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I SUSY, but not as we know it
I everything else
I a proposal: counting DM particles



SUSY, but not as we know it



SUSY, but not as we know it

Isn’t SUSY dead already?

I.Vivarelli - EPS-HEP, Grenoble July 21st-27th 2011

Result interpretation (1)

• Simplified model (pheno  MSSM) 
interpretation:

• LSP mass set to 0, all other 
sparticle masses set to 5 TeV 
except a common (1st and 2nd 

generation)  squark mass and the 
gluino mass (shown in the plot)

• Up to m ~ 1 TeV excluded for equal 
gluino-squark masses (2010 limit 
extended by ~250 GeV).

• Exclusion limit not too sensitive to the 
neutralino mass up to ~200 GeV
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SUSY, but not as we know it

There are now strong bounds on
I gluino mass
I common squark mass

SUSY and Strong Coupling?

I Strong dynamics at 10 TeV
I SUSY broken in UV, but re-emerges in IR

Kaplan, 1984

=) light Higgsino, stops
Gherghetta and Pomarol, 0302001

=) light gauginos
Sundrum, 0909.5430

BMG and Redi, 1004.5114

Gherghetta & al., 1104.3171

!W,Z, higgstop

Figure 1: The most significant quadratically divergent contributions to the
Higgs mass in the Standard Model.
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The total Higgs mass-squared includes the sum of these loop contributions and
a tree-level mass-squared parameter.

To obtain a weak-scale expectation value for the Higgs without worse than
10% fine tuning, the top, gauge, and Higgs loops must be cut o� at scales
satisfying

�top
<� 2 TeV �gauge

<� 5 TeV �Higgs
<� 10 TeV. (1)

We see that the Standard Model with a cut-o� near the maximum attainable
energy at the Tevatron (⇠ 1 TeV) is natural, and we should not be surprised
that we have not observed any new physics. However, the Standard Model with
a cut-o� of order the LHC energy would be fine tuned, and so we should expect
to see new physics at the LHC.

More specifically, we expect new physics that cuts o� the divergent top
loop at or below 2 TeV. In a weakly coupled theory this implies that there are
new particles with masses at or below 2 TeV. These particles must couple to the
Higgs, giving rise to a new loop diagram that cancels the quadratically divergent
contribution from the top loop. For this cancellation to be natural, the new
particles must be related to the top quark by some symmetry, implying that the
new particles have similar quantum numbers to top quarks. Thus naturalness
arguments predict a new multiplet of colored particles with mass below 2 TeV,
particles that would be easily produced at the LHC. In supersymmetry these
new particles are of course the top squarks.

Similarly, the contributions from SU(2) gauge loops must be canceled by
new particles related to the Standard Model SU(2) gauge bosons by symmetry,
and the masses of these particles must be at or below 5 TeV for the cancellation
to be natural. Finally, the Higgs loop requires new particles related to the Higgs
itself at or below 10 TeV. Given the LHC’s 14 TeV center-of-mass energy, these
predictions are very exciting, and encourage us to explore di�erent possibilities
for what the new particles could be.
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SUSY, but not as we know it

Naturalness at the LHC =⇒
I stop quarks
I a higgsino

m2
Z ∼−m2

Hu −|µ|2
So could see only

I 2(̃t → t χ̃0) =⇒ t t + /ET

I 2(̃t → bχ̃±) =⇒ bb + /ET



SUSY, but not as we know it

Stop bounds are (and always will be) weak
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Figure 4: Total NLO+NLL stop-pair cross section at the Tevatron and the LHC as a function

of the stop mass. The error band corresponds to the scale and pdf uncertainty of the prediction,

added in quadrature.
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Beenakker et al., 1006.4771
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SUSY, but not as we know it

Stop bounds are (and always will be) weak
CDF, 2.7/fb: mt̃ > 150GeV

CDF, 0912.1308

Kats & Shih, 1106.0030
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Figure 10: 95% CL excluded cross sections, relative to the theoretical stop cross section. On
the left we present our limits from the Tevatron analyses: the pre-tag sample of the CDF
tt cross section measurement in the dilepton channel [15] (blue), the D0 stop search in the
eµ channel (up to selection 1) [28] (red), and the b-tagged sample of the CDF stop search in
the dilepton channel [30] (green). The two thick green lines are obtained from the stop mass
reconstruction procedure of [30]. The right plot presents our limits from the LHC analyses:
the pre-tag sample of the ATLAS tt cross section measurement in the dilepton channel [20]
(pink) and the ATLAS top partner search [14] (gray), where the solid lines are the actual
limits (from 35 pb−1 of data) while the dashed and dotted lines are approximate expected
limits for 300 and 3000 pb−1, respectively.

the systematic errors.

