Università degli Studi di Milano–Bicocca Istituto Nazionale di Fisica Nucleare – Sezione di Milano–Bicocca

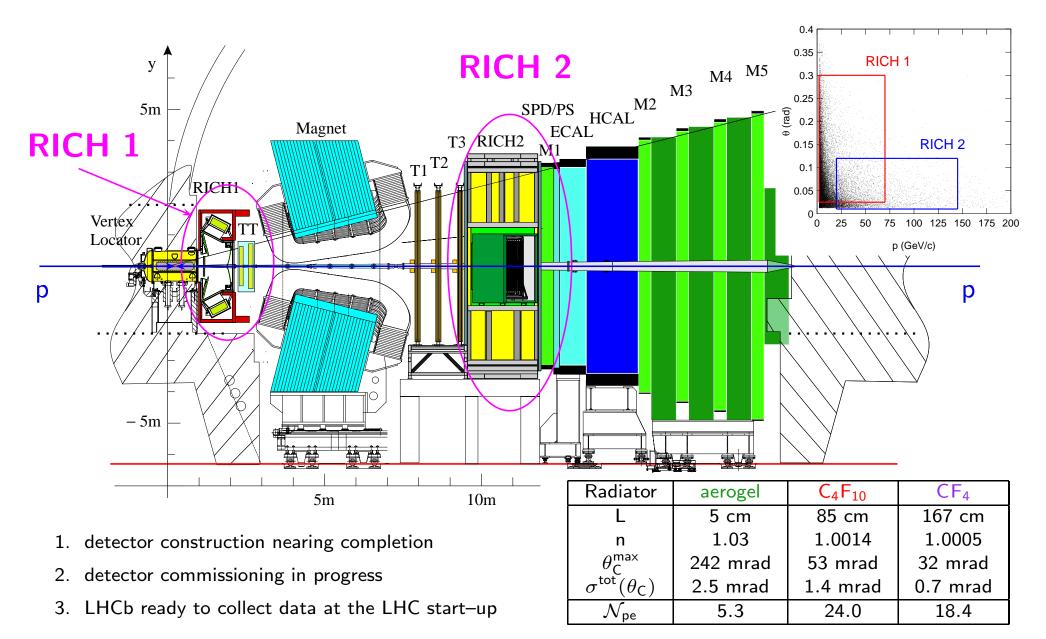
The Performance of the LHCb Pixel Hybrid Photon Detectors in a 25ns Structured Test-Beam

D. L. Perego

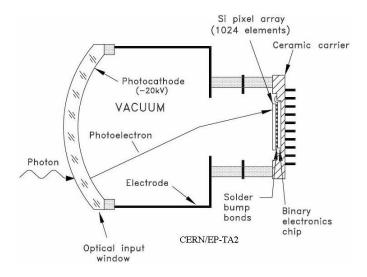
on behalf of the LHCb RICH Collaboration

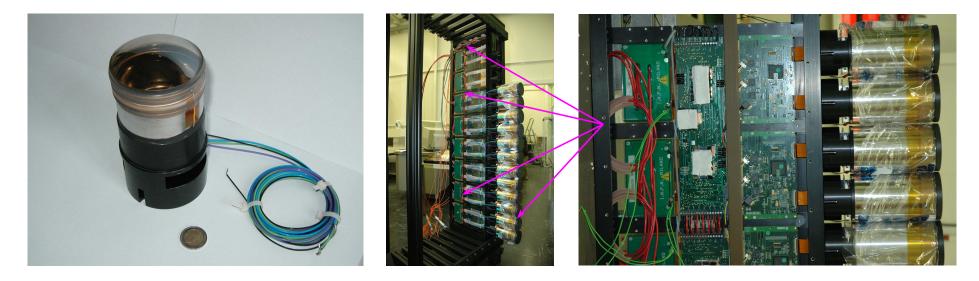
2007 IEEE Nuclear Science Symposium – October 29th, 2007 Honolulu – Hawaii (U.S.A.)

