

ATLAS Overview of MET Signatures

Renaud Brunelière – Uni. Freiburg On behalf of ATLAS Collaboration

Outline

- Analysis and signatures
- Results and interpretations
- Short term plans

Monojet event, 1 jet p_T =602 GeV, MET=523 GeV, no further jet with p_T > 30 GeV

Analysis and Signatures

Or

How we design ATLAS Etmiss based analysis

Designing an analysis?

Till now, ATLAS early searches were based on simple « cut & count » analysis

- 1. Find best trigger
- 2. Cut sufficiently hard to reduce largely unknown background processes (fake MET, fake-leptons from QCD)
- 3. Apply discriminating cuts to enhance signal/background ratio
- 4. Predict remaining backgrounds with fully- or semi- data-driven techniques
- 5. Combine all information in a single likelihood, validate your model and perform tests

Triggers

1st principle: we can analyze only data on tape!

Trigger is often driving the main analysis cuts

What are the main trigger objects:

Object	Unprescaled thres.
j	p _T ^{jet} > 350 GeV
M E T	p _T ^{miss} > 150 GeV
e	p _T > 25 GeV
μ	p _T > 20 GeV
γ	p _T > 85 GeV

These thresholds can be lowered by combining objects

Main trigger chains

 $p_{T}^{jet} > 130 \text{ GeV} + p_{T}^{miss} > 130 \text{ GeV}$

- 0-lepton + MET + 2,3,4 jets
- 0-lepton + MET+ b-jet + 3 jets
- 0-lepton + MET + 2 b-jets
- monojet + MET
- tau + X + MET

4jets > 80 GeV OR 5 jets > 55 GeV

• 0-lepton + multijets + MET/√H_T

- 1-lepton + MET + 3,4 jets
- 1-lepton + MET + b-jet + 4 jets
- ttbar->lvqq + MET
- 2-leptons + MET
- 3-leptons + MET

Multileptons triggers in future

2-photons $p_T > 25 \text{ GeV}$

• 2-photons + MET

- ✓ All these triggers will get harsher with increasing luminosity
- ✓ Trigger is a limitation to what we can do: soft MET + soft jets...

Reducing backgrounds

Example: 1-lepton + MET + jets channel 1- Reduce semileptonic ttbar and W backgrounds

2- Enhance signal by cutting on meff

$$m_{\text{eff}} = p_{\text{T}}^{\ell} + \sum_{i=1}^{3(4)} p_{\text{T}}^{\text{jet}_i} + E_{\text{T}}^{\text{miss}}$$

Dealing with remaining backgrounds

Data vs MC methods

Pros:

- Do not rely on potential failures in simulation
- Suited for large σ processes

Cons:

 Rely strongly on simplifying assumptions

<u>Targets:</u> fake-MET, fake-leptons backgrounds

Semi data-driven

Transfer factors:

- Control region → Signal region
- $N_{SR}^{\text{est.}} = N_{SR}^{\text{MC}}/N_{SR}^{\text{MC}} \times (N_{CR}^{\text{obs}}-N_{CR}^{\text{bkg}})$

Pros:

Main syst. Uncertainties partially cancel in ratio

Cons:

 Requires a full study of possible syst. sources (theory)

<u>Targets:</u> the main irreducible backgrounds (top, VB+jets)

Pure MC

Targets: well suited for small backgrounds (VV)

- √ There are no general rules in term of bkg treatment
- ✓ Dealing with a background process is analysis dependent

Background estimation methods, examples

<u>« Fully » data-driven estimate:</u> QCD in 0-lepton (+bjet) + MET + jets channels - Jet smearing method

- 1. Determine the jet response function R from dijet balance and 3-jets mercedes events
- 2. Take a control sample of multijets events with small MET.
- 3. Smear each jet by its response R
- 4. Normalize the shape obtained in a QCD enhanced region with low $\Delta \phi$ (jet, E_T^{miss}) < 0.4
- 5. Propagate to SR

Statistical tests

Fill all useful information into a global likelihood

$$L = P_{Signal} \times P_{Top} \times P_{W} \times P_{QCD} \times \Pi P_{Syst}$$

- One poisson for signal region and per control region
 - ⇒ Simultaneous fit of all regions
- Systematic uncertainties treated by nuisance parameters
 - ⇒ Correlations treated properly

Perform tests via:

- A LLR test statistics
- Toys MC to determine LLR p.d.f
- p-value p_b for bkg only hypothesis
- (one-sided) $CL_s=p_{s+b}/(1-p_b)$ for exclusion limits

Validating the background estimates

- ✓ Since aiming for discovery, must provide robust estimates
- ✓ Compare predictions to observation in « validation » regions:
 - o close in phase space to final signal region (but wo too much signal!)
 - dedicated to each specific background process

- ✓ Systematizing this approach to all ATLAS SUSY searches
- √ Tells us also if we underestimate / overestimate our uncertainties

SUSY signatures summary

Signatures	Search goals	Current status
0-lepton + MET + ≥2,3,4jets	Heavy coloured particles decaying semi- invisibly with large mass splitting	1 fb ⁻¹ (preliminary)
0-lepton + MET/√H _T + ≥6,7,8 jets	Long decay chains	1 fb ⁻¹ (preliminary) Paper soon
1-lepton + MET + ≥3,4 jets	 Smaller mass splitting than 0-lepton Intermediate decays to charginos 	1 fb ⁻¹ (preliminary)
0-lepton + MET + ≥1 b-jet + ≥3 jets	Gluino and 3 rd gen. squarks decaying to	0.8 fb ⁻¹ ATLAS-CONF-2011-098
1-lepton + MET + ≥1 b-jet + ≥4 jets	heavy flavors	1 fb ⁻¹ ATLAS-CONF-2011-130
2-leptons OS	Weak gauginos and sleptons	1 fb ⁻¹ (preliminary) Paper soon
2-leptons SS	intermediate decays	
2-leptons OS SF	Direct gaugino production	
multileptons	Direct gaugino production, GMSB, RPV gaugino decays	35 pb ⁻¹
γγ + ΜΕΤ	GMSB with neutralino NLSP	1 fb ⁻¹ (preliminary) arXiv:1107.0561

Exotics signatures summary

Signatures	Search goals	Current status
monojet + MET	Large Extra Dimensions (ADD)	1 fb ⁻¹ ATLAS-CONF-2011-096
γγ + ΜΕΤ	UED	1 fb ⁻¹ (preliminary) arXiv:1107.0561
Top pairs + MET	Fourth generation quark	1 fb ⁻¹ (preliminary) Paper soon

Results and interpretations

- 1. Top-down approachs: SUSY breaking models
- 2. Bottom-up approachs: SUSY simplified models
- 3. Exotics models

mSUGRA/CMSSM

✓ mSUGRA/CSSM ($A_0=0$, tan(β)=10, μ>0)

- ✓ Best limits obtained in 0-lepton channels
- √ High m₀ region benefits from new high jet multiplicities channels

✓ Equal squark-gluino masses excluded below 980 GeV

bRPV mSUGRA/CMSSM

Study bilinear R-Parity Violating model inducing a mixing between neutrinos and neutralinos

- ✓ bilinear parameters determined from neutrino mixing data
- ✓ neutralino decays into neutrinos + possibly muon or tau (electron decay is highly suppressed)
- ✓ Look at prompt decays ($c\tau$ < 15 mm) in 1-muon + MET + jets channel

GMSB

Search performed in $\gamma\gamma$ + MET channel

- √ neutralino NLSP (mainly bino-like)
- ✓ prompt decays $c\tau$ < 0.1 mm

Simplified models - gluino and squarks

Assumptions:

- √ All masses set to 5 TeV except
 - o neutralino1,
 - o gluino,
 - degenerated 1st & 2^d generation
 squarks
- ✓ Large mass splitting limit:
 - o LSP mass set to 0.
 - results roughtly unchanged for m(LSP) up to 200 GeV.

✓ Equal squark-gluino masses excluded below 1075 GeV

Simplified models - Decays with intermediate charginos

- ✓ Following models proposed in D. Alves et al. arXiv1105.2838
- √ Assume all squark masses are heavy except
 - o gluino XOR squark (1st or 2d gen.only)
 - LSP neutralino1
 - o Intermediate chargino

$$\circ \widetilde{g} \to q\overline{q}\widetilde{\chi}_{1}^{\pm} \to q\overline{q}W\widetilde{\chi}_{1}^{0},$$

$$x = (m(\widetilde{\chi}_{1}^{\pm}) - m(\widetilde{\chi}_{1}^{0})) / (m(\widetilde{g}) - m(\widetilde{\chi}_{1}^{0}))$$

$$\circ \widetilde{q} \to q'\widetilde{\chi}_{1}^{\pm} \to q'W\widetilde{\chi}_{1}^{0},$$

$$x = (m(\widetilde{\chi}_{1}^{\pm}) - m(\widetilde{\chi}_{1}^{0})) / (m(\widetilde{q}) - m(\widetilde{\chi}_{1}^{0}))$$

