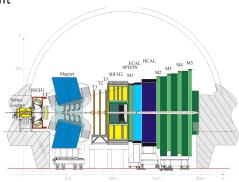
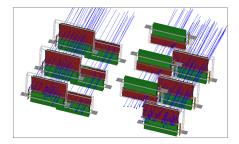


Alignment of the LHCb tracking system 13th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications


R. Märki for the LHCb alignment group

EPFL - LPHE

03 October 2011


Outline

- The software alignment procedure
 - Introduction
 - χ^2 minimization
 - Data samples and useful constraints
- Internal VELO alignment
 - Presentation
 - Features
 - Performance
- Global alignment
 - Presentation
 - Features
 - Performance
- Summary

What is software alignment ?

- All tracking subdetectors have been surveyed after assembly and installation
- Real tracks are used to know the position of the elements with an even higher precision
 - This is called software alignment

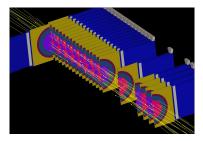
Sample of selected good quality tracks

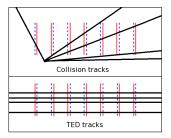
- χ^2 calculated from track fit residuals
- The χ^2 also gets a contribution from survey residuals
- Algorithm to minimize χ^2 as a function of alignment parameters


$$\chi^2 = \sum_{hits \ i} \left(\frac{m_i - h_i(x)}{\sigma_i}\right)^2$$

- m \rightarrow measurement, $\sigma \rightarrow$ measurement error
- $x \rightarrow$ track parameters, usually 5
- $h \rightarrow \text{measurement model}$

$$0 \equiv \frac{d\chi^2}{dx}$$


*W. Hulsbergen, The global covariance matrix of tracks fitted with a Kalman filter and an application in detector alignment, Nucl. Instr. and Meth. A, 600 (2009), p. 471.

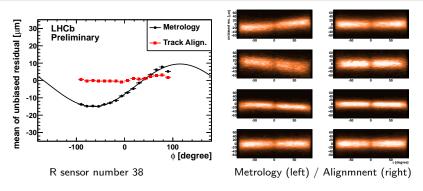

Degrees of freedom and weak modes

- Chose degrees of freedom (alignment variables)
 - translations and rotations
- Degrees of freedom are differently chosen at all levels
 - whole detector, layer, sensor, etc.
- Low sensitivity for certain degrees: weak modes
 - eg. translations along beam axis, scaling, shearing, ...

Data for alignment - find the best constraints

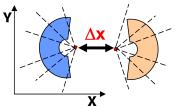
Different type of data giving different constraints

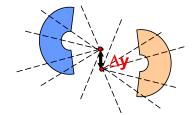
- Tracks from TED runs (collisions far away from the detector) and proton-beam gas collisions
 - \rightarrow small angle tracks
- Collisions happening within the VELO
 → various angle tracks


Also very important constraints

- Overlaps between subdetectors (eg. IT and OT)
- Overlaps between sensors within a subdetector

VELO fully closed (stable beam)

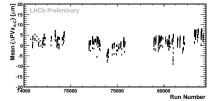

VELO alignment - metrology and track alignment



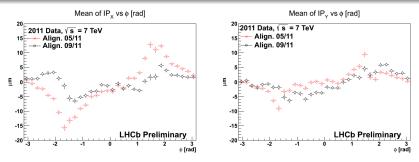
 $\begin{aligned} \text{res.}(\mathsf{R}) &= -\Delta x cos \phi_{track} + \Delta y sin \phi_{track} \\ \text{res.}(\phi) &= \Delta x sin \phi_{track} + \Delta y cos \phi_{track} + \Delta \gamma r_{track} \end{aligned}$

- Initially used Millepede alignment starting from metrology
- Now χ^2 minimization of Kalman fit residuals
- Work on Z (beam axis) position ongoing (low sensitivity due to weak modes) - for the moment use metrology