Outline


- 1. introduction
 - the LHCb experiment at the LHC
 - RICH detectors
 - Pixel Hybrid Photon Detectors (HPD)
- 2. September 2006 Test Beam
- 3. photoelectron yield analysis
 - the model
 - N_2 and $C_4 F_{10}$ photoelectron yields
- 4. Cherenkov angle resolution (early study)
- 5. conclusions

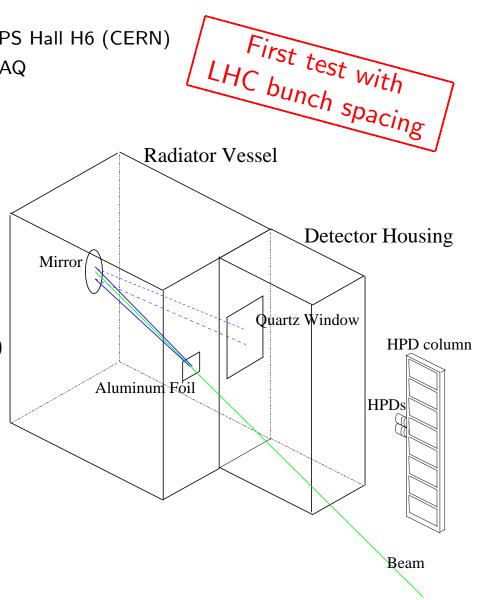
The LHCb Experiment

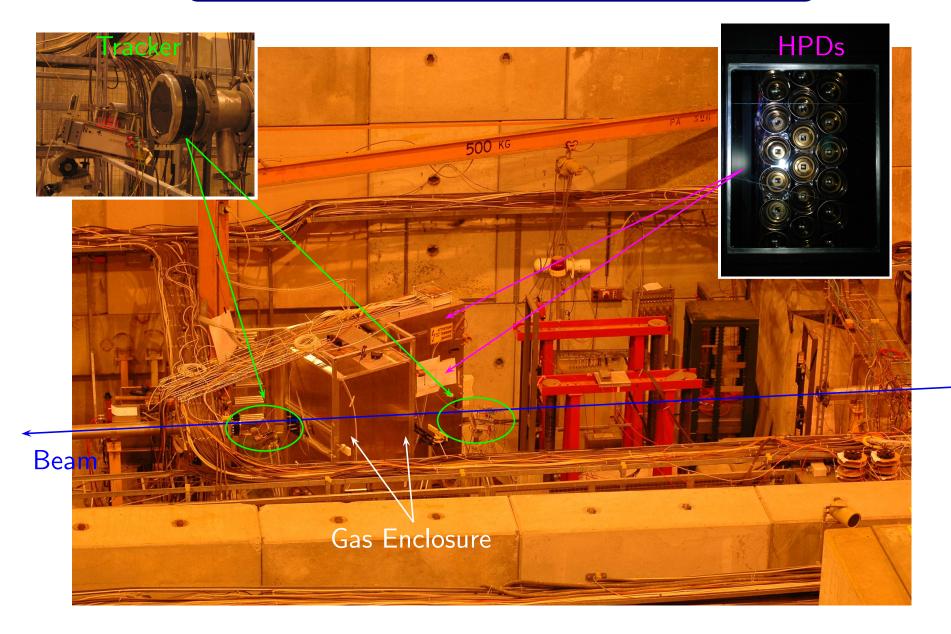




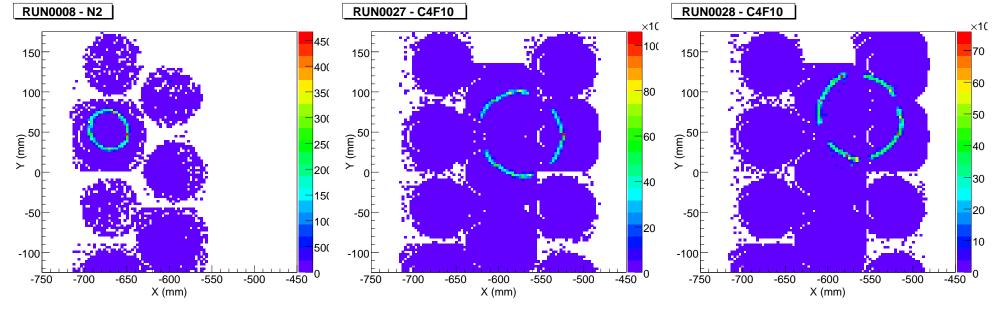
A total of 484 pixel HPDs produced to detect Cherenkov photons

- 1. vacuum tube, diameter 83 mm, height 120 mm
- 2. S20 multi-alkali photocathode
- 3. 200 600 nm sensitive wavelength range
- 4. average QE improved during production up to $\sim 35\%$
- 5. cross focusing optics ($\Delta V=20 kV)$, demag factor ~ 5
- 6. photoelectrons focused on the pixelized silicon anode
- 7. $\,\sim$ 500k pixels over total active area $\sim 3.3m^2$


