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Abstract. This paper describes a parallel implementation that allowsthe evalua-
tions of the likelihood function for data analysis methods to run cooperatively on
heterogeneous computational devices (i.e. CPU and GPU) belonging to a single
computational node. The implementation is able to split andbalance the work-
load needed for the evaluation of the likelihood function incorresponding sub-
workloads to be executed in parallel on each computational device. The CPU paral-
lelization is implemented using OpenMP, while the GPU implementation is based
on OpenCL. The comparison of the performance of these implementations for dif-
ferent configurations and different hardware systems are reported. Tests are based
on a real data analysis carried out in the high energy physicscommunity.
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Introduction

Current high energy physics experiments are collecting unprecedented large amounts of
data, which gives a great opportunity to look for effects predicted by several physics
models or totally unpredicted effects. It is crucial to properly analyze the data, since
the new phenomena can be very rare and their contribution small compared to the total
amount of data. The data samples are a collection ofN independentevents, an event
being the measurement of a set ofO observables x̂ = (x1, . . . , xO) (energies, masses,
spatial and angular variables...) recorded in a brief span of time by physics detectors.
The events can be classified inS differentspecies. Each observablexj is distributed for
the given speciess with a probability distribution function (PDF)Pj

s (x
j ; θ̂js), whereθ̂js

are parameters of the PDF. Several data analysis techniquescan be used to distinguish
between the events belonging to each species, using particular observables that have
different PDF distributions for the species [1]. The maximum likelihood (ML) fitting
procedure is a popular statistical technique used to identify events and to estimate the
number of events belonging to each species and the parameters θ̂s = (θ̂1s , . . . , θ̂

O
s ) of the

PDFs, that can be related to the prediction obtained from physics models.
This work describes a strategy for the parallelization of the likelihood function eval-

uation for ML fits for execution on CPU and GPU computational devices. It represents
a continuation of a previous work, which described the algorithm and the corresponding
implementations for CPU and GPU based on OpenMP and CUDA, respectively [2]. Here



an improved version of the CPU implementation and a new implementation for GPU
based on OpenCL are described. Furthermore, a novel implementation that allows the
evaluations of the likelihood function to run cooperatively on both devices belonging to
the same computational node (hybrid evaluation) is introduced. It is worthwhile to point
out from the beginning that the implementations are specifically optimized for running
on commodity systems, i.e. systems than can be considered, in terms of cost and power
consumption, easily accessible to general data analysts (e.g. a single socket desktop with
a GPU whose main target is computer gaming). Performing the hybrid evaluation, data
analysts can fully exploit their systems.

Existing works in literature report on the parallelizationimplemented on GPUs for
the evaluation of likelihood functions in some specific scientific fields, such as phyloge-
netic analysis [3] and medical image reconstruction [4].

This paper is organized as follows. Section 1 gives an overview of likelihood func-
tion definition in the case of ML fits and the algorithm used forits evaluation. Section 2
describes the changes of the OpenMP implementation and introduces the OpenCL imple-
mentation and the hybrid solution. Section 3 reports the results obtained from tests done
with a benchmark analysis on a testing system with two GPUs from two main vendors.
Conclusion are given in Section 4.

1. Likelihood function evaluation

The description of the data analysis techniques based on likelihood function can be found
elsewhere [1]. Here a short description in case of ML fits is given. If the observables are
uncorrelated, then the total PDF for the speciess is expressed by

Ps(x̂; θ̂s) =
O
∏

j=1

P
j
s (x

j ; θ̂js). (1)

The PDFs are normalized over their observables, as functionof their parameters, which
implies an analytical or numerical evaluation of their integral. Then the evaluation of the
PDFs can be considered in two steps: evaluation of the non-normalized function values
and their normalization. Theextended likelihood function is

L =
e−
∑

S

s=1
ns

N !

