frec L FeIy
IS5

AECL-7614

ATOMIC ENERGY
OF CANADA LIMITED

L'ENERGIE ATOMIQUE
DU CANADA LIMITEE

[N

SLACINPT — A FORTRAN PROGRAM THAT GENERATES
BOUNDARY DATA FOR THE SLAC GUN CODE

SLACINPT — Programme FORTRAN engendrant des données
limites pour le code SLAC

W.L. MICHEL and J.D. HEPBURN

CERN LIBRARIES, GENEVA

AN WA

CM-P00067655

Chalk River Nuclear Laboratories Laboratoires nucléaires de Chalk River
Chalk River, Ontario

March 1982 mars



ATOMIC ENERGY OF CANADA LIMITED

SLACINPT - A FORTRAN PROGRAM THAT GENERATES BOUNDARY DATA
FOR THE SLAC GUN CODE

W.L. Michel and J.D. Hepburn

Accelerator Physics Branch
Research Company
Chalk River Nuclear Laboratories
Chalk River, Ontario KOJ 1J0

March 1982

AECL-7614



L'ENERGIE ATOMIQUE DU CANADA, LIMITEE

SLACINPT - Programme FORTRAN engendrant des données
limites pour le code SLAC

par

W.L. Michel et J.D. Hepburn

Résumé

Le programme FORTRAN SLACINPT a &té écrit pour sim-
plifier la préparation des données limites pour le code
a crayon lumineux SLAC. Dans le SLACINPT, la limite est
décrite par une série de lignes droites ou de segments
d'arc. A partir de 13, le programme engendre les données
individuelles de limite requises comme données d'entrée
via le code SLAC.

Département de physique des accé&lérateurs
" Société de recherche
Laboratoires nucléaires de Chalk River
Chalk River, Ontario KOJ 1JO

Mars 1982

AECL-7614



ATOMIC ENERGY OF CANADA LIMITED

SLACINPT - A FORTRAN PROGRAM THAT GENERATES BOUNDARY DATA
FOR THE SLAC GUN CODE

W.L. Michel and J.D. Hepburn

ABSTRACT

The FORTRAN program SLACINPT was written to simplify the prepa-
ration of boundary data for the SLAC gun code. In SLACINPT, the boundary
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1.1

SLACINPT - A FORTRAN PROGRAM THAT GENERATES BOUNDARY DATA
FOR THE SLAC GUN CODE

W.L. Michel and J.D. Hepburn

Accelerator Physics Branch
Atomic Energy of Canada Limited
Research Company
Chalk River Nuclear Laboratories
Chalk River, Ontario KOJ 1J0

Introduction

General Comments

The SLAC gun codel was written to calculate electron tra-
jectories in electrostatic and magnetostatic fields, and is now in use
at many laboratories. In it, Poisson's equation is solved by finite
difference equations using boundary conditions specified by inputting
the type and position of the boundary.

In use of this code at CRNL, the somewhat cumbersome boundary
input method was found to be awkward. Accordingly, a program SLACINPT
was written to augment the SLAC gun code, providing an easy-to-use,
accurate boundary data generator. SLACINPT is executed immediately
preceding the SLAC gun code; absolutely no changes are required in the
gun code for successful use of both programs.

This report covers three topics: a brief description of the
SLAC gun code boundary input method, a full description of the use of
SLACINPT, and a description of the SLACINPT program. Thus it serves
the dual role of user's manual and programmer's guide.



1.2 SLAC Gun Code Input

A detailed description of the SLAC gun code and of its
boundary data input method is not necessary here; however, a brief
outline is given to provide a basis for discussion of SLACINPT.

The SLAC gun code requires a closed, continuous and singly
connected boundary made up of two line segment types: 1) Dirichlet
boundaries representing metal surfaces on which the potential is known
and 2) Neumann boundaries representing gaps between surfaces that must
be chosen so that the normal component of the field is zero.
Dirichlet boundaries can 1ie anywhere on the problem grid while
Neumann boundaries are restricted to intersect mesh points, either
along horizontal or vertical mesh lines or at 45° to mesh 1lines.
Figure 1 shows a typical problem boundary. Note that the example
shown is the same as the example used in the SLAC gun code reportl.
Figure 2 shows the output plot produced by the SLAC gun code using, as
input, the boundary data generated by SLACINPT for the problem in
Figure 1. (SLACINPT input data for this case are described in section
2.4.)

For purposes of SLACINPT, two special cases of the Neumann
boundary are defined to be "transition" boundaries. The first case,
used for dielectric surfaces such as ceramic materials, is described
in reference 1. In it, the boundary of the surface is put in and then
overlaid with difference equation coefficients for the solution of
Poisson's equation. The second case is used for a boundary segment
completely transparent to the Poisson equation solution and is needed
to satisfy the requirement that the problem boundary be closed and
singly connected.

For the remainder of this report, the following definitions
apply: a "boundary point" is any point lying on the actual boundary
line, and a "boundary mesh point" is a mesh point 1lying inside the
problem space (i.e., inside the boundary) and within one mesh unit of
the boundary line.
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Figure 1  User's sketch of a boundary problem.
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Figure 2 Output plot produced by SLAC gun code for boundary problem.



The boundary data required by the SLAC gun code consists of
boundary mesh points, each specified by a set of five numbers, defined
as follows:

N - an integer corresponding to a particular value in an array
of potentials, identifying the potential of the adjacent
boundary. For boundary mesh points on a Neumann or tran-
sition boundary and more than one mesh unit from a
Dirichlet boundary, the potential number is not significant
and is normally set to zero.

R,Z - integers specifying the radial and axial coordinates of the
boundary mesh point.