4.2 Stop mass reconstruction

We have implemented the dilepton stop mass reconstruction algorithm of the CDF analysis [30,
31, 32] (in a somewhat simplified way described in appendix D). Despite the fact that the
logic of the algorithm uses the assumption that the stop decays as t̃ → bχ̃+

1 → "+νbχ̃0
1, we

find that surprisingly it works also for our stop NLSPs, in the sense of giving a reconstructed
mass distribution that is much sharper than that of the top and centered at a different value.
Our reproduction of the distribution from [30] (for mt̃ = 132.5 GeV) is shown in figure 11(A)
(for the b-tagged channel). The same figure shows also the result we obtain for a stop NLSP
of the same mass.

We can use the results of the CDF study for setting limits on stop NLSPs by finding pairs
of NLSP and gravity-mediated stops with similar mass distribution (which would sometimes

15
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SUSY, but not as we know it

Gluino: δm2
t̃
∼ 8αs

3π
M2

3 log Λ
mt̃

I Either M3 or Λ not large
I 2(g̃→ t̃ t)
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SUSY, but not as we know it

Are there models for this?
I More minimal SUSY

Cohen, Kaplan, & Nelson, 9607394

I Flavourful SUSY
Dimopoulos & Giudice, 1995

Barbieri & al., 1004.2256, 1105.2296

Craig, Green, & Katz, 1103.3708

I Partial SUSY
Gherghetta and Pomarol, 0302001

Sundrum, 0909.5430

BMG & Redi, 1004.5114

Gherghetta & al., 1104.3171



SUSY, but not as we know it

Is R-parity sufficient to prevent proton decay?
I W ⊃ QQQL

Λ
Yanagida & Sakai, 1982

Weinberg, 1982

I Consequences for colliders and DM



The LHC will not kill SUSY . . .



. . . but it is unlikely to be the SUSY we∗ know and love.

∗
Well, some of us.



Everything else



Everything else

Focus on the DM motivation
Not so hard to build a model with a DM candidate

I Need a neutral, colourless particle
I Need it to be long-lived
I Need the right relic density



Everything else

Not so hard to build a model with a DM candidate
I Need a neutral, colourless particle. Fiat
I Need it to be long-lived. Fiat
I Need the right relic density. Fiat



Everything else

A symmetry, exact or accidental, makes the LSP long-lived or
stable

I DM/SM charged/uncharged
I Exact =⇒ stable
I Accidental =⇒ long-lived



Everything else

Two particles are long-lived, but shouldn’t be
I DM
I The proton

There may be an interesting interplay.



Everything else, e.g. I

In SUSY
I R-parity stabilizes DM
I R-parity makes the proton long-lived



Everything else, e.g. II

In the SM plus a singlet
I a Z2 stabilizes DM
I unnaturalness ( =⇒ B) makes the proton long-lived

McDonald, 1994



Everything else, e.g. III

In a composite Higgs model
I approximate B makes the proton long-lived
I 3B−nc + nc mod 3 (a Z3 ⊂ U(1)B×SU(3)c) stabilizes DM

Agashe & Servant, 0403143

I Z2 vs. Z3
Walker, 0907.3142

Agashe & al., 1003.0899

Agashe & al., 1012.4460



Everything else, e.g. IV

Non-Abelian symmetry, S3

I Fields ∈ 1′,2
I Multiple stable components

Adulpravitchai, Batell & Pradler, 1103.3053



Conjecture: most models could be extended to have a DM
candidate . . .
. . . so what should we look for at the LHC & beyond?