N
∏

i=1

S
∑

s=1

nsPs(x̂i; θ̂s), (2)

wherens are the number of events belonging to each species. Then the ML technique
allows to estimate the values of the parameters by maximizing this function with respect
to the parameters to estimate. Usually, it is used to minimize the equivalent function
− ln(L), thenegative log-likelihood (NLL). So theNLL to be minimized has the form1:

NLL =

S
∑

s=1

ns −

N
∑

i=1

(

ln

S
∑

s=1

nsPs(x̂i; θ̂s)

)

, (3)

1TheN ! term in the expression is omitted, since it does not depend onthe parameters.



that is a sum of logarithms. The terms of the sum can graphically be visualized as a tree,
where the leaves are the PDFsPj

s (x
j ; θ̂js) (basic PDFs), which are then linked to the

corresponding product PDFsPs(x̂; θ̂s), and finally the root that is
∑S

s=1 nsPs(x̂i; θ̂s)
(sum PDF). Product and sum PDFs are denoted as composite PDFs. Therefore, the root
hasS child nodes, each withO children, which means that in the tree there areS× (O+
1) + 1 nodes in total. The evaluation of the term in the sum of logarithms consists of
traversing the entire tree, first evaluating the leaves up tothe root.

The search for the minimum forNLL can be carried out numerically [5]. The whole
procedure of minimization requires several evaluations ofthe NLL, which themselves
require the calculation of the corresponding PDFs for each observable and each event of
the data sample.

The algorithm for the evaluation of theNLL is described in detail in the previous
work [2]. For eachNLL evaluation the tree is traversed sequentially only once. The algo-
rithm starts evaluating the basic PDFs, belonging to a givenproduct PDF, looping over
all values of their observables, and storing the results in arrays (an array for each PDF).
This part is done in two phases: first evaluating all the non-normalized function values
and then looping on the corresponding arrays of results for the normalization, i.e. two
loops per basic PDF. Then it does the evaluation of the corresponding product PDF, loop-
ing and combining the arrays of results of the daughter PDFs in a new array. It repeats
the procedure for all product PDFs. After that it loops againand combines the arrays of
results of the product PDFs to get a new array of results for the sum PDF (final results).
So in total there areS × (2×O + 1) + 1 loops. Eventually, the algorithm calculates the
logarithm of the final results and their sum (reduction). Parallelism has been introduced
in each loop (data parallelism). Also the reduction has beenparallelized. The parallel
reduction can affect the final value of theNLL, due to rounding problem in case of as-
sociative floating point arithmetics. In particular the result can depend on the number
of threads used in the parallelization, and moreover it cannot be deterministic between
two different evaluations, even with the same number of threads. This can lead to unpre-
dictable behavior during the minimization procedure, i.e.unstable results of the ML fits.
For this reason a new algorithm for the reduction has been implemented. It preserves the
order of the operations for a given number of threads and it reduces the rounding prob-
lem due to associative floating point arithmetics using the double-double compensation
algorithm 2Sum [6]. In this way the results are deterministic and stable in all tests.

2. Parallel Implementations

This section describes the implementations for the evaluation on CPU, GPU, and the
hybrid. The code is implemented in C++ and all floating point operations are performed
in double precision.

2.1. OpenMP CPU Implementation

The parallelization on the CPU is based on OpenMP. It has beenimproved to have better
scalability and overall performance with respect to the previous work.

Recalling the description of the algorithm from the previous section, the
S × (2 ×O + 1) + 1 loops, which are implemented asfor loops, have been paral-



lelized via the#pragma omp parallel for directive. Each loop iteratesN times.
The scheduling of the iterations is statically partitioned, i.e. each thread executes a fixed
number of iterations. The partitioning is implemented suchin a way that one thread can
have maximum one iteration of difference with respect to theother threads, to ensure
an equal load-balancing. The same technique is applied for the loop that computes the
reduction. Each thread accesses consecutive elements of the arrays of observables and
results, allowing coalescing of memory accesses and data vectorization of the loops.
These arrays are shared among the threads, so that there is a negligible increment in the
memory footprint of the application when running in parallel. Furthermore, race condi-
tions can be easily avoided since the parallel region are confined to the loop iterations.
However, this implementation has some limitations that reduce the overall performance:

1. For eachNLL evaluation,S × (2×O+1)+ 2 independent OpenMP parallel re-
gions have to be considered. This could lead to a larger overhead than necessary,
which drastically reduces the scalability. It is better to have as few OpenMP par-
allel regions as possible, since threading overhead shouldbe kept at a minimum.