DR,DZ - real numbers specifying the distances from the boundary
mesh point to the boundary 1line in the radial or axial
direction. DR and DZ can be positive or negative. If
greater than one mesh unit, the distance is not relevant
and is defined to be 2.0.

The SLAC gun code requires the following conventions: for a
Dirichlet (metal) boundary, neither DR nor DZ can be 0.0; for a
Neumann boundary, at least one of DR and DZ must be 0.0; and for a
transition boundary, DR=DZ=2.0. Thus, for Dirichlet boundaries,
boundary mesh points are never boundary points, while for Neumann
boundaries, boundary mesh points are always boundary points. The
program analyzes problem space in terms of rows (i.e., lines of R =
constant) and columns (i.e., lines of Z = constant). Every row and
column crossing the problem space must have [DZ| < 1.0 or |DR| < 1.0,
respectively, at its end points. In practice this means no row or
column can consist of a single boundary mesh point.
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For solution of Poisson's equation, boundary mesh points must
be one mesh unit apart. If input boundary mesh points are not
adjacent, then the gun code tries to fill in the missing points by
using a fitting routine. In practice, the user must have a good
sketch of the boundary system on graph paper. From this he must
determine the boundary mesh points and estimate the DR and DZ values.
This estimate must be fairly accurate so that the internal interpo-
lation can produce a smooth and accurate representation of the actual
boundary system. This usually requires a large number of data cards,
especially if the boundary system consists of several curved bounda-
ries. This input method is tedious and often the desired accuracy is
difficult to achieve. Iterative design changes are equally tedious
and inaccurate. ’

SLACINPT

The program SLACINPT simplifies the method of boundafy speci-
fication, as compared with the SLAC gun code. The boundary system is
again drawn on graph paper and consists of a continuous sequence of
straight line or arc segments. The user then has to determine only:

(1) the coordinates of the starting point of the first segment

(2) the coordinates of the end point of each segment
(Since the end point of each segment is also the starting
point of the next segment, only the end point coordinates need

be entered by the user.)

(3) the radius and approximate coordinates of the centre of an
arc
(The program calculates the centre of each arc from its end
points and radius and then uses the approximate centre
location input by the user to select the correct centre from
the two possible centres.)
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(4) the coordinates of the first boundary mesh point.

In practice, a boundary system consisting of N segments can be
completely defined by (N+1) data cards.
assumed. SLACINPT uses this simplified boundary specification to
accurately determine all boundary mesh points enclosed by the boundary

A clockwise progression is

system.

Problem Data Preparation

Job Control Deck

Table I shows the structure of the job control card deck,
excluding the user's input data, as run on the CRNL CDC 6600 computer
using the NOS/BE 1.3 operating system.

Table I

User's Job Control Deck

Deck Contents

WLMSLAC,B0231-02017,T25,1030.

ATTACH,LGO,SLACINPT,ID=WLM5J.
LGO.

IFE,FILE(INFILE,AS)=TRUE ,NOGUN.

REWIND,INFILE.
ATTACH,A,GUN5,ID=HUTCHEON.

A,INFILE.

ENDIF ,NOGUN.
7/8/9

Comments

for job control card and user
identification

load binary file for SLACINPT
execute SLACINPT

SLACINPT output stored on
INFILE, or error exit

tape rewind

load binary file for SLAC gun
code (GUN5)

execute GUN5, using INFILE as
input

error exit
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If SLACINPT is terminated because of errors detected by the
operating system or because of errors detected by SLACINPT, the file
INFILE will not be created and the SLAC gun code will not be attached
or executed. If SLACINPT was error free, INFILE will exist and the
SLAC gun code, GUN5, will be attached and executed.

SLACINPT is written in FORTRAN IV language for CDC computers.
The binary deck occupies about 29500 (decimal) words during exe-
cution, and never takes more than 4 seconds on the CDC 6600 for
problems with up to 800 boundary mesh points.

Input Data Deck Structure

A11 of the data required by the SLAC gun code program, except
the boundary specification data, is prepared as described in the gun
code instructions. This data is then divided into three parts - the
section preceding the gun code boundary data, the boundary data itself
and the section following it. A1l of the problem data is then input
to SLACINPT in the following order: the first section of the gun code
data (terminated by a bFLAG card), the SLACINPT boundary data, and
then the third section of the gun code data (again terminated by a
bFLAG card). SLACINPT then calculates the boundary data required by
the SLAC gun code, assembles a complete input file for the gun code,
and stores the file as INFILE.

Guide for Boundary Segment Specifications
2.3.1 General Comments

While SLACINPT has been made as general as possible, some

restrictions do exist. These are:

(1) The number of boundary segments must not exceed 150.



(2)
(3)

(4)

2.3.2

The number of potential values must not exceed 9.

Arc to arc, horizontal to horizontal, and vertical to vertical
sequences of boundary segments are not permitted.

Each segment must cross at least 2 mesh Tines.

Boundary Specification Requirements

To generate the boundary mesh point data, SLACINPT requires

the following information in its boundary specification input:

(1)
(2)
(3)
(4)
(5)
(6)

2.3.3

the R and Z coordinates of the starting boundary point,

the R and Z coordinates of the end point for each segment,

the R and Z coordinates of the first boundary mesh point,

the shape of the boundary segment (straight line, clockwise

arc (CW) or counter-clockwise arc (CCW)),

the type of boundary segment (Dirichlet, Neumann or transition),
and '

the potential number for that boundary segment.

Boundary Segment Restrictions

Boundary segments must conform to certain restrictions imposed

by the SLAC gun code, as mentioned briefly before. Adherence to these
restrictions is vital, and they are listed below.