Guess a TeV-scale Lagrangian
I Post-dict relic density
I Tricky at LHC: Strong vs. weak interactions.

Baltz & al., 0602187

Guess a TeV-scale Simplified Model
Arkani-Hamed & al., 0703088

Alves & al., 1105.2838

Guess a sub-TeV, effective Lagrangian
I Relate direct/indirect detection to collider searches
I There are a lot of operators

Goodman & al., 1005.1286

Bai, Fox & Harnik, 1005.3797

Goodman & al., 1008.1783

Davoudiasl & al., 1106.4320



How about counting invisible particles in collider events?
Giudice, BMG, & Mahbubani, 1108.1800



Why count DM?

I Multiple production =⇒ evidence for a symmetry
I Counting =⇒ nature of the symmetry
I e.g. Count mod 2
I Odd =⇒ /Z 2

I Odd =⇒ non-Abelian or DM 6= DM



How to count DM?

I # invisibles, n, sets dimension of phase space
I observables are projections thereof
I strong dependence on n



Toy example

M → P + nX , massless X
I mT is maximised =⇒ invisibles parallel and transverse

I dΦ
dm2

T
∝ (1− m2

T
M2 )n− 3

2

4

observable transverse directions, namely

m2
T,naive ≡

m2
V + m2

I + 2
(√

(/p
2
T

+ m2
I)(p

2
T + m2

V ) − /pT
· pT

)
. (1)

However, the invariant mass of the invisible system, mI ,
is not observable and thus nor is mT,naive. However, we
can simply replace the true value of mI by some fixed
value in the definition. We choose to replace it by its
minimum value (which, since mT,naive is a monotonically
increasing function of mI , preserves the property mT <
M). This minimum value is given by the sum of the
masses of the invisible particles, which we have taken,
for now, to be negligible. We thus arrive at our final
definition of the transverse mass, namely5

m2
T ≡ m2

V + 2
(√

/p2
T
(p2

T + m2
V ) − /pT

· pT

)
. (2)

We now examine the conditions that events must satisfy,
in order to be at the maximum endpoint of the mT dis-
tribution. Since the invariant mass of the parent may be
expressed as

M2 = m2
V + m2

I + 2(EV EI − /pT
· pT − qV qI), (3)

where E denotes the energy and q the longitudinal mo-
mentum component, we have that

m2
T = M2 − m2

I − 2eV

(√
/p
2
T

+ m2
I −

√
/p
2
T

)

− 2(EV EI − eV eI − qV qI), (4)

where we defined the transverse energies via e2 ≡ p2
T +

m2. Using the relation

(EV EI)
2 − (eV eI + qV qI)

2 = (eV qI − qV eI)
2, (5)

it is clear that EV EI ≥ eV eI + qV qI . But then the last
three terms on the right hand side of (4) are each negative
semi-definite, such that

m2
T ≤ M2, (6)

with equality iff.

eV qI − qV eI = 0 and mI = 0. (7)

The former condition is invariant under longitudinal
Lorentz boosts and implies either that qV = qI = 0
or that the configuration is a longitudinal boost thereof.
The latter condition is invariant under all Lorentz boosts
and implies that all the invisible particles’ momenta are
parallel (not anti-parallel). Thus, the condition to be at

5 The transverse mass thus defined is, in fact, the natural vari-
able to use in this case, in the sense that it captures all of the
information that is available from kinematics alone [11].
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FIG. 1: Normalized, phase space distribution of m2
T for n ∈

{1, . . . , 4} for the process M → P + nX, i.e. the decay of
a parent particle of mass M into a visible particle P and n
invisible particles X.

the maximum of the mT distribution is that all invisibles
be parallel, and that there exist a longitudinal boost to
a frame in which they be purely transverse. (The gener-
alization to the case of massive invisibles will be carried
out in §V.)