2. S × (O + 1) + 1 arrays of results andO arrays of observables have to be man-
aged, each array composed byN double precision values. The amount of data to
manage becomes consistent in case of complex models and large data samples,
and it becomes crucial to have an optimal treatment of the data inside the cache
memories. Tests have proved that there is a significant penalty to the scalability
when running with high number of threads in a system where thelargest cache
memory is shared among the cores. An analysis of the problem shows that the
culprits are the loops of the composite PDFs, which have to combine arrays of
results with just a simple operation.

To remove the potential overhead due to OpenMP, the entireNLL evaluation was
redesigned using a different pattern: there is only one parallel region for each evaluation,
and this region will start at the root of the tree. The partitioning of the iterations is done
as before, but now each thread executes the entire evaluation from the root to the leaves
within its own partition only. This implementation can leadto consequences that may be
problematic. Indeed, the parallel region covers a larger portion of the execution, so it is
crucial to not modify member variables of the object the method is running on, or global
variables, without carefully assuring that race conditions are avoided.

Three different optimizations have been considered in order to reduce the load on
memory. First, in each PDF the loop for the evaluation of the non-normalized values was
merged with the loop of the normalization in a single loop (loop fusion). In this way
computation and memory accesses overlap. The second optimization specifically regards
the composite PDFs. The code was changed so that these PDFs can send their results
array “down” to the children, which then do their own evaluation and the correspond-
ing combination directly on the array of value of the mother (results propagation). The
main benefit of this change is that each basic PDF does not haveto store its own results
anymore. The last optimization consists of splitting the data domain into blocks so that
the entire procedure of evaluation is done one by one (block splitting). This optimization
directly targets cache misses, since it increase locality and thereby cache efficiency. With
these optimizations the number of total loops is reduced toS×(O+1) times the number
of blocks and the number of arrays of results toS + 1.



2.2. OpenCL GPU Implementation

In the OpenCL implementation the PDF loops are offloaded to beexecuted on the GPU.
Each loop is thereby replaced by a corresponding OpenCL kernel, which runs theN iter-
ations using GPU threads. This implementation also takes advantage of the loop fusion,
as explained in the OpenMP implementation. The results propagation and block splitting
are not considered. The former is tedious to implement in OpenCL (it would require a
consistent duplication of the code in plain C), and the latter does not fit with the way a
GPU does computations. Therefore, there areS × (O + 1) + 1 kernels to launch and a
corresponding same number of arrays of results to manage. Also the reduction is done in
parallel (tree-based reduction) on the GPU. This reductionis deterministic and it takes
into account the rounding problem described in the OpenMP implementation.

It is important to point out that the implementation is fullyperformance-portable
between NVIDIA and AMD GPU cards. Tests have shown marginal improvements (less
than 5%) when doing specific optimizations, e.g. using native vector types, which lead
to different implementations for each device with respect to a common implementation.

The arrays of the observables are copied from the host to the GPU global memory
using synchronous functions. These arrays are read-only during the entire execution of
the application, so only one copy at the beginning is needed.They are then used for all
NLL evaluations. For each evaluation, the CPU traverses theNLL tree and it launches
the corresponding kernels to be executed on the GPU, following the algorithm described
in Section 1. The arrays of results for each PDF can be kept resident in the GPU global
memory. Eventually the reduction is done on the final array ofresults and the value of
the sum is copied back to the host memory for the finalization of the NLL value. The
kernels are asynchronously executed, i.e. the evaluation of the tree is non-blocking and
the kernels are just enqueued for execution on the GPU. Then an implicit synchronization
will occur at the end when the final reduction result has to be copied. The possibility of
interleaving the CPU and GPU computations reduces the impact of the operations that
are not of the loops, i.e. only executed by CPU, such as the integral calculation for the
normalization.