(1)

(2)

(3)

(4)

Horizontal Neumann or transition boundary segments must be on a Z
mesh Tine.

Horizontal Dirichlet boundary segments cannot be on a Z mesh
line.

Vertical Neumann or transition boundary segments must be on an R
mesh Tine.

Vertical Dirichlet boundary segments cannot be on an R mesh

line.
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(6)
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Sloped Neumann or transition boundary segments must have a slope
=+ 1.0.

Arc boundary segments cannot be defined as Neumann or transition
boundary segments.

2.3.4 Segment End Point Restrictions

As a result of the boundary segment restrictions, the segment

end points must conform to the following restrictions:

(1)

(3)

For a crossover from a Neumann or transition boundary to a
Neumann or transition boundary, the end point must be at a mesh
point.

For a crossover from a Neumann or transition boundary to a
Dirichlet boundary (or vice versa), the end point cannot be at a
mesh point. If the Neumann or .transition segment is vertical,
the end point must be on an R mesh line, while for a horizontal
Neumann or transition segment, the end point must be on the Z
mesh line. If the Neumann or transition boundary segment is
sloped, the end point cannot be on either mesh line but must have
the fractional part of R equal to the fractional part of Z.

For a crossover from a Dirichlet boundary segment to a Dirichlet
boundary segment, the end point cannot be on any mesh Tine.

Data Card Description

Table II shows the structure of the complete input data deck

for the previously shown test case. The bFLAG cards inform SLACINPT
of the end of SLAC gun code data sections. See reference 1 for a
description of these. A card-by-card description of the boundary data

section follows:-
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Table II

Computer Printout of User's Input

DATE OF RUN: 82-02-02
TIME OF RUN: 13.44.04.

INJECTION GUN MODEL 4-1A GRID-CATHODE REGION

$SINPUTL
RLIM=72,2zLIM=40,POTN=4,POT=0.0,5000.0,0.0,0.0,MI=1,MAGSEG=1,
SEND

$INPUT2
21=20,2%2=40,23=20,BC=0.0,25.0,0.0,0.0,0.0,0.0,0.0,
SEND

FLAG

11

0.0 0.01 0 1

-111 37.99 2.99 256.99 0.0 257.0

014 56.01 14.01

114 61.2 12.1 3.2 58.0 11.2

014 61.2 0.0

000 71.99 0.0

012 71.99 26.6

-112 70.25 27.40 1.25 70.8 26.25

012 40.8 13.5

012 38.8 13.5

112 0.0 10.4 246.61 0.0 257.0

000 0.0 0.01

200

$INPUTS5
$IZl=l,IZZ=2,IZS=10,RAD=257,RMAX=37.99,UNITIN=0.01,SPC=0.0,
END

FLAG
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Card 1 N1 N2 - these two integers control the printout
produced by SLACINPT

N1=0: suppresses printout of boundary
segment information

Nl1=1: produces printout of the boundary
segment information, as shown in
Table III '

N2=0: suppresses printout of boundary mesh
point data

N2=1: produces printout of boundary mesh
point data, as shown in Table IV

the R and Z coordinates (real numbers) of
the starting boundary point of the first
boundary segment

Card 2 PY(1,1),PX(1,1)

the R and Z coordinates (integer numbers)
of the first boundary mesh point

BPR(1),BPZ(1)

N is the number of segments
one card required per segment

Card 3 to (N+1)

IJK - a signed 3 digit integer code to describe

(1) the shape of the boundary segment

(2) the type of boundary segment
(Dirichlet, Neumann or transition)

(3) the potential number of the segment
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Table III

Computer Printout of Boundary Segment Information
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Table IV

Sample from'Computer Printout of Boundary Mesh Point Data

POINT # POTN R Z DR DZ

1 1 0 1 2.0000 -.9900

2 1 1 1 2.0000 -.9840

3 1 2 1 2.0000 -.9741

4 1 3 1 2.0000 -.9603

5 1 4 1 2.0000 -.9426

6 1 5 1 2.0000 -.9210

7 1 6 1 2.0000 -.8955

8 1 7 1 2.0000 -.8661

9 1 8 1 2.0000 -.8328
10 1 9 1 2.0000 -.7957
11 1 10 1 2.0000 -.7546
12 1 11 1 2.0000 -.7096
13 1 12 1 2.0000 -.6607
14 1 13 1 2.0000 -.6080
15 1 14 1 2.0000 -.5513
16 1 15 1 2.0000 -.4907
17 1 16 1 2.0000 -.4261
18 1 17 1 2.0000 -.3577
19 1 18 1 2.0000 -.2853
20 1 19 1 2.0000 -.2091
21 1 20 1 2.0000 -.1289
22 1 21 1 .5133 -.0447
23 1 22 2 2.0000 -.9566
24 1 23 2 2.0000 -.8646
25 1 24 2 2.0000 -.7687
26 1 25 2 2.0000 -.6688
27 1 26 2 2.0000 -.5649
28 1 27 2 2.0000 -.4571
29 1 28 2 2.0000 -.3453
30 1 29 2 2.0000 -.2296
31 1 30 2 .8899 -.1099
32 1 31 3 2.0000 -.9862
33 1 32 3 2.0000 -.8585
34 1 33 3 2.0000 -.7269
35 1 34 3 2.0000 -.5912
36 1 35 3 2.0000 -.4515
37 1 36 3 2.0000 -.3079
38 1 37 3 2.0000 -.1602
39 4 38 3 .0064 -.0039
40 4 39 4 .6416 -.3923
41 4 40 5 2.0000 -.7808
42 4 41 5 .2768 -.1693
43 4 42 6 .9120 -.5577
44 4 43 7 2.0000 -.9462
45 4 44 7 .5472 -.3346
46 4 45 8 2.0000 -.7231
47 4 46 8 .1824 -.1115
48 4 47 9 .8176 -.5000
49 - 4 48 10 2.0000 -.8885
50 4 49 10 .4528 -.2769
51 4 50 11 2.0000 -.6654
52 4 51 11 .0880 -.0538
53 4 52 12 .7232 -.4423
54 4 53 13 2.0000 -.8307
55 4 54 13 .3584 -.2192
56 4 55 14 .9936 -.6077
57 4 56 15 2.0000 -.9961
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I=0:  segment is a straight line
[=+1: segment is a counter-clockwise arc
I=-1: segment is a clockwise arc

