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SUSY cannot be experimentally ruled out
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inclusive, least model-dep.

“razor”

hemisphere algorithm to cluster
events into effective di-jet system
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multi-jet prod.

ATLAS:

jets + missing transverse
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Compare theory with expt...
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frequentist (χ2-based)
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Compare theory with expt...

rigid step-function approach (e.g., 95%)

frequentist (χ2-based)

Bayesian

Frequentist: “probability is the number of times the event occurs over the
total number of trials, in the limit of an infinite series of equiprobable
repetitions”

Bayesian: “probability is a measure of the degree of belief about a
proposition”
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m = (θ, ψ) – model’s all relevant parameters

CMSSM parameters θ = m1/2, m0, A0, tanβ

relevant SM param’s ψ = Mt,mb(mb)
MS, αMS

s , αem(MZ)MS

ξ = (ξ1, ξ2, . . . , ξm): set of derived variables (observables): ξ(m)

d: data (ΩCDMh
2, b → sγ, mh, etc)

Bayes’ theorem: posterior pdf

p(θ, ψ|d) = p(d|ξ)π(θ,ψ)
p(d)

posterior = likelihood × prior

normalization factor

p(d|ξ) = L: likelihood

π(θ, ψ): prior pdf

p(d): evidence (normalization factor)

usually marginalize over SM (nuisance) parameters ψ ⇒ p(θ|d)
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assuming Gaussian distribution (d → (c, σ)):

L = p(σ, c|ξ(m)) = 1√
2πσ

exp
[

−χ2

2

]

when include theoretical error estimate τ (assumed Gaussian):

σ → s =
√
σ2 + τ2

TH error “smears out” the EXPTAL range

for several uncorrelated observables (assumed Gaussian):

L = exp
[

−
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χ2
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]
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Limits: eg. light Higgs in the CMSSM
LEP:mh > 114.4 GeV (95% CL) - if SM-like

include both experimental and theoretical error: σ → s =
√
σ2 + τ2

apply similar way to LHC exclusion limits

compute expected nr of events, compare with data

compute cross sections, efficiency, apply cuts...
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o = 7, b = 5.5

simulate detector efficiency with Pythia
σ with Herwig++
use SoftSusy, SUSY-HIT
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⇒ very good agreement encouraging!
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Impact on CMSSM parameters
scans and stat analysis done with SuperBayeS

apply: “Non-LHC”+ αT (1 fb−1) + DM Xenon-100
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large m1/2 with m0 ∼< m1/2 favored

large m0 and small m1/2 (FP, HB,...) strongly disfavored by
Xenon-100 limit
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Summary

EWSB: Bayesian global fits of the CMSSM favor

µ ≃ 1.25m1/2 and smallm0
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