Bayesian Global Fit of CMSSMand EWSB

Leszek Roszkowski

 $\textsf{SINS}\longrightarrow \textsf{NCBJ},$ Warsaw, Poland and U. of Sheffield, England

The BayesFITS Group (A. Fowlie, A. Kalinowski, M. Kazana, S. Tsai,...)

Outline

- **O** TH vs EXPT
- Bayesian analysis of the CMSSM \bullet

likelihood \bullet

- (preliminary) results
- summary \bullet

SUSY cannot be experimentally ruled out

SUSY cannot be experimentally ruled out

it can only be discovered...

SUSY cannot be experimentally ruled out

it can only be discovered...

...or abandoned

LR (BayesFITS), CERN, 19 August 2011 – p.3

CMS:

CMS:

jets ⁺ missing transverse energy

inclusive, least model-dep.

"razor"

hemisphere algorithm to clusterevents into effective di-jet system

 $\boldsymbol{\alpha_{T}}$

efficient discrimination of QCDmulti-jet prod.

CMS:

jets ⁺ missing transverse energy

inclusive, least model-dep.

"razor"

hemisphere algorithm to clusterevents into effective di-jet system

 $\boldsymbol{\alpha_{T}}$

efficient discrimination of QCDmulti-jet prod.

CMS:

jets ⁺ missing transverse energy

inclusive, least model-dep.

"razor"

hemisphere algorithm to clusterevents into effective di-jet system

 $\boldsymbol{\alpha_{T}}$

efficient discrimination of QCDmulti-jet prod.

ATLAS:

jets ⁺ missing transversemomentum

...

Compare theory with expt...

- rigid step-function approach (e.g., $95\%)$ \bullet
- frequentist (χ^2 -based) \bullet
- **Bayesian** \bullet

Compare theory with expt...

- rigid step-function approach (e.g., $95\%)$
- frequentist (χ^2 -based)
- **Bayesian**

Frequentist: "probability is the number of times the event occurs over thetotal number of trials, in the limit of an infinite series of equiprobablerepetitions"

Bayesian: "probability is ^a measure of the degree of belief about ^aproposition"

Apply to the CMSSM: fairly recent development, started by 2 groups

Apply to the CMSSM: fairly recent development, started by 2 groups

 $\boxed{m = (\theta, \psi) }$ – model's all relevant parameters

Apply to the CMSSM: fairly recent development, started by 2 groups

- $\boxed{m = (\theta, \psi) }$ model's all relevant parameters
- CMSSM parameters $\mid\theta=m_{1/2},\,m_{0},\,A_{0},\,\tan\beta$

relevant SM param's $\big\vert\, \psi=M_t, m_b(m_b)^{MS}, \alpha_s^{MS}$ $_{s}^{MS}, \alpha_{\rm em}(M_{Z})^{MS}$

Apply to the CMSSM: fairly recent development, started by 2 groups

- $\boxed{m = (\theta, \psi) }$ model's all relevant parameters
- CMSSM parameters $\mid\theta=m_{1/2},\,m_{0},\,A_{0},\,\tan\beta$

relevant SM param's $\big\vert\, \psi=M_t, m_b(m_b)^{MS}, \alpha_s^{MS}$ $_{s}^{MS}, \alpha_{\rm em}(M_{Z})^{MS}$

 $\xi=(\xi_1,\xi_2,\ldots,\xi_m)$: set of derived variables (observables): $\big|\,\xi(m)\,\big|$

Apply to the CMSSM: fairly recent development, started by 2 groups $\boxed{m = (\theta, \psi) }$ – model's all relevant parameters CMSSM parameters $\mid\theta=m_{1/2},\,m_{0},\,A_{0},\,\tan\beta$ relevant SM param's $\big\vert\, \psi=M_t, m_b(m_b)^{MS}, \alpha_s^{MS}$ $_{s}^{MS}, \alpha_{\rm em}(M_{Z})^{MS}$ $\xi=(\xi_1,\xi_2,\ldots,\xi_m)$: set of derived variables (observables): $\big|\,\xi(m)\,\big|$ d : data ($\Omega_{\rm CDM} h^2$ 2 , $b \rightarrow s \gamma$, m_h , etc) Probability density posterior likelihood prior

 θ

Take a single observable $\boldsymbol{\xi(m)}$ that has been measured

Take a single observable $\boldsymbol{\xi(m)}$ that has been measured

 \boldsymbol{c} – central value, $\boldsymbol{\sigma}$ – standard exptal error

Take a single observable $\boldsymbol{\xi(m)}$ that has been measured

 \boldsymbol{c} – central value, $\boldsymbol{\sigma}$ – standard exptal error

(e.g., M_W)

define

$$
\chi^2=\tfrac{[\xi(m)-c]^2}{\sigma^2}
$$

Take a single observable $\boldsymbol{\xi(m)}$ that has been measured

- \boldsymbol{c} central value, $\boldsymbol{\sigma}$ standard exptal error
- define

$$
\chi^2 = \tfrac{[\xi(m)-c]^2}{\sigma^2}
$$

assuming Gaussian distribution $(d\rightarrow(c,\sigma))$: \bullet

$$
\mathcal{L} = p(\sigma, c | \xi(m)) = \frac{1}{\sqrt{2\pi}\sigma} \exp \left[-\frac{\chi^2}{2} \right]
$$

