

Radiative decays at LHCb

Míriam Calvo

17 April 2012

Implications of LHCb measurements and future prospects

b→qγ

• Radiative b \rightarrow (d, s) γ , one-loop penguin transition, sensitive to NP.

NP may introduce sizeable effects on the dynamics of the transitions, through contributions of new particles inside the loops

- Theoretically clean FCNC transition & experimentally accessible.
- Many observables: branching fractions (BR), CP asymmetries (A_{CP}), isospin asymmetry, helicity structure of the photon.

Radiative decays $B \rightarrow V\gamma$

- $B^0 \rightarrow K^{*0} \gamma$ and $B_s^0 \rightarrow \phi \gamma$
- Resolution ~100 MeV/c² dominated by ECAL resolution

Selection

- Similar selection for both decays to ensure cancellation of systematics.
 - - p_T>500 MeV, not from PV, PID requirements, vertex quality, mass cut
 - Select high E_T photon
 - E_{τ} >2.6 GeV, CL cut, π^0 rejection
 - Combine the meson with the photon to build the B candidate
 - p_T>3 GeV, from PV, helicity, isolation

Branching fractions

Previous results:

[Ali, Pecjak, Greub, Eur. Phys, J. C55 (2008)]

[HFAG, 2010]

	Theory (x10 ⁻⁵)	Experiment (x10 ⁻⁵)
$B^0 \rightarrow K^{*0} \gamma$	4.3±1.4	4.33±0.15
$B_s^0 \rightarrow \phi \gamma$	4.3±1.4	5.7 ^{+2.1} _{-1.8}

SM prediction for the ratio:

$$\frac{\mathcal{B}(B^0 \to K^{*0} \gamma)}{\mathcal{B}(B_s^0 \to \phi \gamma)} = 1.0 \pm 0.2$$

0.7±0.3 experimentally

• LHCb result (0.37 fb⁻¹): LHCb-PAPER-2011-042, submitted to Phys. Rev. D

$$\frac{\mathcal{B}(B^0 \to K^{*0}\gamma)}{\mathcal{B}(B_s^0 \to \phi\gamma)} = 1.12 \pm 0.08(\text{stat})^{+0.06}_{-0.04}(\text{syst}) \stackrel{+0.09}{_{-0.08}}(f_s/f_d)$$

Using
$$\mathcal{B}(B^0 \to K^{*0}\gamma) = (4.33 \pm 0.15) \times 10^{-5}$$

$$\Rightarrow$$
 $\mathcal{B}(B_s^0 \to \phi \gamma) = (3.9 \pm 0.5) \times 10^{-5}$

World best measurements

The ratio of branching fractions in more detail:

$$\frac{\mathcal{B}(B^0 \to K^{*0}\gamma)}{\mathcal{B}(B_s \to \phi\gamma)} = \begin{bmatrix} N_{sig}^{B^0 \to K^{*0}\gamma} & \mathcal{B}(\phi \to K^+K^-) & f_s \\ N_{sig}^{B_s \to \phi\gamma} & \mathcal{B}(K^* \to K^+\pi^-) & f_d \\ \end{bmatrix} \underbrace{\begin{cases} From \ \mathsf{PDG} \\ From \ \mathsf{LHCb} \\ measurement \\ (arXiv:hep-ex/IIII.2357vI) \end{cases}}_{\mathsf{atio} \ \mathsf{of} \ \mathsf{efficiencies}:$$

Ratio of efficiencies:

$$\frac{\epsilon_{B^0_s \to \phi \gamma}}{\epsilon_{B^0 \to K^{*0} \gamma}} = r_{\rm acc} \times r_{\rm reco\&sel} \times r_{\rm PID} \times r_{\rm trigger}$$

$$r_{\rm acc} = 1.094 \pm 0.004 \, ({\rm stat})$$
 From simulation
$$r_{\rm reco\&sel} \, = \, 0.949 \, \pm \, 0.006 \, ({\rm stat})$$

$$r_{\rm trigger} = 1.057 \pm 0.008 \, ({\rm stat})$$

From data (D* calibration sample) $r_{\rm PID} = 0.787 \pm 0.010 \, ({\rm stat})$

