 DOI: 10.1088/1748-0221/3/08/S08001.

[16] R. Frühwirth. Statistische Methoden der Datenanalyse. Vorlesungsun-
terlagen, Wien, 2008. http://wwwhephy.oeaw.ac.at/u3w/f/fru/www/
vorlesung/Folien_SS2008.pdf

[17] R. Frühwirth, P. Kubinec, W. Mitaroff, M. Regler. Vertex reconstruction
and track bundling at the LEP collider using robust algorithms. Comput.
Phys. Commun. 96 (1996) 189.

[18] R. Frühwirth, M. Regler, R. Bock, H. Grote and D. Notz, Data Anal-
ysis Techniques for High–Energy Physics. Cambridge University Press,
Cambridge, 2000.

[19] R. Frühwirth, A. Strandlie, T. Todorov, M. Winkler. Recent Results
on Adaptive Track and Multitrack Fitting in CMS. Nucl. Instrum. and
Methods A 502 (2003) 702.

[20] A. Gersho and R. M. Gray. Vector Quantization And Signal Compres-
sion. Kluwer, Boston, 1992.

[21] IGUANA Homepage. http://iguana.web.cern.ch/iguana/

[22] Institut für Hochenergiephysik der Österreichischen Akademie der Wis-
senschaften. http://www.hephy.at/

[23] K. Klein. The CMS Silicon Strip Tracker — Overview and Sta-
tus. Proceedings of the 2005 International Europhysics Conference on
High Energy Physics. http://arxiv.org/ftp/physics/papers/0610/
0610259.pdf

[24] M. Krammer. Detektoren in der Hochenergiephysik. Lecture notes, sum-
mer term 2007.

79

[25] S. Kundu. Gravitational clustering: A new approach based on the spatial
distribution of the points. Pattern Recognition 32 (1999) 1149.

[26] The Large Hadron Collider. http://lhc-machine-outreach.web.

cern.ch/lhc-machine-outreach/

[27] LHC Technical Design Report. http://ab-div.web.cern.ch/ab-div/
Publications/LHC-DesignReport.html

[28] W. R. Leo, Techniques for Nuclear and Particle Physics Experiments A
How–to Approach Second Revised Edition. Springer, New York Berlin
Heidelberg, 1994.

[29] S. Qian. Letter to the Editor A steering procedure for the fast vertex
fitting method. Nuclear Instruments and Methods in Physics Research
A 350 (1994) 618.

[30] RAVE Users Guide. http://projects.hepforge.org/rave/trac/

wiki/UserGuide

[31] The RAVE/VERTIGO Vertex Reconstruction Toolkit. http:

//wwwhephy.oeaw.ac.at/p3w/ilc/talks/06_SiLC_Liverpool/

WM_RaveVertigo.pdf

[32] M. Regler, R. Frühwirth, W. Mitaroff. Filter Methods in Track and
Vertex Reconstruction. Int. J. Mod. Phys. C 7 (1996) 521.

[33] K. Rose. Deterministic annealing for clustering, compression, classifica-
tion, regression and related optimization problems. Proc. IEEE 86 11
(1998) 2210.

[34] K. Rose, E. Gurewitz, G.C. Fox. Statistical mechanics and phases tran-
sitions in clustering. Phys. Rev. Lett., 65 (1990) 8 945.

[35] J. Sammet, Ausarbeitung des Vortrags LHC Beschleuniger aus
der Reihe Hadron–Kollider–Experimente bei sehr hohen Energien,
2006. http://web.physik.rwth-aachen.de/~hebbeker/lectures/

sem0607/sammet_ausarbeitung.pdf

[36] W. Waltenberger. Development of Vertex Finding and Vertex Fitting
Algorithms for CMS. Dissertation TU Wien, 2004.

[37] W. Waltenberger et al . The RAVE/VERTIGO vertex reconstruction
toolkit and framework. J. Phys.: Conf. Ser. 119 (2008) 032037. DOI:
10.1088/1742-6596/119/3/032037

80

[38] W. Waltenberger, R. Frühwirth, P. Vanlaer. Adaptive vertex fitting. J.
Phys. G: Nuclear and Particle Physics 34 (2007) N1.