J=0: segment is a Neumann boundary

J=1: segment is Dirichlet boundary

J=2: segment is a transition boundary

K<9: the potential number of the boundary
segment; K=0 for a Neumann or
transition boundary segment

PY(I,2),PX(I,2) - the R and Z coordinates (real numbers) of the
end point of the Ith boundary segment

R R,CY(I),CX(I) - the radius and user's estimate (real numbers)
of the centre coordinates for an arc houndary
segment. This centre estimate need not be
accurate since SLACINPT calculates the actual
coordinates and only uses the user's esti-
mate to select the correct centre from the
two possible centres.

Card (N+3) - indicates the end of boundary input

- any value = 200 can be used
- value must be 999 if special boundary data follows



2.5

2.6

16

Running Successive Problems

When running successive problems, the SLAC gun code requires
that the input data deck of the second problem immediately follows the
last card of the first problem. A parameter, SAVE in namelist
$INPUT5, is used to signal the gun code whether any ‘relationship
exists between the two problems. SAVE can have the values 0, 1 or 2.

If SAVE=0 is specified, each problem has its own unique input
data deck, including boundary specifications. FLAG cards are required
before each boundary data block and at the end of each problem.

If SAVE=1 is specified, the second problem will use the same
boundary conditions as the first problem, so boundary input cards are
not needed for the second problem. FLAG cards are only needed before
the boundary data block of the first problem and at the end of the
last problem using this boundary data.

If SAVE=2 is specified, the gun code will use the output from
one problem in the next problem with new input data, including new
boundary conditions. FLAG cards in the input deck are positioned as
for a SAVE=0 problem.

Special Boundary Conditions

General Neumann and other special boundary conditions such as
dielectric surfaces may be used in the SLAC gun code. The presence of
special boundary data is signaled by using special numbers to termi-
nate the normal boundary data.

SLACINPT recognizes the end of normal boundary by a code
number (IJK2200) and then copies this number to the end of the
boundary data generated for the gun code by SLACINPT.
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Program Description

Overall Program Description

In describing the operation of SLACINPT, various subroutines
and variables are named - a short description of each subroutine is
given in section 3.2 and a definition of the most common variables in

section 3.3.

SLACINPT creates a file, INFILE, which is used by the SLAC gun
code as input. INFILE is identical in structure to the original input
to the SLAC gun code except that INFILE now contains all of the
boundary mesh point data for the boundary system - the gun code does
not have to do any "fitting" to fill in any missing boundary mesh

points.

Upon entering the main routine, SLACBND, subroutine COPINPT is
called to copy all of the user's input data to the printout (as shown
in Table II). Next, the first section of the user's input is read and
saved for later use. The subroutine SEGPTS is then called to read and
decode the boundary segment data and program control returns to
SLACBND where a printout of the boundary information is produced if
the user has selected N1=1. An example of a printout is shown in
Table III.

Before starting the boundary mesh point data generation, the
subroutine VALID is called to validate the boundary segments according
to the rules specified in sections 2.3.3 and 2.3.4. Any error con-
dition detected produces an error message and terminates the job.

The program then proceeds to generate the boundary mesh point
data starting with the first segment and the initial boundary point's
coordinates. The pointers I, J and N are referred to often in this
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description and are defined as follows: I is the current segment
pointer, N is the next segment pointer and J is the current boundary
mesh point pointer. The boundary mesh point data generated will con-
sist of three parts:

(1) BPR(J),BPZ(J) - the mesh coordinates of the Jth
boundary point

(2) DR(J),DZ(J) - the distances from the Jth boundary mesh
point to the boundary surface along the R
and Z mesh line, respectively

(3) IBPT(J) - the potential number of the Jth boundary
mesh point

SLACBND calls on one of a number of subroutines, depending on
the current boundary segment shape, to generate the boundary mesh

points.
For a straight 1line segment, one of four subroutines is
called:
L3
(1) HORZ - for horizontal segments
(2) VERT - for vertical. segments

(3) POSSLOP - for positive sloped segments

(4) NEGSLOP - for negative sloped segments

Each subroutine will then determine the type of crossover to the next
segment. For crossovers from one straight line segment to another
straight line segment, the boundary mesh point data is generated
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within one of these subroutines (i.e., each straight line to straight
line crossover has its own program section within the subroutine).

I[f the crossover is from a straight line to an arc segment,
then the straight line segment subroutine calls one of the following

subroutines:

(1) HORZARC - called by HORZ for a horizontal to arc crossover

(2) VERTARC - called by VERT for a vertical to arc crossover

(3) POSVARC - called by POSSLOP for a positive slope to arc

crossover

(4) NEGVARC - called by NEGSLOP for a negative slope to arc

crossover

Each one of these subroutines is divided into two parts to treat
crossovers to CW or CCW arcs separately. Each part is further sub-
divided depending on the quadrant position, QP, of the arc segment
starting point and the direction of the current straight line segment.
The quadrant Q (or QP) = 1 is defined to be the lower right hand
quadrant of a circle; quadrants 2, 3 and 4 are the other quadrants in
a counter-clockwise direction. A more detailed definition of Q and QP
is found in section 3.2.