Further details by T. Blake (N53–1)


- 1. first test with LHC time structure
 - complete RICH detector, prototype placed at SPS Hall H6 (CERN)
 - final versions of the read-out electronics and DAQ
 - analysis using LHCb software
- 2. tilted parabolic mirror to focus Cherenkov photons
- 3. three RICH2 columns with 48 HPDs in total
- 4. N_2 and $C_4 \mathsf{F}_{10}$ gas as Cherenkov radiators
 - $L\sim 1~m$
- 5. beam properties
 - 25 ns bunch spacing <
 - 80 GeV/c beam from CERN-SPS
 - mixture of π (80%), e (10%), K (7%), p (3%)
 - average < 1 particle per bunch train
- 6. trigger
 - two scintillators in coincidence
 - no veto on event with more than one particle
- 7. tracking
 - two HPD silicon sensors as tracking stations

September 2006 Test Beam (2)



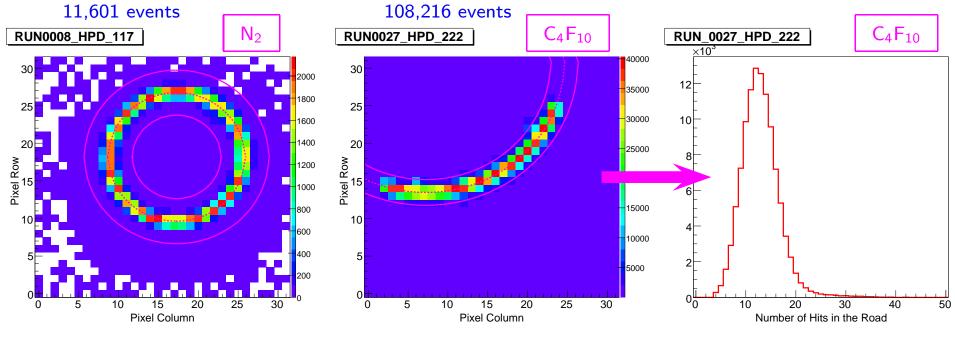
Radiators and Data Taking

- 1. N_2 and C_4F_{10} gas radiator used
 - N₂ data: n = 1.000297 \implies Cherenkov ring on single HPD
 - C_4F_{10} data: n = 1.0014 \implies Cherenkov ring on 3 or 4 HPD
- 2. LED and dark count runs (\longrightarrow noise studies)
- 3. goals of this test beam
 - both hardware and software global tests
 - data acquisition and analysis checks
 - photoelectron yield studies (N $_2$ and C $_4F_{10}$ data)
 - Cherenkov angle resolution evaluation

test the full electronic chain at the same time

²⁰⁰⁷ IEEE NSS – October 29th, 2007

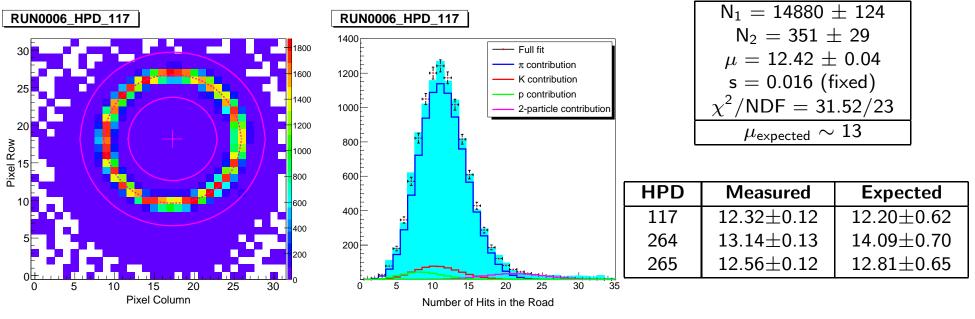
The Performance of the LHCb Pixel Hybrid Photon Detectors ...