The optimization of the occupancy is not an easy task to achieve for two main rea-
son. First of all, it can depend on the GPU architectures fromdifferent vendors. Then it
depends on what kind of PDFs analysts decide to use for their analysis. Because of that,
a very general procedure, based on a heuristic approach, hasbeen used to decide the size
of the workgroups. The rule is that if a kernel contains a transcendental function, the
workgroup size is set to a “low” number. If the kernel does notcontain transcendentals,
but rather only basic arithmetics, the workgroup size is setto a “slightly higher” number.
Tests have shown that 64 and 128, respectively, provided pleasant results, with occupancy
numbers ranging from 0.33 to 0.67 depending on the kernel. A comparison between us-
ing these numbers and the OpenCL default numbers gives about14% improvement in
performance.

2.3. Hybrid Implementation

The two implementations described in the previous sectionsgive the possibility to fully
use the CPU and GPU computational devices, but independently. In the case of the GPU
implementation, the CPU runs only a single thread, so a multicore CPU would be under-



utilized. Therefore, it is interesting to explore the possibility of fully loading the CPU in
a hopefully implementation-pleasant way. Although it is possible to program both CPU
and GPU with OpenCL, this would lead to a worsening of the performance with respect
to using OpenMP implementation since several optimizations included in OpenMP are
not easy to implement in OpenCL. For this reason the hybrid solution described here
allows simultaneous use of the OpenMP and OpenCL described in the previous sections.

The strategy for the hybrid implementation consists of three different steps:

1. Decomposition of theN iterations of the loops in two groups of iterations,NCPU

andNGPU to be executed by OpenMP and OpenCL implementations, respec-
tively.

2. Each implementation runs the entireNLL tree evaluation, considering the itera-
tions[0, NCPU[ for OpenMP and[NCPU, N [ for OpenCL.

3. The result of the reductions from the two implementationsare collected and
summed together to finalize theNLL evaluation on the CPU.

In this strategy, the part that needs to be implemented is represented by the first step,
since the second step requires execution of the already described OpenMP and OpenCL
implementations on different ranges on the observables andthe last step is trivial.

The determination ofNCPU andNGPU is done using a load-balancer, which deter-
mines the best decomposition, i.e. both implementations spend the same amount of time.
In order to have result determinism, the reductions must be executed for the same static
configuration during allNLL evaluations in a ML fit. This means that users can run the
load-balancer once at the beginning to determine the decomposition, and then fixing it
for their ML fits.

The load-balancer starts assumingN
(1)
CPU = N

(1)
GPU = N/2, where the apex index

denoted that is the first configuration. Then the two implementations are executed for
this configuration. Their execution times aret(1)CPU andt(1)GPU, respectively. If the ratio

max(t
(1)
CPU, t

(1)
GPU)/min(t

(1)
CPU, t

(1)
GPU) is less then a given threshold, then an optimal de-

composition was reached. Otherwise, the procedure is repeated with a new configura-
tion [7]:

N
(2)
D = N ×

N
(1)
D /t

(1)
D

N
(1)
CPU/t

(1)
CPU +N

(1)
GPU/t

(1)
GPU

, (4)

where the subscript D represents CPU or GPU, and so on until the threshold condition
is satisfied. The measurement of the execution times of both CPU and GPU implemen-
tations is done using theomp_get_wtimeOpenMP function. It is possible to consider
averages from severalNLL evaluations to reduce the fluctuations of these timings (the
number of evaluation can be set by the users depending on the complexity of theirNLL).
In the case the threshold condition is not satisfied after a given number of cycles of the
load-balancer, because of large fluctuations with respect to a small threshold, the proce-
dure ends and the last configuration is returned. Tests presented in this paper have shown
that the load-balancer is able to reach the convergence after only 3 cycles.