Systematic uncertainties

Source	$\sigma/{\rm ratio}$
Acceptance (r_{acc})	±0.3 %
Selection $(r_{\text{reco\&sel}})$	$\pm 1.4~\%$
PID efficiencies (r_{PID})	$\pm 2.7~\%$
Trigger ratio (r_{trigger})	$\pm 0.8 \%$
B mass window	$\pm 0.9 \%$
* Background	$\binom{+4.5}{-2.0}$ %
Visible fraction of vector mesons	$\pm 1.0~\%$
Uncertainty on the ratio of yields	$\binom{+5.4}{-3.3}$ %
f_s/f_d	$\binom{+7.9}{-7.5}$ %

^{*} Different background contamination is accounted for in yield extraction (details in slide 17)

$$A_{CP} (B^0 \rightarrow K^{*0}\gamma)$$

• Direct CP asymmetry in $B^0 \rightarrow K^{*0}\gamma$

1.0 fb⁻¹ of 2011 data
Larger yields than in B factories!!

 $(B_s^0 \rightarrow \phi \gamma, N=690\pm 40)$

Previous results:

[Keum, Matsumori, Sanda, PRD 72 (2005)]

[BaBar, PRL 103 (2009)]

	Theory	Experiment		
$A_{CP}(B^0 \rightarrow K^{*0}\gamma)$	-0.006±0.004	$\text{-}0.016 \pm 0.022 \pm 0.007$		

• Preliminary LHCb result (1 fb⁻¹): LHCb-CONF-2012-004

$$\mathcal{A}_{CP}(B^0 \to K^{*0}\gamma) = \mathcal{A}^{\mathrm{RAW}}(B^0 \to K^{*0}\gamma) - \mathcal{A}_{\mathrm{D}}(K\pi) - \kappa \mathcal{A}_{\mathrm{P}}(B^0)$$
 Production asymmetry Detection asymmetry

$$\mathcal{A}_{CP}(B^0 \to K^{*0}\gamma) = 0.008 \pm 0.017(\text{stat}) \pm 0.009(\text{syst})$$

Most precise measurement

$$\mathcal{A}_{CP}(B^0 \to K^{*0}\gamma) = \mathcal{A}^{\mathrm{RAW}}(B^0 \to K^{*0}\gamma) - \mathcal{A}_{\mathrm{D}}(K\pi) - \kappa \mathcal{A}_{\mathrm{P}}(B^0)$$

$$\mathcal{A}^{\text{RAW}} = \frac{N_{\overline{B}^0 \to \overline{K}^{*0} \gamma} - N_{B^0 \to K^{*0} \gamma}}{N_{\overline{B}^0 \to \overline{K}^{*0} \gamma} + N_{B^0 \to K^{*0} \gamma}} = 0.003 \pm 0.017 (\text{stat})$$

Detection asymmetry using control samples of charm decays

$$\boxed{\mathcal{A}_{\rm D}(K\pi) = \frac{\epsilon(K^-\pi^+) - \epsilon(K^+\pi^-)}{\epsilon(K^-\pi^+) + \epsilon(K^+\pi^-)} = -0.010 \pm 0.002} \quad \text{LHCb-CONF-2011-011}$$

B production asymmetry estimated using a large sample of $B^0 \rightarrow J/\psi K^{*0}$ decays

$$\mathcal{A}_{P}(B^{0}) = \frac{R(\overline{B}^{0}) - R(B^{0})}{R(\overline{B}^{0}) + R(B^{0})} = 0.010 \pm 0.013$$
 LHCb-CONF-2011-011

Reduction factor due to B⁰ oscillation estimated in B⁰ \rightarrow K*⁰ γ data

$$\kappa = \frac{\int \cos(\Delta m_d t) e^{-\Gamma_d t} \epsilon(t) dt}{\int \cosh(\frac{\Delta \Gamma_d t}{2}) e^{-\Gamma_d t} \epsilon(t) dt} = 0.41 \pm 0.04$$