- ✓ Predictions are
 - o compared to data in 1-lepton + MET + ≥3,4 jets channels
 - o interpreted in (m(gluino),m(LSP)) plane for different values of x

Simplified models - Decays with intermediate charginos

1-lepton + MET + ≥3,4 jets

For gluino model and x>1/2, LSP masses < 200 GeV are excluded for m(gluino) < 600 GeV

Simplified models – gluino and 3rd generation squarks

0-lepton + MET + \ge 1 b-jet + \ge 3 jets

Excluded:

m(gluino) < 720 GeV if m(sbottom) < 600 GeV
m(gluino) < 500 GeV if m(stop) < 300 GeV

Assumptions:

- √ All masses set to 5 TeV except
 - o gluino,
 - o 3rd generation squarks,
 - o LSP
 - \circ Br($\widetilde{g} \to \widetilde{b}_1 b$) = 100% or Br($\widetilde{g} \to \widetilde{t}_1 t$) = 100%
- ✓ Large mass splitting:
 - o LSP mass set to 60 GeV
 - $\circ \operatorname{Br}(\widetilde{\mathsf{t}}_{\mathsf{l}} \to b\widetilde{\chi}_{\mathsf{l}}^{\pm}) = 100\%, m(\widetilde{\chi}_{\mathsf{l}}^{\pm}) = 2 \cdot m(\widetilde{\chi}_{\mathsf{l}}^{0})$

1-lepton + MET + \ge 1 b-jet + \ge 4 jets

Simplified models - Gluino Decays to Heavy Flavor

0-lepton + MET + \geq 1 b-jet + \geq 3 jets

Excluded:

- g \rightarrow b-decays: m(LSP) < 200-250 GeV when m(gluino) < 660 GeV if $\Delta M(\tilde{g} \tilde{\chi}_1^0) > 100 \ GeV$
- g→t-decays: m(LSP) < 40 (80) GeV when m(gluino) < 570 (540) GeV

- ✓ Model inspired from arXiv1105.2838 model B.000
- ✓ All squark masses are heavy ∘ off-shell gluino decays ∘ $\widetilde{g} \to b\overline{b}\widetilde{\chi}_1^0$ or $\widetilde{g} \to t\overline{t}\widetilde{\chi}_1^0$
- √ Results are interpreted in (m(gluino),m(LSP)) plane

1-lepton + MET + \ge 1 b-jet + \ge 4 jets

Simplified models – like-sign dilepton final states

Assumptions

- √ strong pair production (squarks)
- ✓ Decaying to neutralino LSP via gauginos
- ✓ Mass hierarchy:

$$m(\widetilde{q}) > m(\widetilde{\chi}_2^0, \widetilde{\chi}_1^{\pm}) > m(\widetilde{\chi}_1^0)$$

- ✓ Results are interpreted in (m(squark),m(chargino)) plane for different values of m(LSP)
- ✓ Set limits on σ×Br using data from 2-lepton SS channel with 35 pb-1

Non-SUSY models: extra dimensions

Universal Extra Dimensions (UED)

- LKP decay: $\gamma^* \rightarrow G + \gamma$
- $\gamma\gamma$ + MET channel

- $\checkmark \sigma < 0.015 0.027 \text{ pb}$
- √ Excluding 1/R < 1224 GeV
 </p>

Large Extra Dimensions (ADD)

Monojet + MET channel

- ✓ Fiducial σ < 0.045 2.02 pb
- \checkmark Excluding M_D < 2.0 − 3.2 TeV

Non-SUSY models: fourth generation up quark

✓ Pair produced exotic top partner T decaying to neutral particle A₀

$$T\overline{T} \rightarrow t\overline{t} + A_0 + A_0$$

 $\rightarrow lvv\overline{q}b\overline{b}$

✓ Model interpreted in 1-lepton + MET + jets channel

Exclude

- √ T masses up to 420 GeV
- √ A₀ masses up to 140 GeV

 \checkmark σ < 1.1pb m(T)=420 GeV, m(A₀)=10 GeV

Limits

- None of the channel studied observes a significant excess
 - \Rightarrow Set upper limits on fiducial cross-section $\sigma \times A \times \epsilon$
 - ⇒ Can be used to set first order limits for your own model
 - ⇒ Lot of extra information on published distributions can be found on HepData
- Model independent limits on identical flavor excess in OS dileptonic channels