D. L. Perego – 7

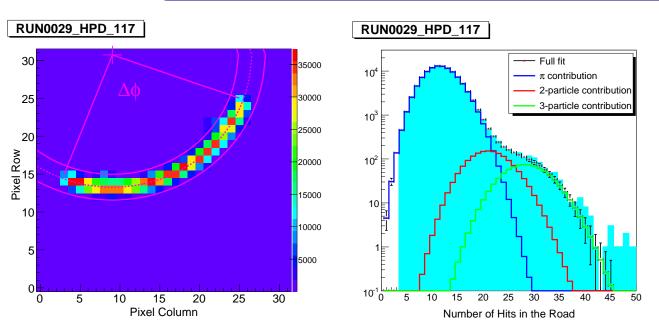
Photoelectron Yield Analysis

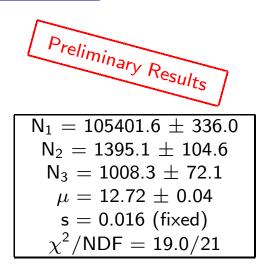
- 1. fit N_2 and $\mathsf{C}_4\mathsf{F}_{10}$ rings on an event–by–event basis
 - require at least 5 hits in each event
 - fit a circle (3 free parameters)
- 2. determine a road around the average ring centre
 - select signal and reject background events with large number of fired hits outside the signal region
 - road defined as R \pm ΔR (ΔR = 3 pixels for N_2; $\Delta R \sim$ 1.7 pixels for C_4F_{10})
- 3. selection of events with 4 or more hits inside the road and less than 3 outside
- 4. histogram the number of hits in the road for selected events

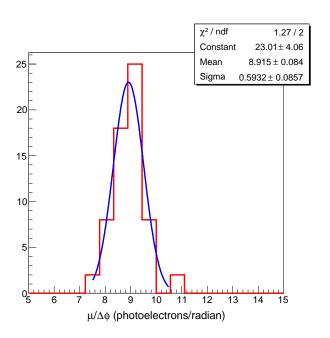
2007 IEEE NSS – October 29th, 2007


D. L. Perego – 8

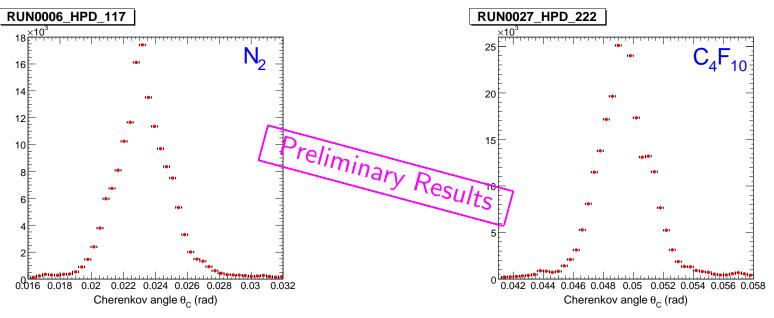
The Performance of the LHCb Pixel Hybrid Photon Detectors ...


- 2. fit model
 - sum of Poisson contributions modelling Cherenkov emission
 - beam composition: 80% π and 10% e (saturated), 7% K and 3% p (relevant for N₂ only)
 - describe one, two (and three) particle contributions in the beam
- 3. HPD effects (measured in dedicated LED and dark count runs)
 - account for pixel–to–pixel charge sharing ($\sim 3\%$ on average)
 - double hits contamination
- 4. vary the μ parameter in the fit model

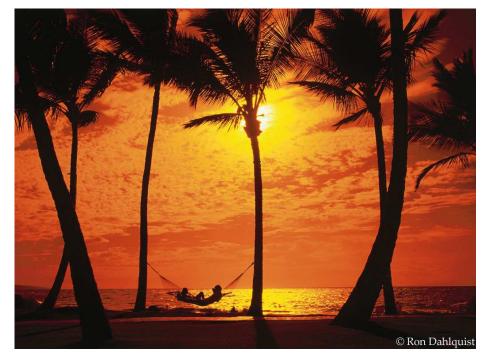



Preliminary Results

C_4F_{10} Photoelectron Yield



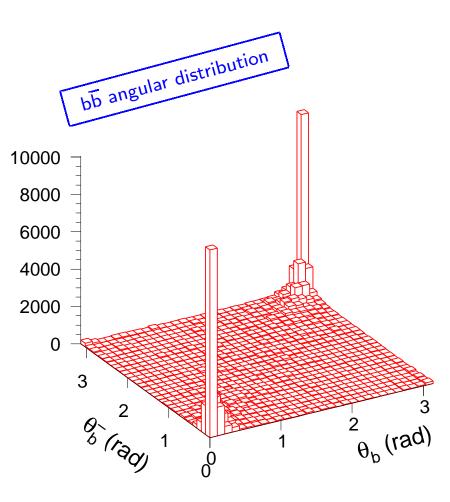
- 1. include and fit 1, 2 and 3 particle contributions
- 2. only one-particle species assumed (saturated π)
- 3. reasonable $\chi^2/\text{NDF} \implies N(n)$ accurate model of data
- 4. 2 and 3 particle fraction ${\sim}2\%$ of the total
- 5. stability of the d $\mu/{\rm d}\Delta\phi$ ratio checked: flattish distribution along ϕ
- 6. 10% spread of $\mu/\Delta\phi$ in agreement with the QE of the HPDs involved
- 7. expected yield in good agreement with full Monte-Carlo simulation
- 8. systematic uncertainties contribute at 5% level