For crossovers from an arc segment to straight line segment,
there are two sets of subroutines available: one set for CW arcs and
the other for CCW arcs. The CCW arc to straight line crossover sub-
routines are: ARCHORZ for crossovers to horizontal segments, ARCVERT
for crossovers to vertical segments, ARCPOSV for crossovers to posi-
tively sloped segment and ARCNEGV for crossovers to negatively sloped
segments. The CW arc to straight 1line crossover subroutines are



20

NARCHRZ, NARCVRT, NARCPOS and NARCNEG - they treat the crossovers from
a CW arc to horizontal, vertical, positively sloped or negatively
sloped segments, respectively.

The subroutine selected depends on the combination of the arc
direction, ID(I), and the next segment identifier, N. Each of the
arc to straight 1line crossover subroutine functions in a similar
manner. The quadrant, QP, in which the arc segment end point lies is
determined as well as the quadrant, Q, in which the current boundary
point 1ies. As long as the current boundary point is not in the same
quadrant as ‘the arc segment' end point (i.e., Q#QP), the crossover
subroutine calls the subroutine ARC to generate the boundary mesh
point data. When Q=QP, the program jumps to sections within the
crossover subroutine depending on the current boundary point's
quadrant and the direction of the next segment.

In section 4.1, the methods used to generate the DR(J) and
DZ(J) values for the current boundary mesh point BPR(J),BPZ(J) are
described in some detail. In general, the method consists of deter-
mining the intersection points made on the boundary surface by the R
and Z mesh lines through a boundary mesh point and then calculating
the directed distance from the boundary mesh point to the intersection
point. If there is no intersection with the current or the next seg-
ment, the distance along the mesh line is arbitrarily set to 2.0.

If a boundary mesh point seems acceptable (i.e., |DR(J) |
and/or |DZ(J)| < 1.0), program control passes to the subroutine
RESULT. This subroutine performs some more adjustments on the DR(J)
and DZ(J) values so that these values conform to the requirements of
the gun code. These modifications are described in section 4.2.
Another function of RESULT is to determine the potential number,
IBPT(J), for each boundary mesh point. The method of determining the
potential number is detailed in section 4.3.
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After adjusting the DR(J) and/or DZ(J) values and finding the
potential number IBPT(J), the boundary mesh point data is printed if
the user has selected this option (N2=1). An example of this printout
is given in Table IV. RESULT then determines the mesh coordinates of
the next possible boundary mesh point using the method described in
section 4.4. Program control then returns to_the calling subroutine
to try and generate the data for this new boundary mesh point. When
the subroutine detects that the new point has crossed over into the
region of the next boundary segment, program control returns to
SLACBND to select the next appropriate segment subroutine. When the
last segment becomes the current segment, then the first segment is
considered to be the next segment to close the boundary system loop.
Boundary mesh point data generation terminates when the program
detects that all the points for the last segment have been generated.

After determining all the boundary mesh point data, SLACBND
checks the points for duplication. If any but the first and last
point have the same R and Z coordinates, an error message is printed
and the program is terminated. If the first and last point have the
same coordinates, then the first point assumes the boundary mesh point
data for the last point and the last point is discarded.

If the boundary mesh point data generation was successful, the
first section of the user's input data (read and saved at beginning of
the run) is written to INFILE. SLACBND then writes all of the
boundary mesh point data (potential numbers, R and Z coordinates of
the boundary mesh points and the DR(J) and DZ(J) values) to the file
INFILE. The boundary data is terminated by 200 0 0 0.0 0.0 (or
999 0 0 0.0 0.0 if special boundary cards follow) as required by the
SLAC gun code. The third section of the gun input data is then read
and written to the file INFILE. The SLACINPT program then terminates.
Some error checking is done by the various routines and a description
of error messages produced is found in section 3.4.
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3.2 Parameter Definitions

This section is a glossary for the more commonly used variable

names in the program.

BPR(J),BPZ(J)

CY(I),CX(I)

DR(J)

DZ(J)

IBS(I)

ICRR

the R and Z coordinates of the Jth boundary mesh
point

R and Z coordinates of the center if the Ith segment

is an arc
on input, user specifies approximate coordinates,
program then calculates actual coordinates

directed distance along the R mesh line from the Jth
boundary mesh point to the boundary segment surface

directed distance along the Z mesh line from the Jth
boundary mesh point to the boundary segment surface

current segment pointer

boundary segment type identifier
0 for Neumann, 1 for a Dirichlet and 2 for a
transition

a pointer to the current or the next boundary segment
intersected by the R mesh line through the current
boundary mesh point

has the value I or N
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ICRZ - a pointer to the current or the next boundary segment
intersected by the Z mesh line through the current
boundary mesh point

- has the value I or N

ID(I) - defines the direction for an arc boundary segment
= 0 for a straight line
= +1 for a CCW arc
= -1 for a CW arc

ITC=IT(I) - current segment shape identifier
= 0 current segment is an arc
= +1 current segment is horizontal with increasing Z
= -1 current segment is horizontal with decreasing Z
= +2 current segment is vertical with increasing R
= -2 current segment is vertical with decreasing R
= +3 current segment has positive slope with

increasing R
= -3 current segment has positive slope with
decreasing R
= +4 current segment has negative slope with
increasing R
= -4 current segment has negative slope with
decreasing R
ITN=IT(N) - next segment shape identifier
- can assume the same values as specified for ITC
J - current boundary mesh point pointer