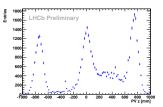
VELO alignment and primary vertices

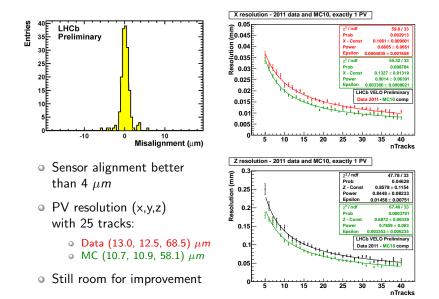


PV left-right method

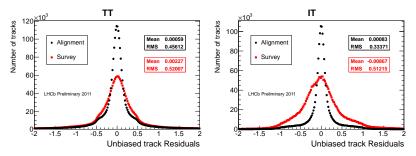

- Compute primary vertex with each half of the detector
- Calculate average distance between left and right PVs → two half misalignment

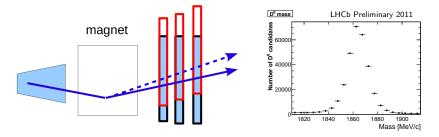
Also done in the software alignment


- Use particularly primary vertices to align the VELO halves
- Add overlap tracks to "link" the two halves


VELO alignment with beam-gas events

- Main goal: reduce Rz weak mode
- $\bullet\,$ Use beam-gas selection (including standard collisions and satellite collisions at ±700 mm around the nominal collision point)
 - In these events: take tracks which cross many sensors (many tracks from the satellite collisions cross the full VELO)
 - Align for all degrees of freedom
 - Validate with collision data

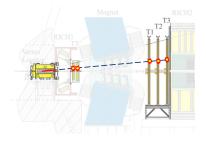

VELO alignment performance

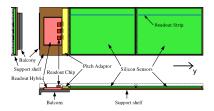

Global alignment

- $\,$ $\,$ TT, IT and OT are aligned by χ^2 minimization all at once
- Mostly tracks crossing the whole detector are chosen
- Additional kinematic cuts are applied
 - high momentum, high angle, good quality, etc.
- Some elements stay fixed along Z to survey constants
 - Whole TT subdetector
 - Two layers in OT

 \rightarrow constrain the global position of IT and OT

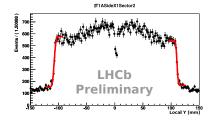
Global alignment - Mass constraint

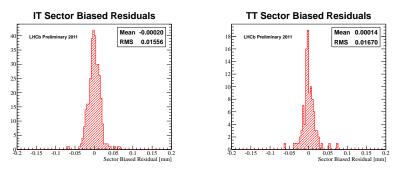



Weak mode: shearing with respect to magnet axis. Therefore mass constrained alignment (J/Psi or D0)

• Take
$$J/\psi
ightarrow \mu \mu$$
 or $D^0
ightarrow K\pi$ daughter tracks

- Fix their origin vertex
- Fix the invariant mass to known J/ψ or D^0 mass respectively
- Compute the new tracks + residuals which go into the χ^2 minimization

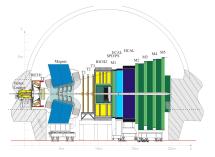

Global alignment - Y alignment



IT and TT Y alignment method

- Extrapolate VELO tracks to IT or TT in events without magnetic field
- Search for corresponding hits
- Find gaps and edges in their Y distribution

Global alignment performance


- Alignment precision can be evaluated by residual bias
 - $\,\circ\,$ IT Misalignment 15.6 $\mu{\rm m}$
 - $\, \bullet \,$ TT Misalignment 16.7 μm
- Even small errors in geometry implementation found by alignment
- Here also room for improvement

Summary

- Alignment not sensitive to all degrees of freedom, eg. Z position often fixed to survey constants
- Various methods to improve alignment counter some weak-modes
 - Align VELO with primary vertices and overlap tracks
 - Use TED and beam-gas events and satellite collisions
 - Use masses of known particles as constraint
 - Extrapolate tracks from data without magnetic field
- Silicon strip detectors: sensor position known with a precision of
 - \circ 4 μm for VELO
 - $\circ~$ 15.6 $\mu \rm{m}$ for IT
 - $\circ~$ 16.7 $\mu \rm{m}$ for TT

BACKUP SLIDES

The LHCb tracking system

VErtex LOcator (VELO)

• Silicon strip detector, closest to the collision point

- Tracker Turicensis (TT)
 - Silicon strip detector, between the VELO and the magnet
- Inner Tracker (IT)
 - Silicon strip detector, after the magnet, covering the innermost part
- Outer Tracker (OT)

• Straw tube drift chambers, after the magnet, covering the outer part