We thus see that the conditions to be at the maxi-
mum have a strong dependence on n (since one must
line up all n invisibles), but are independent of (i) the
number of visibles and their masses and (ii) longitudinal
boosts of the parent with respect to the lab frame. We
can guess the form of the mT distribution near its end-
point, for configurations in which the parent is produced
without any transverse momentum and decays according
to phase space considerations alone, in the following way.
The dependence coming from the condition that the total
momentum of the invisibles be purely transverse is inde-
pendent of n and may be evaluated at n = 1; it comes
from the Jacobian that arises in changing variables from
the decay direction (which is uniformly distributed) to

m2
T and gives a factor of

(
1 − m2

T

M2

)− 1
2

. The n depen-

dence comes from the distribution of the invariant mass
of the invisible particles, which, as can be seen in (A2)

goes as m
2(n−2)
I . Near the endpoint (at small m2

I), m2
T is

linear in m2
I and hence we get a factor of

(
1 − m2

T

M2

)n−2

.

In all, we find

dΦn+1

dm2
T

∝
(

1 − m2
T

M2

)n− 3
2

. (8)

We reproduce the explicit calculation of the mT distribu-
tion for the cases of one and two massless visible particles
in the Appendix; the resulting expressions are given in
(A6-A8) and (A13-A15) and distributions for the first
few values of n are illustrated in Figs. 1 and 2. We see
that the dependence on the number of particles is, in
some sense, the strongest possible: for n = 1, the distri-



How to count DM?

I Strong dependence on n
I Other dependencies should be small or known
I Can tolerate errors up to O(0.5)



Other dependencies

I pdfs
I decay widths
I detector effects
I topology
I masses
I spins



e. g. Mass dependence

M → P + nX , massive X
I mT is maximised =⇒ invisibles transverse and relatively

at rest
I dΦ

dm2
T

∝ (1− m2
T

M2 )
3n
2 −2

I Allow mass to float as a nuisance parameter



e. g. Spin dependence

e.g. n=2
I e.g. h→WW → 2l2ν ,mh = 2mW

I =⇒ measure n<2

I e.g. L ⊃ AΨPLψ + BΨPRψ

I A→ ψΨ→ ψψB
I =⇒ measure n>2

or other spin effects
Wang & Yavin, 0802.2726

Rare pathologies more a blessing than a curse.



Strategy

I Generate phase space with n invisibles
I Float invisible mass and topology
I Convolve width/detector effects
I Fit endpoint behaviour of appropriate observables

(invariant masses, mT , mT 2)



SM examples

W → lν ,h→ 2l2ν ,2t → 2b2l2ν
13
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FIG. 8: Standard Model examples with final state neutrinos, along with the best and next-best fits for distribution of transverse
mass variables near endpoint. The fits are to the relevant endpoint power law (see Table III) convolved with a Breit-Wigner,
with fractional width set to the true value. Details of Monte Carlo event generation are given in the text.

using truth information as before. For the fits we use
RAMBO [39] to generate phase space for the point-like
decays M +M → (3+3)P +(k + l)X with varying invis-
ible mass; these are again convolved with a Breit-Wigner
of fixed, true fractional width. The resulting R-squared
values for different n = k+l and invisible mass are shown
in Table II, with the best and next-best fits superimposed
on the “data” in Fig. 9. Note that in spite of spin corre-
lations that significantly affect the invariant mass distri-
butions for pairs of visibles in this decay, once again the
best fit for mT2 is for the correct value of n, and also for
the invisible mass that is closest to the input value of 115
GeV. Moreover, as in the tt̄ case, point-like phase space
gives a very good fit to the distribution, even though the
actual process is a 3-step cascade decay. Unfortunately
it is not possible to say definitively, using the mT2 distri-
bution alone, that this process is not instead n = 3 with
light invisibles. This is an ambiguity that comes about
because the endpoint behaviour of mT2 here is governed
by the unbalanced solution which falls off linearly; it can,
however, be resolved by separately examining the visible
invariant mass distributions on each leg of the decay (see

R-squared
(
m2

T2

)
R-squared

(
m2

V 1

)
R-squared

(
m2

V 2

)

mX/ GeV n = 2 n = 3 n = 4 k = 1 k = 2 l = 1 l = 2

0 0.947 0.992 0.899 0.992 0.855 0.987 0.843

100 0.998 0.889 0.822 0.993 0.921 0.998 0.911

450 0.859 0.991 0.870 0.987 0.911 0.994 0.900

TABLE II: Goodness-of-fit values for the supersymmetric cas-
cade decay in [27], with neutralino mass of 115 GeV, fitted
to the endpoint behaviour of generated (3+ k) + (3+ l)-body
phase space, where k + l = n, with varying invisible mass and
convolved with a Breit Wigner of fixed fractional width. Best
fits are shown in Fig. 9.