K - an integer equal to [KK|



KK

NA

NCT

NMTS

NNEU

NPOTN

NS

N1

N2
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a signed integer used to select the algorithm for
determining the coordinates of the next boundary
mesh point

a positive value indicates a continuation of data
generation using the current subroutine

a negative value causes a return to the calling
routine

next segment pointer

number of arc segnments

number of transition segments

number of Dirichlet segments

number of Neumann segments

number of potential numbers

total number of segments

controls printout of segment specification

0: no printout requested
1: printout requested

controls printout of boundary data generated

0: no printout requested

1: printout requested



PY(I,].),PX(I,]_)—

PY(1,2),PX(I,2)-

op -

RAD(I) -

SEGP(I) -

SG -
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the R and Z coordinates of the starting point of the
Ith segment

R and Z coordinates of the end point of the Ith
segment

defines the quadrant (with respect to the current
arc segment centre) in which the current boundary

mesh point is located
Q=1 if BPR(J) < CY(I), BPZ(J) 2 CX(I)
>

- Q=2 if BPR(J) = CY(I), BPZ(J) = CX(I)
- Q=3 if BPR(J) 2 CY(I), BPZ(J) < CX(I)
- Q=4 if BPR(J) < CY(I), BPZ(J) < CX(I)

defines the quadrant (with respect to an arc centre)
of the end point of a current arc segment or the
starting point of the next line segment

has same values as Q

radius of an arc segment

an array containing the radii of the arc segments
(=0 if a segment is not an arc)

defines the potential number of segment I

an integer, +1 or -1, defining the direction of the

current boundary segment
its value is dependent on the current segment shape

identifier
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. = for straight line segments
- SG = +1 when ITC =1, 2, 3 or 4
- SG = -1 when ITC = -1, -2, -3 or -4
- for all arc segments (ITC=0)
- SG = ID(I) if the Z coordinate of the current
boundary mesh point is 2 Z coordinate of the arc

centre (Q=1 or 2)

- SG = -ID(I) if the Z coordinate of the current
boundary mesh point is < Z coordinate of the arc
centre (Q=3 or 4)

SLP(I) - slope for a sloped line segment I
3.3 Description of Program Routines
3.3.1 Program SLACBND

SLACBND is the main program and performs the following
functions:

(1) copies the input data deck to the printout,

(2) copies the first section of the user's input to the file
INFILE,

(3) reads the boundary specification data and decodes the data
using the subroutine SEGPTS,

(4) prints the boundary specification data, if requested, using
the subroutine PRISEGS,

(5) wuses the subroutine VALID to check the validity of the
boundary specification data,

(6) selects the appropriate boundary segment subroutines and
generates the boundary data, ‘

(7) validates the generated data and then writes the data to the
file INFILE, and :

(8) copies the third section of the user's input to the file
INFILE.



27

3.3.2 Subroutine COPINPT

The subroutine COPINPT prints the date and time of the run and
then the input data deck.

3.3.3 Subroutines READS, WRITES

The subroutine READS 1is called by SLACBND to read the first
and third section of the input data into a scratch file. The first
section is always read, whereas the third section is read only if the
boundary mesh point data generation was successful (i.e., SLACINPT did
not terminate because of input or boundary mesh point errors).

The subroutine WRITES 1is called to write the contents of the
scratch file to INFILE.

3.3.4 Subroutine SEGPTS

The subroutine SEGPTS is called by the program SLACBND to read
and decode the user's boundary specification. It performs the
following tasks:

(1) assigns a pointer, I, to each segment,

(2) determines each boundary segment shape and then assigns a
value to the segment shape identifier, IT(I), and the arc
direction pointer, ID(I), for an arc segment,

(3) determines the accurate center for an arc segment using the
subroutine CENTR, v

(4) calculates the slope, SLP(I), for any sloped line segments,

(5) determines the boundary segment type (Neumann, Dirichlet or
transition) and assigns the value 0, 1 or 2 to the boundary
segment type identifier, IBS(I),

(6) determines the potential number, POTN(I), for each boundary

segment.
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3.3.5 Subroutine PRISEGS

The subroutine PRISEGS is called by SLACBND to print the
boundary specification if the user requested it by setting printout
control parameter N1=1. Table III shows the printout for the problem

shown in Figure 1.

3.3.6 Subroutine VALID

The subroutine VALID is called by SLACBND to validate the
boundary specifications read by the subroutine SEGPTS. If any speci-
fications are invalid according to the conditions described in
sections 2.3.3 and 2.3.4 then an error condition exists and an
appropriate error message is printed and the job is terminated.

3.3.7 Subroutine CENTR

The subroutine CENTR is called by SEGPTS to calculate the
centre of an arc given the arc end point's coordinates, the arc radius
and a guess at the centre's coordinates. Using the end point and the
radius, CENTR finds the coordinates of the two possible centres. The
required centre is then the calculated centre that is closer to the

estimated centre.
3.3.8 Subroutine RESULT

The subroutine RESULT is called by the various segment sub-

routines to
(1) make final adjustments to the DR(J) and DZ(J) distances
(section 4.2),
(2) determine the potential number, IBPT(J), for the current
boundary mesh point (section 4.3),
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(3) print the boundary mesh point data if the user requested it
by setting the printout control parameter N2=1 (see Table
1V), and

(4) determine the coordinates of the next boundary mesh point
(section 4.4).