- 1. Cherenkov angle, single photon resolution studies started recently
- 2. encouraging results using ray tracing procedure
- 3. N_2 data
 - $\sigma(heta_{
 m C})\sim$ 1.6 mrad
 - work ongoing to better understand the various contributions to the resolution
- $4. \ C_4F_{10} \ data$
 - $\sigma(heta_{
 m C})\sim$ 1.6 mrad
 - excellent resolution reached due to iterative alignment procedure
 - shift in absolute θ_{C} : refractive index not calibrated (5 10% N₂ contamination)

D. L. Perego – 11 The Performance of the LHCb Pixel Hybrid Photon Detectors ...

- 1. September 2006 Test Beam
 - first test with 25 ns LHC time structure
 - electronics and DAQ working at 40 MHz
 - three RICH2 columns with 48 HPDs in total
 - N_2 and $C_4 F_{10}$ Cherenkov radiators
 - 80 GeV/c mixed beam from CERN-SPS
- 2. data collected using an early version of the official LHCb online framework
- 3. analysis done using the official LHCb reconstruction software
 - photoelectron yield analysis
 - Cherenkov angle resolutions
- 4. LHCb photon detection system successfully tested

Back-up slides

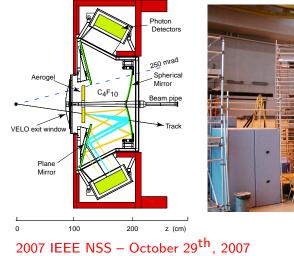

B Physics at LHC

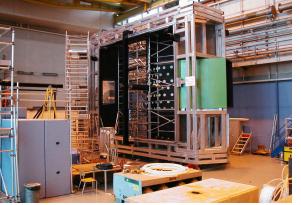
INFN

- 1. the aim of the LHCb experiment
 - study CP Violation in B decays through precise measurement of the CKM parameters
 - hints of New Physics in rare B-decays
- 2. the Large Hadron Collider
 - start-up in fall 2008
 - proton–proton at $\sqrt{s}=14~\text{TeV}$
 - 40 MHz frequency
 - $\mathcal{L}=2 imes 10^{32}~\text{cm}^{-2}\text{s}^{-1}$ mostly single interaction

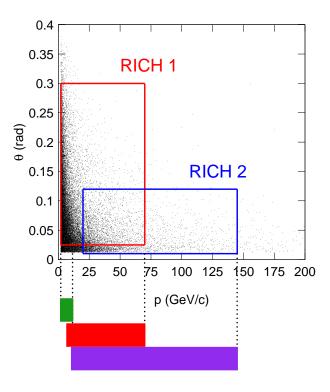
–
$$\sigma_{
m b\overline{b}}\simeq$$
 500 $\mu
m b$

- 3. $\mathcal{N}_{b\overline{b}}\simeq 10^{12}/\text{year}$ expected
- 4. all b-hadron species produced: B_d , B_s , B_c and b-baryons
- 5. very high statistics available for several decay channels
- 6. $b\overline{b}$ pairs correlated in the forward/backward cones
 - LHCb: single arm forward spectrometer
 - acceptance: 300 mrad (H) and 250 mrad (V)
 - 1.9 $\leq\eta$ \leq 4.9 region