$$S = \frac{N(e^{\pm}e^{\mp})}{\beta(1 - (1 - \tau_e)^2)} - \frac{N(e^{\pm}\mu^{\mp})}{1 - (1 - \tau_e)(1 - \tau_{\mu})} + \frac{\beta N(\mu^{\pm}\mu^{\mp})}{(1 - (1 - \tau_{\mu})^2)}$$
SF DF SF

Signal Region	FS-SR1	FS-SR2	FS-SR3
$E_{\rm T}^{\rm miss}$ [GeV]	80	80	250
Number jets	≥ 2	-	-
m_{ll} veto [GeV]	-	80-100	-

	$S > S_{obs}$ (%)	Limit $\bar{\mathcal{S}}_s$ (95% C.L.)
FS-SR1	46	88
FS-SR2	7	156
FS-SR3	77	4.9

Overview of ATLAS SUSY results

ATLAS SUSY searches typically probe masses ~ 500 - 1000 GeV

Short-term plans

How can we go on ?

A few facts

- ✓ No excess found till now
- ✓ Expect new results with ~ x10 more statistics by end of year
- ⇒ Little gain in term of mass reach for channels we already cover
- ⇒ But lot of room for
 - New interpretations with existing channels
 - Try new signatures

Existing signatures

Many analysis start to be mature => improve methods to extract results

- Using shape information
 - bins in m_{eff}, n_{jets}
 - combining different channels
- Tackling the main systematic uncertainties
 - Theory uncertainties on backgrounds
- Improve ISR treatment for SUSY processes
 - Crucial for compressed spectrums
 - Move to Madgraph for simplified models

Extend interpretations of existing signatures

- 0-lepton + MET + jets channels
 - Simplified models: gluino and squark production with direct or 1-step cascade decay
 - UED or simplified models with heavy quarks and gluons partners
- Monojet +MET
 - Squark-neutralino direct production ?

New signatures – example 3rd generation squarks searches

Expect 3rd generation squark to be lighter due to mixing

$$m^{2}(\tilde{t}_{1,2}) = \frac{1}{2} \left[m^{2}(\tilde{t}_{R}) + m^{2}(\tilde{t}_{L}) \right] \mp \frac{1}{2} \sqrt{\left[m^{2}(\tilde{t}_{R}) - m^{2}(\tilde{t}_{L}) \right]^{2} + 4m^{2}(t) \left[A_{t} - \mu \tan \beta \right]^{2}}$$

Currently public with 1 fb⁻¹

- 0-lepton + MET + ≥1 b-jet + ≥ 3jets
- 1-lepton + MET + ≥1 b-jet + ≥ 3 jets

Extend searches to

- 2 b-jets + 2 OS leptons channel
 - ⇒ direct stop production
- 2 b-jets exclusive channel
 - ⇒ direct sbottom production,
 - \Rightarrow direct stop production with very small $\Delta \mathbf{M}(\widetilde{\chi}_{\scriptscriptstyle 1}^{\pm}-\widetilde{\chi}_{\scriptscriptstyle 1}^{0})$ _____

500

Stop mass (GeV)

100 100

200

300

Other new signatures of interest

New types of signatures being studied now

- (hadronic) tau channels + MET
 - 1-tau + MET + jets
 - 1-tau + 1-lepton + MET
 - 2-taus + MET
 - ⇒ GMSB stau NLSP
- Soft-leptons + jets + MET
 - **⇒** compressed spectrums

- ⇒ RPV models
- ⇒ GMSB co-NLSP
- ⇒ Direct gaugino / sleptons productions

- \Rightarrow Z+MET
- $\Rightarrow \gamma$ +lepton+MET

Conclusion

- ~10 ATLAS analysis based on MET and with ~ 1 fb⁻¹ data have published new results since winter conferences
- No significant excess found yet
- => Set limits on a variety of models
 - Provide upper limits on expected number of events in each channel studied
 - Moving progressively toward simplified models interpretations attached to a specific signature
 - Is that useful ??
- New signatures will appear as
 - our understanding of detector improves
 - we are chasing SUSY/Exotics models at 7 TeV more and more in nonobvious channels