Riedel. The RAVE/VERTIGO vertex reconstruction toolkit and frame-
work. Wien, 2008

81

List of Figures

1.1 Location of the LHC (Source: http://www.phys.ufl.edu/

~matchev/LHCJC/lhc.html) 6
1.2 The dual plasma source (left) and a schematic drawing of it

(right). (Source: [35]) . 7
1.3 The accelerator complex at CERN (Source: http://public.

web.cern.ch/Public/en/Research/AccelComplex-en.html) 7
1.4 An LHC dipole with two beam pipes (Source: http://mediaarchive.

cern.ch/MediaArchive/Photo/Public/1998/9809007/9809007/

9809007-Icon.jpg) . 8
1.5 Overview of the CMS experiment (Source: http://esmane.

physics.lsa.umich.edu/wl/umich/phys/um-cern-reu/2004/

20040805-umwlap002-08-wagner/real/sld003.htm) 10
1.6 Cross section of one inner tracker barrel quarter and an endcap

half. Double-sided silicon strip detectors are depicted in blue,
the single-sided ones in red. (Source: http://www.ba.infn.

it/~zito/cms/tvis.html) . 10
1.7 The CMS pixel detector. (Source: http://cmsinfo.cern.

ch/outreach) . 11
1.8 A single pixel detector (left) and a closeup of a silicon strip de-

tector from an endcap disc (right). (Sources: http://cmsinfo.
cern.ch/outreach and [23]) 11

1.9 Schematic drawing of an electromagnetic shower. (Source: [24]) 12
1.10 A single PbWO4 crystal (left) and a module of crystals (right).

(Sources: http://cmsinfo.cern.ch/outreach and http://

doc.cern.ch//archive/electronic/cern/others/PHO/photo-cms/

oreach//oreach-2005-003_08.jpg) 13
1.11 Crystal modules in the detector. (Source: http://doc.cern.

ch//archive/electronic/cern/others/PHO/photo-cms/oreach/

oreach-2006-019.jpg) . 13

82

1.12 The single wedges of the HCAL (left) and the wedges in the
HCAL barrel (right). (Source: http://doc.cern.ch//archive/
electronic/cern/others/PHO/photo-cms/hcal/hcal-2003-009.

jpg and http://doc.cern.ch//archive/electronic/cern/

others/PHO/photo-cms/hcal/hcal-2002-007.jpg) 14
1.13 Whole HCal barrel. (Source: http://doc.cern.ch//archive/

electronic/cern/others/PHO/photo-cms/hcal/hcal-2005-001.

jpg) . 15
1.14 The superconducting solenoid (left) is held by a yoke ring

(right). (Source: http://cmsinfo.cern.ch/outreach) 15
1.15 One of the five yoke rings. (Source: http://cmsinfo.cern.

ch/outreach) . 16
1.16 The drift tubes (a), the cathode strip chambers (b) and the re-

sistive parallel plate chambers (c). (Source: http://cmsinfo.
cern.ch/outreach) . 17

2.1 Structure of the CMS trigger and DAQ system (Source: [6]) . 19
2.2 Schematic drawing of the LV1 trigger (Source: [6]) 21
2.3 From ORCA to CMSSW (Source: http://wwwhephy.oeaw.

ac.at/p3w/ilc/talks/Projektberichte/WW_060608.pdf) . 23
2.4 Snapshot of an event visualized with IGUANA (Source: http:

//iguana.web.cern.ch/iguana/gallery.html) 24
2.5 From CMSSW to RAVE (Source: http://wwwhephy.oeaw.

ac.at/p3w/ilc/talks/Projektberichte/WW_060608.pdf) . 27
2.6 From RAVE to VERTIGO (Source: http://wwwhephy.oeaw.

ac.at/p3w/ilc/talks/Projektberichte/WW_060608.pdf) . 28
2.7 The data flow in VERTIGO and RAVE. Since both frame-

works are independent of the underlying detector, the input
data may originate from different sources (Source: http://

wwwhephy.oeaw.ac.at/p3w/ilc/talks/Projektberichte/WW_

060608.pdf) . 28

3.1 Probability distribution for rolling a perfect die. 30
3.2 Examples of a discrete in this case a binomial (left) and a con-

tinuous (gaussian) probability density function (right). (Sources:
http://www.rossmanchance.com/iscam/exampleCh3.html and
http://zoonek2.free.fr/UNIX/48_R/07.html) 30

3.3 Gaussian Distribution. The mean and the standard deviation
are shown. (Source: http://hubpages.com/hub/Probability_
Glossary) . 32

3.4 Landau distribution. (Source: [28]) 34

83

3.5 Linear regression through a set of data points. It can be seen
how an outlayer distorts the estimate. (Source: [16]) 39

3.6 Illustration of the perigee parameters (ε, zp,Θ,Φp, ρ) with re-
spect to a reference position O (e.g. an initial vertex position)
with the coordinates(PRGX / PRGY / PRGZ). The minimal
distance between O and the track (OP) is ε, zp is the z coordi-
nate of P, Θ is the trajectories’ polar angle, Φp is the azimuthal
angle of the trajectory at P and ρ is the inverse radius of the
track curvature. (Source: [29]) 47