Fig 9(b)).22 Finally, one might worry that the results of
the fits might change if one allowed the fractional width
in the Breit-Wigner distribution to float. We would argue
that plausible values for these, at least for small n, can
be chosen by eye from the distributions, and, moreover,

22 As expected, the best fits for m2
V are not as good as those for

transverse masses, since we are fitting point-like phase space in
spite of the known, large dependence of these distributions on
topology.

I No showering or detector effects
I Best fit correct in all cases



BSM example

I 2(ũL→ uLχ̃0
2 → uL`

+
R

˜̀−
R → uL`

+
R`
−
R χ̃0

1 )

I Spin effects present
Barr, 0405052

I Float mass, not topology
15
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FIG. 9: Best and next-best fits for the SUSY cascade process in [27] with 6 visible particles and a pair of 115 GeV neutralinos
in the final state. The fits are to the endpoint behaviour of generated (3 + k) + (3 + l)-body phase space, where k + l = n,
with varying invisible mass and convolved with a Breit Wigner of fixed fractional width. Details of the Monte Carlo event
generation are given in the text.

ticles and merits further exploration. Secondly, we have
not dealt with the issue of combinatoric ambiguities aris-
ing in identical pair decays or from the presence of ini-
tial state radiation. Variables generalizing mT2 that deal
with these (and which enjoy similar boundedness prop-
erties) have been proposed [16, 32] and it would be of
interest to extend the study carried out here to them.
Thirdly, we have shown that there can be a dependence
on the topology in various cases and a fuller study of
such effects would be desirable. Finally, even though we
have yet to see evidence for new, invisible particles pro-
duced at the LHC, now would seem to be the ideal time
for experiments to validate and refine our proposal, by
counting the neutrinos which certainly have been abun-
dantly produced in various SM processes, of which we
have discussed various examples.
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Appendix A: Useful Formulæ

The differential phase space for the decay of a particle
M into n final-state particles Pi is

dΦn(M → P1 . . . Pn) =
(

Πn
i=1

d3pi

(2π)32Ei

)
(2π)4δ

(
E −

n∑

i=1

Ei

)
δ3

(
P −

n∑

i=1

pi

)
.

(A1)

Here P , E and pi, Ei are the momenta and energies of
the initial and final state particles, respectively. In the
case in which all particles Pi are massless, the integrated
phase space is

Φn(M → P1 . . . Pn) =
M2(n−2)

(n − 1)!(n − 2)! 24n−5 π2n−3
.

(A2)
In the case in which all particles Pi are massive, with
masses mi, the integrated phase space is given, in general,
by an elliptic integral. For the endpoint behaviour of
distributions, we need only its behaviour near threshold,
M → µn ≡ Σimi, which is given by [22]

Φn(M → P1 . . . Pn)
M→µn−→

1

2
5n+7

2 π
3n−5

2 Γ(3n−3
2 )

(
Πimi

µ3
n

) 1
2

(M − µn)
3n−5

2 . (A3)

To compute the mT distribution for a single parent
of mass M decaying at rest to a single, massless, visible
particle (P ) and n, massless, invisible particles (X), we
note that the definition of mT reduces, in this case, to

m2
T ≡ 4p2

T . (A4)

The differential phase space for the decay process M →
P + nX can be conveniently written by taking the con-
volution of the two-body decay process with the system
of n invisible particles (collectively denoted as I), having
invariant mass mI

dΦn+1(M → P + nX) =
∫ M2

0

dm2
I

2π
dΦ2(M → PI) dΦn(I → nX). (A5)

Using (A2), we obtain the normalized phase-space dis-
tribution in m2

T , in the center-of-mass frame (or a frame



Summary

I Reports of the death of SUSY are greatly exaggerated
I The alternatives are countless
I Count invisible particles instead?


	SUSY
	Not SUSY
	Counting DM
	Summary