3.3.9 Subroutines SUBPOSV, SUBNEGV

The subroutine SUBPOSV 1is called by subroutine POSSLOP to
generate the boundary mesh point data when both the R and Z mesh lines
through the boundary mesh point intersect the current positively
sloped line segment. Similarly, SUBNEGV is called by the subroutine
NEGSLOP if the current segment has a negative slope. The subroutines
in turn call RESULT to further treat the boundary data and generate
the coordinates of the next boundary mesh point. Control then returns
to the calling program.

3.3.10 Subroutines SUBDZ, SUBDR

The subroutines SUBDZ and SUBDR are used to calculate the
DR(J) and DZ(J) distances from the current boundary mesh point to a
sloped 1ine segment along the R and Z mesh lines, respectively.

3.3.11 Subroutine HORZ

The subroutine HORZ is called by SLACBND if the current
segment is a horizontal line segment. The subroutine is divided into
various sections, each of which treats a particular type of crossover
region to the next section. The crossover section selected is
dependent on the current segment's direction indicator, SG, and the
next segment's shape identifier, ITN. For the case of ITN=0 (next
segment is an arc), HORZ calls the subroutine HORZARC to generate the
boundary mesh point data. The subroutine returns to SLACBND if HORZ
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determines that the current boundary mesh point has crossed over into
the next segment's region.

3.3.12 Subroutine HORZARC

The subroutine HORZARC is called by the routine HORZ to treat
the crossovers from a horizontal line segment to an arc segment. The
subroutine is divided into two sections: for crossovers to either a
CW or a CCW arc segment. Each section is further subdivided into four
parts to treat the crossovers that can occur in the four possible
quadrants. After generating a boundary mesh point, RESULT is called
to further treat the boundary data and determine the coordinates of
the next boundary mesh point. Control returns to SLACBND (via HORZ)
when HORZARC detects that the next boundary mesh point has crossed
over into the next segment's region.

3.3.13 Subroutines VERT, VERTARC

The subroutines VERT and VERTARC are similar in their
functions to the routines HORZ and HORZARC, except that they treat
crossovers from a vertical boundary segment to the next segment.

3.3.14 Subroutine POSSLOP

The subroutine POSSLOP is called by SLACBND to generate
boundary mesh point data for boundary mesh points along a positively
sloped segment. Each crossover to the next segment is treated sepa-
rately, depending on the direction of the current segment and the
shape of the next segment. If the next segment is an arc, the sub-
routine POSVARC is called to generate the boundary mesh points. If
the R and Z mesh lines through the current boundary mesh point both
intersect the current positively sloped segment, the subroutine
SUBPOSV is called to generate the data. If only one of the mesh lines
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intersects the current segment, the DR(J) or DZ(J) value is calculated
by calling the subroutine SUBDR or SUBDZ, respectively. The distance
along the other mesh 1ine is then found within the subroutine. RESULT
is then called to further treat the boundary data, and the coordinates
'of the next boundary mesh point are determined. When POSSLOP detects
that the next point has crossed over into the next segment's region,
control returns to SLACBND.

3.3.15 Subroutine POSVARC

The subroutine POSVARC 1is called by POSSLOP to treat the
special case of crossovers from a positively sloped segment to an arc
segment. The CW and CCW arc segments are again handled by separate
sections, and each section is further broken up into smaller parfs to
treat the boundary mesh point with regard to the crossover quadrant,
QP, determined from the current segment's end point.

After the boundary mesh point data has been determined, RESULT
is called for further data treatment and the coordinates of the next
boundary mesh point are determined. When POSVARC detects that the
next boundary mesh point has crossed into the next segment's region,
control returns (via POSSLOP) to SLACBND.

3.3.16 Subroutines NEGSLOP, NEGVARC

The subroutines NEGSLOP and NEGVARC are similar in their
function to the subroutines POSSLOP and POSVARC, respectively, except
that they treat crossovers from a negatively sloped line segment.

3.3.17 Subroutine ARC

The subroutine ARC is called by one of the subroutines that
treat the crossovers from an arc segment to a straight line segment.
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It is only called when the current boundary mesh point is not located
in the same quadrant as the current arc segment's end point. ARC
calls on the subroutines ROOTR (or RO0TZ) to find the intersection
points (RTl and RT2) made with the arc segment by the R and Z mesh
lines through the current boundary mesh point. DR(J) or DZ(J) then is
the distance from the current boundary mesh point to one of the inter-
section points, RTl or RT2, as calculated by ROOTR (or ROOTZ). Which
intersection point is used will depend on ID(I), the direction of the
current arc segment and on Q, the quadrant pointer for the current
boundary mesh point.

The subroutine is used to treat both CW and CCW segments. For
CCW arc segments, the boundary mesh point will always be on the
"outside" of the arc and the R or Z mesh lines need not always inter-
sect the arc - in this case, DR(J) or DZ(J) is set equal to 2.0. For
CW arc segments, however, the boundary mesh point is always "inside"
the arc and the R and Z mesh lines must always intersect the arc. If
ROOTR or ROOTZ do not find any intersection points, an error condition
exists, an appropriate error message is issued and the job is termi-
nated. After determining the boundary mesh point data, RESULT is
called for further data treatment and to determine the coordinates of
the next boundary mesh point. Program control thern returns to the
calling subroutine to find the quadrant pointer for the new boundary
mesh point.

3.3.18 Subroutine ARCHORZ

The subroutine ARCHORZ is called by SLACBND to calculate the
boundary mesh point data for crossovers from a CW arc segment to a
horizontal straight line segment.