4.1 Performance of the MVF reconstruction algorithm (a) com-
pared to the AVR algorithm (b). 55

4.2 Position resolution of the primary and secondary vertices ob-
tained using MVF (a) and AVR (b) 56

4.3 Comparison of the number of associated reconstructed pri-
mary (a) and secondary vertices (b) using the beamspot con-
straint and not using it. 58

4.4 Comparison of the position resolution of the associated recon-
structed primary (a) and secondary vertices using the beamspot
constraint and not using it. 59

4.5 Comparison of the number of associated reconstructed pri-
mary (a) and secondary vertices (b) with and without using
the beamspot constraint. 60

4.6 Comparison of the position resolution of the associated recon-
structed primary (a) and secondary vertices with and without
using the beamspot constraint. 61

4.7 Comparison of the associated reconstructed primary (a) and
secondary vertices (b) using the AVR (red) or the MBS (blue)
as seeding algorithm. 63

4.8 Same as 4.7 but for more distances. 64
4.9 Position resolution of the associated reconstructed primary (a)

and secondary vertices (b) using the AVR (red) or the MBS
(blue) as seeding algorithm. 65

4.10 Same as 4.9 but for more distances. 66
4.11 The reconstructed and associated primary (a) and secondary

(b) vertices using the MBS as reconstruction algorithm. 67
4.12 Comparison of the percentage of reconstructed and associated

primary (a) and secondary vertices (b) between the former
MVF and the MVF using the improved MBS. 69

84

4.13 Comparison of the position resolution in the primary (a) and
secondary vertices (b) between the former MVF and the MVF
using the improved MBS. 70

4.14 Comparison of the percentage of reconstructed and associated
primary (a) and secondary vertices (b) between the MVF using
the improved MBS and the AVR. 71

4.15 Comparison of the position resolution in the primary (a) and
secondary vertices (b) between the MVF using the improved
MBS and the AVR. 72

4.16 The influence of the σcut on the number of reconstructed and
associated primary (a) and secondary vertices (b). It was stud-
ied for three different distances – 0.75 mm, 13 mm and 1 m. . 74

4.17 The influence of the σcut on the position resolution of the pri-
mary (a) and secondary vertices (b). It was studied for three
different distances – 0.75 mm, 13 mm and 1 m. 75

85

Curriculum Vitae

Name Silke Federmann

Geburtsdatum 12. 01. 1979

Familienstand verheiratet seit 23. 01. 1999

Adresse Steudelgasse 42
1100 Wien

Berufserfahrung 1999 bis 2009 tätig als Nachhilfelehrerin im Nachhilfeinstitut

ÖKLV

2003 bis 2004 freiberuflich tätig bei OVB Wien
1996 und 1997 Ferialpraxis im chemischen Labor der

Enz–Caro Metallwerke

Ausbildung 2007 elf Wochen Praktikum am CERN als Sommer Studentin
2004 bis 2009 Diplomstudium Physik an der Universität Wien
1997 bis 2004 Lehramtsstudium Chemie/PPP an der Universität Wien,

dann Studienrichtungswechsel auf Diplom Physik

1989 bis 1997 BG/BRG Baden Biondekgasse
1985 bis 1989 Volksschule Enzesfeld-Lindabrunn

Sprachen Englisch fließend
Französisch Grundkenntnisse

86

	Introduction
	The Large Hadron Collider (LHC)
	The accelerator chain - from source to collision
	The Beam

	The CMS Experiment
	The Inner Tracker
	The Calorimetry
	The Solenoid
	The Muon Chambers

	Data Analysis
	Collisions - What now?
	Online Analysis
	Event Selection - The CMS Trigger

	Offline Analysis
	CMS Software

	Simulation
	Why Simulation?
	CMS Software
	Frameworks and data used in this Thesis

	Vertex Fitting
	A Little Statistics
	Definitions
	Parameter Estimation

	Mode Finding
	Algorithms for mode finding in one dimension
	Algorithms for mode finding in three dimensions

	Vertex Finding
	Vertex Fitting

	Optimization of the Multi Vertex Fitter
	The Multi Vertex Fitter
	The Algorithm
	Implementation of the Multi Vertex Fitter

	Performance Studies
	The Original Algorithm
	Inclusion of Beamspot Constraint
	Performance Studies

	Comparison of Different Seeding Algorithms
	Performance Studies

	Test of the MBS Seeding Algorithm
	Inclusion of the Ghost Track Formalism
	Performance Studies
	Adjustment of the cut

	Conclusion