Background contributions

- Partially reconstructed $B\rightarrow Vh\gamma$ decays
- b-baryons $\Lambda_b \rightarrow \Lambda^*(K^-p)\gamma$
- Irreducible bkg, $B_s \rightarrow K^{*0}\gamma$
- Charmless $B \rightarrow K^{*0}\pi^0$

$$B^{+,0} \rightarrow K^{*0}\pi^{+,0}\gamma$$

$$B \rightarrow K^{*0}\pi^{0}X$$

$$\Lambda_{b} \rightarrow \Lambda^{*}\gamma$$

$$B_{s}^{0} \rightarrow \overline{K}^{*0}\gamma$$

$$B^{0} \rightarrow K^{+}\pi^{-}\pi^{0}$$

$$B_{s}^{0} \rightarrow K^{-}\pi^{+}\pi^{0}$$

Side-bands shape shows a threshold effect due to different trigger and offline mass resolutions

		Branching fraction		Contamination relative
		$(\times 10^6)$		to $B^0 \to K^{*0} \gamma$ yield
Radiative	$\Lambda_b^0 \to \Lambda^* \gamma$	unknown		$(1.0 \pm 0.3)\%$
	$B_s^0 \to \bar K^{*0} \gamma$	1.26 ± 0.31	(theo. [16])	$(0.8 \pm 0.2)\%$
Charmless	$B^0 \rightarrow K^+\pi^-\pi^0$	$35.9^{+2.8}_{-2.4}$	$(\exp. [17])$	$(0.5 \pm 0.1)\%$
with π^0	$B_s^0 \to K^- \pi^+ \pi^0$	unknown		$(0.2 \pm 0.2)\%$
Partially	$B^+ \to K^{*0} \pi^+ \gamma$	20^{+7}_{-6}	(exp. [17])	$(3.3 \pm 1.1)\%$
reconstructed	$B^0 \rightarrow K^+ \pi^- \pi^0 \gamma$	41 ± 4	$(\exp. [17])$	$\mathcal{O}(5\%)$
decays	$B \to K^{*0} \pi^0 X$	$\mathcal{O}(10\%)$ [17]		0(1%)

Corrections and systematics

		correction	uncertainty
*Background model	: ΔA_{bkg}	-0.002	± 0.007
Detection	$: -\mathcal{A}_{\mathrm{D}}(K\pi)$	+0.010	± 0.002
Magnet polarity	: $\Delta A_{\mathcal{M}}$	+0.001	± 0.002
B^0 production	: $-\kappa \mathcal{A}_{\mathbf{P}}(B^0)$	-0.004	± 0.005
Total		+0.005	± 0.009

^{*} Bkg model systematic from varying amplitude and shape within uncertainties. $A_{CP}(bkg) = 0$, varied between [-1, 1] except $A_{CP}(B^0 \rightarrow K^{*0}\pi^0) = -0.15\pm0.12$ (Exp.)

Summary and Prospects

Results

Most precise measurements to date. In agreement with SM predictions

$$\frac{\mathcal{B}(B^0 \to K^{*0}\gamma)}{\mathcal{B}(B_s^0 \to \phi\gamma)} = 1.12 \pm 0.08(\text{stat})^{+0.06}_{-0.04}(\text{syst}) \stackrel{+0.09}{_{-0.08}}(f_s/f_d)$$

$$\mathcal{B}(B_s^0 \to \phi\gamma) = (3.9 \pm 0.5) \times 10^{-5}$$

$$\mathcal{A}_{CP}(B^0 \to K^{*0}\gamma) = 0.008 \pm 0.017(\text{stat}) \pm 0.009(\text{syst})$$