Take a single observable $\boldsymbol{\xi(m)}$ that has been measured

- \boldsymbol{c} central value, $\boldsymbol{\sigma}$ standard exptal error
- define

$$
\chi^2 = \tfrac{[\xi(m)-c]^2}{\sigma^2}
$$

assuming Gaussian distribution $(d\rightarrow(c,\sigma))$:

$$
\mathcal{L} = p(\sigma,c|\xi(m)) = \tfrac{1}{\sqrt{2\pi}\sigma} \exp\left[-\tfrac{\chi^2}{2}\right]
$$

when include theoretical error estimate τ (assumed Gaussian): \bullet

$$
\sigma \to s = \sqrt{\sigma^2 + \tau^2}
$$

TH error "smears out" the EXPTAL range

Take a single observable $\boldsymbol{\xi(m)}$ that has been measured

- \boldsymbol{c} central value, $\boldsymbol{\sigma}$ standard exptal error
- define

$$
\chi^2 = \tfrac{[\xi(m)-c]^2}{\sigma^2}
$$

assuming Gaussian distribution $(d\rightarrow(c,\sigma))$:

$$
\mathcal{L} = p(\sigma,c|\xi(m)) = \tfrac{1}{\sqrt{2\pi}\sigma} \exp\left[-\tfrac{\chi^2}{2}\right]
$$

when include theoretical error estimate τ (assumed Gaussian):

$$
\sigma \to s = \sqrt{\sigma^2 + \tau^2}
$$

TH error "smears out" the EXPTAL range

for several uncorrelated observables (assumed Gaussian):

$$
\mathcal{L}=\exp\left[-\sum_i \frac{\chi_i^2}{2}\right]
$$

Limits: eg. light Higgs in the CMSSM

LEP: $m_h> 114.4 \ {\rm GeV}$ (95% CL) - if SM-like

include both experimental and theoretical error: $\sigma\rightarrow s=\sqrt{\sigma^2+\tau^2}$ \bullet

apply similar way to LHC exclusion limits

compute expected nr of events, compare with data

compute cross sections, efficiency, apply cuts...

consider CMS limit from α_T at 1 fb $^{-1}$

analogous tests for α_T and razor at 35 pb $^{-1}$ equally encouraging

consider CMS limit from α_T at 1 fb $^{-1}$

analogous tests for α_T and razor at 35 pb $^{-1}$ equally encouraging

- \boldsymbol{o} observed nr of events
- \bm{b} expected nr of events from SM (bgnd)
- \boldsymbol{s} expected nr of events from SUSY (for a given

parameter point)

$$
s=\epsilon\cdot\sigma\cdot\int L
$$

 $\boldsymbol{\epsilon}$ – simulated detector efficiency

 σ – cross section

 $\int \bm{L}$ – integrated luminosity

consider CMS limit from α_T at 1 fb $^{-1}$

analogous tests for α_T and razor at 35 pb $^{-1}$ equally encouraging

- \boldsymbol{o} observed nr of events
- \bm{b} expected nr of events from SM (bgnd)
- \boldsymbol{s} expected nr of events from SUSY (for a given

parameter point)

$$
s=\epsilon\cdot\sigma\cdot\int L
$$

- $\boldsymbol{\epsilon}$ simulated detector efficiency
- σ cross section
- $\int \bm{L}$ integrated luminosity

Likelihood

$$
\mathcal{L}=\frac{e^{-s+b}\left(s+b\right)^{o}}{o!}
$$

consider CMS limit from α_T at 1 fb $^{-1}$

analogous tests for α_T and razor at 35 pb $^{-1}$ equally encouraging

- \boldsymbol{o} observed nr of events
- \bm{b} expected nr of events from SM (bgnd)
- \boldsymbol{s} expected nr of events from SUSY (for a given parameter point)

$$
s=\epsilon\cdot\sigma\cdot\int L
$$

 $\boldsymbol{\epsilon}$ – simulated detector efficiency σ – cross section $\int \bm{L}$ – integrated luminosity Likelihood

$$
\mathcal{L}=\frac{e^{-s+b}\left(s+b\right)^{o}}{o!}
$$

 $o = 7, b = 5.5$

simulate detector efficiency with Pythia σ with Herwig++ use SoftSusy, SUSY-HIT

consider CMS limit from α_T at 1 fb $^{-1}$

analogous tests for α_T and razor at 35 pb $^{-1}$ equally encouraging

- \boldsymbol{o} observed nr of events
- \bm{b} expected nr of events from SM (bgnd)
- \boldsymbol{s} expected nr of events from SUSY (for a given parameter point)

$$
s=\epsilon\cdot\sigma\cdot\int L
$$

 $\boldsymbol{\epsilon}$ – simulated detector efficiency σ – cross section $\int \bm{L}$ – integrated luminosity Likelihood