The hybrid implementation is itself based on OpenMP. Essentially, the OpenMP
implementation startsP + 1 threads, whereP is the number of threads used for the
NLL evaluation, while the other thread is used by the OpenCL implementation. This is
possible since in the OpenMP implementation starts a singleOpenMP parallel region at



the root of theNLL tree, so that it is possible to branch between the two implementations
at the beginning of the evaluation. Then the OpenMP standardguarantees an implicit
synchronization at the end of the parallel region. It is important to remember that the
OpenCL kernel calls are non-blocking and ideally consume minimal CPU time, i.e. the
evaluation of the tree on the CPU impose a minimal overhead. If this holds, then users
can decide to runP + 1 threads on a CPU withP cores.

3. Tests

In the following tests a statistical model based on theBABAR analysis for the branching
fraction measurement of theB meson toη′K decay is used [8]. There are 3 observables
and 5 species. In total there are 21 PDFs: 7 Gaussians, 5 polynomials, 3 Argus functions,
which are combined in 5 PDFs for multiplication and one for addition, respectively. All
PDFs have an analytical integral. The number of events considered ranges between 10k
and 1M events. Each run does 1000 times a pureNLL function evaluation, and we time
5 runs to achieve an accurate timing result.

The CPU system is an Intel Core i7 965 Nehalem running at 3.2 GHz, with 2GB
DDR3 RAM. It is a quad-core CPU and it also supports SMT, whichmeans that it has
the ability to physically execute 8 threads simultaneouslyand on a per-core basis (with 2
threads). Two GPUs are used: NVIDIA GeForce GTX470 and AMD Radeon HD5870.

The OpenMP CPU implementation improves the previous one fora single thread
by a factor 1.8x. The new speed-up results are: 1.8x with 2 threads, 3.6x with 4 threads,
and 4.7x with 8 threads, independently by the number of events used in the test. In the
previous implementation the maximum speed-up was 2.5x with8 threads.

The results for the OpenCL GPU implementation are shown in Figure 1 on the left
plot. Only in this case tests are also executed on a NVIDIA Tesla C2050. This implemen-
tation is not beneficial for a low number of events with respect to the OpenMP imple-
mentation. This is a direct consequence of the need to copy the final value over the PCI-
Express bus. Another interesting result is that neither theHD5870 nor the Tesla C2050
give any higher speedups than the GTX470, although theoretically they are almost 4x
faster than the GTX470 when performing double-precision arithmetic. The reason for
this is that the computation is completely memory-bound, soall the ALUs on the cards
are starved while waiting for memory reads.

Figure 1 shows also the results from the hybrid implementation on the right plot. A
general observation is thatN must be large to gain anything on this, so that the overhead
can be amortized. Running the GTX470 (with 4 threads in the OpenMP implementation)
and the HD5870 (3 threads) in a hybrid scenario is very beneficial, achieving nearly
perfect balancing for high workloads.

4. Conclusion

Two new implementations for theNLL evaluation have been presented in this paper,
based on OpenMP and OpenCL. It is also described a novel approach to the hybrid
evaluation for GPU and CPU computational devices. The OpenMP implementation gives
better performance and scalability with respect to the previous implementatin reported
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Figure 1. Comparison between CPU and GPU for the OpenCL implementation (left plot) and the hybrid
implementation (right plot). The reference is the OpenMP implementation with 4 threads. The “theoretically
perfect” lines are obtained when summing the performance ofthe OpenMP and OpenCL implementation alone,
i.e. no considering the overhead from the hybrid implementation.

in [2]. Comparing this version to an OpenCL implementation,it is possible to conclude
that the GPU should be used for a sufficient number of events, and this is suitable since
the need for computing power increases withN . The possibility of using the hybrid
implementation further improves the performance.
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