Prospects

- CP asymmetry of charged B \rightarrow VP γ modes: B $^+\rightarrow$ K $^*0\pi^+\gamma$, B $^+\rightarrow\phi$ K $^+\gamma$ already observed in 2011 data
- b-Baryons: $\Lambda_b \rightarrow \Lambda \gamma$; $\Lambda_b \rightarrow \Lambda^*(K^-p)\gamma$ already observed in 2011 data
- b \rightarrow d γ as B $^0\rightarrow \omega\gamma$ and B $^0\rightarrow \rho^0\gamma$; B \rightarrow VV γ and neutral B \rightarrow VP γ modes as B \rightarrow V $\pi^0\gamma$ and B \rightarrow VK $_s\gamma$ (?)
- Photon polarisation through time-dependent decay rate of $B_s^0 \rightarrow \phi \gamma$ and possibly through angular analysis of radiative decays of polarised Λ_b baryons
- Isospin asymmetry in B→K*γ

BACKUP

B mass resolution dominated by the photon calibration

Before/after Calorimeter calibration

Selection

Similar selection for both decays to ensure cancellation of systematics

		$B \to K^* \gamma$	$B_s \to \phi \gamma$
Track IP χ^2		> 25	> 25
$p_{T,track}$	(MeV)	> 500	> 500
$KPID_K$		> 5	> 5
$KPID_K-PID_p$		> 2	> 2
$\pi \ PID_K$		< 0	-
meson ΔM_{PDG}	(MeV)	< 50	< 9
meson vertex χ^2		< 9	< 9
γE_T	(MeV)	> 2600	> 2600
$\gamma \mathrm{CL}$		> 0.25	> 0.25
π/γ separation		> 0.5	> 0.5
$p_{T,B}$	(MeV)	> 3000	> 3000
$B \text{ IP } \chi^2$		< 9	< 9
B helicity		< 0.8	< 0.8
B isolation $\Delta \chi^2$		> 0.5	> 0.5

Background contributions account for in the ratio of BR

	$B^0\!\to\! K^{*0}\gamma$		$B_s^0 \rightarrow \phi \gamma$		Ratio	
Contribution	Corr.	Error	Corr.	Error	Corr.	Error
$B_d \rightarrow K^+ \pi^- \pi^0$	-1.3%	$\pm 0.4\%$	_	$\mathcal{O}(10^{-4})$	-1.3%	$\pm 0.4\%$
$B_s \rightarrow K^+\pi^-\pi^0$	-0.5%	$\pm 0.5\%$		$\mathcal{O}(10^{-4})$	-0.5%	$\pm 0.5\%$
$B_s \rightarrow K^+ K^- \pi^0$		$\mathcal{O}(10^{-4})$	-1.3%	$\pm 1.3\%$	+1.3%	$\pm 1.3\%$
$\Lambda_b \to \Lambda^* \gamma$	-0.7%	$\pm 0.2\%$	-0.3%	$\pm 0.2\%$	-0.4%	$\pm 0.3\%$
$B_s \to K^{*0} \gamma$	-0.8%	$\pm 0.4\%$	_		-0.8%	$\pm 0.4\%$
Partially reconstructed B	+0.04%	$\binom{+3.1}{-0.2}\%$	+4.5%	$\binom{+1.3}{-2.9}\%$	-4.5%	$\binom{+4.2}{-1.3}\%$
$\phi \gamma / K^{*0} \gamma$ cross-feed	-0.4%	$\pm 0.2\%$		$\mathcal{O}(10^{-4})$	-0.4%	$\pm 0.2\%$
Multiple candidates	-0.5%	$\pm 0.2\%$	-0.3%	$\pm 0.2\%$	-0.2%	$\pm 0.3\%$
Total	-4.2%	$\binom{+3.2}{-0.9}\%$	+2.6%	$\binom{+1.9}{-3.2}\%$	-6.8%	$\binom{+4.5}{-2.0}\%$

Photon polarisation with $B_s^0 \rightarrow \phi \gamma$

$$\lambda_{\gamma} = \frac{|\mathcal{A}_{R}|^{2} - |\mathcal{A}_{L}|^{2}}{|\mathcal{A}_{R}|^{2} + |\mathcal{A}_{L}|^{2}}$$