$$
\mathcal{L}=\frac{e^{-s+b}\left(s+b\right)^{o}}{o!}
$$

 $o = 7, b = 5.5$

simulate detector efficiency with Pythia σ with Herwig++ use SoftSusy, SUSY-HIT

 \Rightarrow very good agreement
 \Rightarrow very good agreement

LR (BayesFITS), CERN, 19 August 2011 – p.9

scans and stat analysis done with SuperBayeS

apply: "Non-LHC"+ α_{T} $(1\,{\rm fb}^{-1})$ + DM Xenon-100

"Non-LHC": $\Omega_\chi h^2$, $b \rightarrow s\gamma$, ${\rm BR}(\bar{B}_{s}\rightarrow \mu^{+}\mu^{-})$, $(g-2)_{\mu}$, LEP,...

posterior pdf

scans and stat analysis done with SuperBayeS

apply: "Non-LHC"+ α_{T} $(1\,{\rm fb}^{-1})$ + DM Xenon-100

"Non-LHC": $\Omega_\chi h^2$, $b \rightarrow s\gamma$, ${\rm BR}(\bar{B}_{s}\rightarrow \mu^{+}\mu^{-})$, $(g-2)_{\mu}$, LEP,...

posterior pdf

profile likelihood

scans and stat analysis done with SuperBayeS

apply: "Non-LHC"+ α_{T} $(1\,{\rm fb}^{-1})$ + DM Xenon-100

"Non-LHC": $\Omega_\chi h^2$, $b \rightarrow s\gamma$, ${\rm BR}(\bar{B}_{s}\rightarrow \mu^{+}\mu^{-})$, $(g-2)_{\mu}$, LEP,...

posterior pdf

profile likelihood

large $m_{1/2}$ $_2$ with $m_0 \lesssim m_{1/2}$ ₂ favored

large m_0 and small m_1^{\parallel} Xenon-100 limit $_{\rm 0}$ and small $m_{1/2}$ $_2$ (FP, HB,...) strongly disfavored by LR (BayesFITS), CERN, 19 August 2011 – p.10

scans and stat analysis done with SuperBayeS

apply: "Non-LHC"+ α_{T} $(1\,{\rm fb}^{-1})$ + DM Xenon-100

"Non-LHC": $\Omega_\chi h^2$, $b \rightarrow s\gamma$, ${\rm BR}(\bar{B}_{s}\rightarrow \mu^{+}\mu^{-})$, $(g-2)_{\mu}$, LEP,...

scans and stat analysis done with SuperBayeS

apply: "Non-LHC"+ α_{T} $(1\,{\rm fb}^{-1})$ + DM Xenon-100

"Non-LHC": $\Omega_\chi h^2$, $b \rightarrow s\gamma$, ${\rm BR}(\bar{B}_{s}\rightarrow \mu^{+}\mu^{-})$, $(g-2)_{\mu}$, LEP,...

scans and stat analysis done with SuperBayeS

apply: "Non-LHC"+ α_{T} $(1\,{\rm fb}^{-1})$ + DM Xenon-100

"Non-LHC": $\Omega_\chi h^2$, $b \rightarrow s\gamma$, ${\rm BR}(\bar{B}_{s}\rightarrow \mu^{+}\mu^{-})$, $(g-2)_{\mu}$, LEP,...

- pattern: $\mu\sim1.25m_{1/2}$
- similar pattern for profile likelihood

scans and stat analysis done with SuperBayeS

apply: "Non-LHC"+ α_{T} $(1\,{\rm fb}^{-1})$ + DM Xenon-100

"Non-LHC": $\Omega_\chi h^2$, $b \rightarrow s\gamma$, ${\rm BR}(\bar{B}_{s}\rightarrow \mu^{+}\mu^{-})$, $(g-2)_{\mu}$, LEP,...

3D map of $\boldsymbol{\mu}$

scans and stat analysis done with SuperBayeS

apply: "Non-LHC"+ α_{T} $(1\,{\rm fb}^{-1})$ + DM Xenon-100

"Non-LHC": $\Omega_\chi h^2$, $b \rightarrow s\gamma$, ${\rm BR}(\bar{B}_{s}\rightarrow \mu^{+}\mu^{-})$, $(g-2)_{\mu}$, LEP,...

1D pdf for $\bm{m_h}$

scans and stat analysis done with SuperBayeS

apply: "Non-LHC"+ α_{T} $(1\,{\rm fb}^{-1})$ + DM Xenon-100

"Non-LHC": $\Omega_\chi h^2$, $b \rightarrow s\gamma$, ${\rm BR}(\bar{B}_{s}\rightarrow \mu^{+}\mu^{-})$, $(g-2)_{\mu}$, LEP,...

1D pdf for $\bm{m_h}$

Summary

EWSB: Bayesian global fits of the CMSSM favor

 $\mu \simeq 1.25 m_{1/2} \ \ {\rm and} \ \ {\rm small} \ m_0$