Particle identification and $B_s^0 \rightarrow K^+K^-$ decay channel (as an example) MeV/c² 20 MeV/c² 1750 1750 **No RICH** With RICH **1 2** 5000 \blacksquare B_s \rightarrow KK $\blacksquare B_s \rightarrow KK$ 1500 -Events 3000 Events 1250 1000 $\mathbf{B}_{d} \rightarrow \pi \mathbf{K}$ $B_d \rightarrow \pi K$ $\mathbf{B}_{s} \rightarrow \pi \mathbf{K}$ $B_{a} \rightarrow \pi K$ $\blacksquare B_d \rightarrow \pi\pi$ $\blacksquare B_d \rightarrow \pi\pi$ 3000 $\Lambda_{h} \rightarrow pK$ $\Lambda_h \rightarrow pK$ 750 $\Lambda_{\rm h} \rightarrow {\rm p}\pi$ $\Lambda_h \rightarrow p\pi$ 2000 500 1000 250 05 0 5 5.05 5.1 5.15 5.2 5.25 5.3 5.35 5.4 5.45 5.5 5.05 5.1 5.15 5.2 5.25 5.3 5.35 5.4 5.45 5.5 Invariant mass [GeV/c²] Invariant mass [GeV/c²]

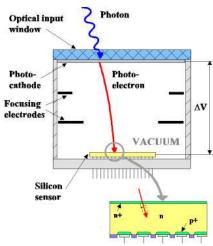

Clear correlation between momentum and polar angle of particles to be identified

- 2 RICH detectors
- 3 radiators, one solid (aerogel) and two gaseous ($\mathsf{C_4F_{10}}$ and $\mathsf{CF_4})$

Radiator	aerogel	C_4F_{10}	CF ₄
L	5 cm	85 cm	167 cm
n	1.03	1.0014	1.0005
$ heta_{C}^{max}$	242 mrad	53 mrad	32 mrad
$\sigma^{\rm tot}(heta_{\sf C})$	2.5 mrad	1.4 mrad	0.7 mrad
$\mathcal{N}_{\sf pe}$	5.3	24.0	18.4

- 1. photoelectron yield: constrained fit to the N(n) hit distribution
- 2. properties of the fit function
 - account for pixel-to-pixel charge sharing (s) and double hits (d)
 - describe one, two (and three) particle contributions in the beam
 - beam composition: 80% π and 10% e (saturated), 7% K and 3% p (relevant for N $_2$ only)
- 3. measured values of charge sharing (from dedicated LED and dark count runs) fixed in the minimization
- 4. vary the parameter in the fit model

$$\mathsf{N}(n) = \underbrace{N_{\pi} \times P\left(n; \mu_{\pi}, s, d\right)}_{\mathsf{P}(n; \mu_{\pi}, s, d)} + \underbrace{N_{K} \times P\left(n; \mu_{K}, s, d\right)}_{\mathsf{K} \times P\left(n; \mu_{K}, s, d\right)} + \underbrace{N_{p} \times P\left(n; \mu_{p}, s, d\right)}_{\mathsf{P}(n; \mu_{p}, s, d)} + \underbrace{N_{2\pi} \times P\left(n; 2\mu_{\pi}, s, d\right)}_{\mathsf{K} \times P\left(n; \mu_{K}, s, d\right)}$$


5. probability to observe n fired pixel hits given a photoelectron yield μ as product of Poisson distributions

$$\mathsf{P}\left(n;\mu,s,d\right) = \sum_{i=0}^{n} \sum_{j=0}^{\infty} \underbrace{\frac{P\left(n-i+j;\mu\right)}{\text{number of hits}}}_{\text{number of hits}} \underbrace{\frac{P\left(i;(n-i)s\right)}{\text{charge sharing}}}_{\text{charge sharing}} \underbrace{\frac{P\left(j;(n-i+j)(n-i+j-1)d\right)}{\text{double hits}}}_{\text{double hits}}$$

- 1. photoelectron signal optimally contained in a single pixel
- 2. signal over threshold in two or more adjacent pixels, probability around $3\% \implies$ charge sharing
- 3. important to know its fraction for each HPD to control the photoelectron yield
- 4. dedicated LED data and toy model
 - estimate number of photoelectrons \neq number of hits due to charge sharing
 - estimate number of adjacent hits due to two genuine photoelectrons
- 5. ion feedback and micro discharges, main background contributions of this study
 - account for 5% of hits in the HPDs
 - clustered in large groups of adjacent pixels
 - ion feedback: shower of photoelectrons created by residual ion inside the vacuum tube colliding with the photocathode
 - micro discharge: spark from near the photocathode due to electrical breakdown of the gas around the tube
- 6. charge sharing fraction measured for each HPD
 - 0.1% precision
 - main inaccuracy still from ion feedback
 - numbers to be used in the N_2 and $\mathsf{C}_4\mathsf{F}_{10}$ photoelectron analyses