Right-handed photon in b \rightarrow q γ is suppressed by (m_q/m_b) within SM Time-dependent decay rate is sensitive to photon helicity

$$\begin{split} \Gamma_{B^0_{(s)} \to \Phi^{CP} \gamma}(t) &= |A|^2 e^{-\Gamma_{(s)} t} (\cosh \frac{\Delta \Gamma_{(s)} t}{2} - \mathcal{A}^{\Delta} \sinh \frac{\Delta \Gamma_{(s)} t}{2} + \mathcal{C} \cos \Delta m_{(s)} t - \mathcal{S} \sin \Delta m_{(s)} t) \\ \tan \Psi &= \begin{vmatrix} A(B_q \to f^{CP} \gamma_R) \\ A(B_q \to f^{CP} \gamma_L) \end{vmatrix} & \mathcal{A}^{\Delta} \approx \sin(2\psi) \cdot \cos(2\beta_s) & \mathcal{S} \approx \sin(2\psi) \cdot \sin(2\beta_s) \\ \mathcal{A}^{\Delta} \approx \sin(2\psi) \approx 0.1 \text{ in SM} \end{split}$$

Reliable theoretical prediction at NNLO \rightarrow probe for NP in loop

 $\lambda_{\gamma} = \cos 2\psi$

 $\sin(2\psi) = 0.28\pm0.44$, measured in B factories using B⁰ \rightarrow K*⁰(K_s⁰ π ⁰) γ

Extract $\sin(2\psi)$ with $B_s^0 \rightarrow \phi \gamma$, requires >= 2 fb⁻¹

LHCb sensitivity

	5 fb ⁻¹	50 fb ⁻¹	Theor
S (B _s $\rightarrow \phi \gamma$)	0.07	0.02	<0.01
$A^{\Delta\Gamma}(B_s \rightarrow \phi \gamma)$	0.14	0.03	0.02

$$B^+ \rightarrow \phi K^+ \gamma$$

$$\mathcal{B}(B^+ \to \phi K^+ \gamma) = (3.5 \pm 0.6) \cdot 10^{-6} \text{ Exp.}$$

 $A_{CP} = -0.26 \pm 0.14 \pm 0.05 \text{ (BaBar)}$

$b\rightarrow d\gamma$

A_{CP} SM prediction of O(10%), but more difficult to access experimentally. $\mathcal{B}(B\to\rho\gamma)=(1.30\pm0.19)\cdot10^{-6}$ Theor., $(1.39\pm0.22)\cdot10^{-6}$ Exp. $|V_{td}|/|V_{ts}|$ using B⁰ $\to \omega\gamma$ and B⁰ $\to\rho\gamma$ (vs K* γ)

Isospin asymmetry

$$\Delta_{0+}(B^0 \to K^{*0}\gamma) = \frac{\Gamma(B^0 \to K^{*0}\gamma) - \Gamma(B^+ \to K^{*+}\gamma)}{\Gamma(B^0 \to K^{*0}\gamma) + \Gamma(B^+ \to K^{*+}\gamma)} \quad \text{Sensitive to MSSM effects at large tan} \text{ Sensitive to MSSM effects at large tan} \text{ Constraints on the mSUGRA parameter space.}$$

Theor.
$$\begin{aligned} & \Delta_{0-}(B^0 \to K^{*0}\gamma)_{\mathrm{Kagan}} = (+8.0^{+2.1}_{-3.2})\% \times 0.3/T_1^{B \to K^*} \\ & (T_1^{B \to K^*} \text{ estimates go from } 0.23 \pm 0.06 \text{ to } 0.38 \pm 0.06) \\ & \Delta_{0+}(B^0 \to K^{*0}\gamma)_{\mathrm{Matsumori}} = +(2.7 \pm 0.8)\% \end{aligned}$$
 Exp.
$$\begin{aligned} & \Delta_{0+}(B^0 \to K^{*0}\gamma)_{\mathrm{Belle}} = +(1.2 \pm 4.4 \pm 2.6)\% \\ & \Delta_{0-}(B^0 \to K^{*0}\gamma)_{\mathrm{BaBaR}} = +(6.6 \pm 2.1 \pm 2.2)\% \end{aligned}$$