ARCHORZ first determines the quadrant pointefs, QP and Q. If
Q and QP are not equal, the current boundary mesh point is not located



33

in the same quadrant as the arc segment's end point (i.e., the point
is not in the crossover quadrant) and the subroutine ARC is called to
generate the boundary mesh point data and the coordinates of the next
boundary mesh point. If Q and QP are equal (i.e., the point lies in
the crossover quadrant), the boundary mesh point data is generated by
one of four subroutine parts. Which part is used is determined by the
combination of Q, the quadrant pointer for the boundary mesh point,
and ITN, the shape identifier of the horizontal segment. After cal-
culating the boundary mesh point data, RESULT is called for further
data treatment and to determine the coordinates of the next boundary
mesh point.

The subroutine will then determine the new quadrant pointer,
Q, for the new boundary mesh point. Each of the four parts of ARCHORZ
checks to see if the boundary mesh point has crossed over into the
horizontal segment's region - this causes program control to return to
SLACBND. '

3.3.19 Subroutines ARCVERT, ARCPOSV, ARCNEGV

The subroutines ARCVERT, ARCPOSV and ARCNEGV are similar iin
function to the subroutine ARCHORZ except that they treat crossovers
to vertical, positively sloped, and negatively sloped segments,
respectively.

3.3.20 Subroutines NARCHRZ, NARCVRT, NARCPOS, NARCNEG

The subroutines NARCHRZ, NARCVRT, NARCPOS and NARCNEG are
called by SLACBND to treat crossovers from a CW arc segment to a hori-
zontal, vertical, positively sloped, or negatively sloped segment,
respectively. Each subroutine is similar in its function to its CCW
equivalent. The major difference is that for all CW arc segments, the
R and/or Z mesh Tlines through the boundary mesh point must have an
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intersection point with the arc segment - if none is found, an error

condition exists.
3.3.21 Subroutine QUAD

The subroutine QUAD is called by one of the arc-to-straight
line crossover subroutines to determine the quadrant pointer, Q, for
the current boundary mesh point.

3.3.22 Subroutine QEND

The subroutihe QEND is called by one of the arc to straight
line (or vice versa) subroutines to determine the crossover quadrant
pointer, QP, for the starting point of an arc segment (or the end
point of a straight line segment).

3.3.23 Subroutine ROOTZ

The subroutine ROOTZ may be called by any of the subroutines
involving arc segments to find the intersection points made with an
arc by the Z mesh line through the boundary mesh point. The inter-
section points are found by simply substituting the R coordinate of
the current boundary mesh point in the equation of the circle that
has the same radius and centre as the arc segment involved. If there
are real intersection points, the indicator RT will have a non-
negative value and the intersection points RTl and RT2 are determined.
If the intersection points are imaginary, then the indicator RT will
have a negative value upon return to the calling program.

3.3.24 Subroutine ROOTR

The subroutine ROOTR is similar to ROOTZ except that it is
used for the R mesh Tlines.
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3.4 Error Messages

4.1

SLACINPT is able to detect some errors in the boundary mesh
data produced during a program run. Any error detected will produce
an appropriate error message and will terminate any further program
execution. The messages produced are all self-explanatory and the
user should be able to quickly identify the problem area. Any error
will cause job termination. ’

Calculation Descriptions

DR(J) and DZ(J) Calculations

The boundary system of a given problem can be represented by
two types of line segments:

(1) a straight line (horizontal, vertical or sloped), and
(2) an arc CW (clockwise) or CCW (counter-clockwise).

The radial, R, and the axial, Z, mesh 1lines through the
boundary mesh point at BPR(J),BPZ(J) can intersect the boundary
surface in such a way that

(1) both mesh lines intersect the current boundary segment,
Figure 3(a), or

(2) one mesh line intersects the current bhoundary segment while
the other mesh 1ine intersects the next boundary segment,
Figure 3(b), or

(3) one mesh line intersects the current boundary segment while
the other mesh line does not intersect the current or the next
boundary segment, Figure 3(c).
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Figure 3  Examples of possible boundary-to-boundary mesh point configurations.

I denotes current boundary segment, N denotes next boundary segment,

and x denotes boundary mesh point.

(a) R and Z mesh lines intersect the same boundary segment.

(b) R and Z mesh lines intersect different boundary segments.

(c) Only one mesh line intersects the current or next boundary
segment.
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Conditions (2) and (3) define a crossover region. When calculating
the DR(J) and DZ(J) distances, any one of the five calculation methods
described 1in sections 4.1.1 to 4.1.5 can be used, depending on the
intersected boundary segment shape.

4.1.1 Method 1: Intersected Segment is Horizontal
DR(J) = PY(M,1) - BPR(J), ICRR = M

where M=I for the current segment, or
M=N for the next segment.

DZ(J) and ICRZ are calculated using method 2, 3 or 4 if the Z

mesh line through the current boundary mesh
point intersects the next boundary segment.

4.1.2 Method 2: Intersected Segment is Vertical
DZ(J) = PX(M,1) - BPZ(J), ICRZ=M
where M=I for the current segment, or
M=N for the next segment.
DR(J) and ICRR are calculated using method 1, 3 or 4 if the R

mesh line through the current boundary mesh
point intersects the next boundary segment.

4.1.3 Method 3: Intersected Segment is a Sloped Line

For the distance along the Z mesh Tline,

]

PX(M,1) + [BPR(J) - PY(M,1)]/SLP(M) - BPZ(J)
M

DZ(J)
ICRZ
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where M=I if distance is to the current segment, or
M=N if distance is to the next segment.

For the distance along the R mesh line

PY(M,1) + SLP(M) * [BPZ(J) - PX(M,1)] - BPR(J)

M

where M=I if distance is to the current segment, or
M=N if distance is to the next segment.

DR(J)
ICRR

n

4.1.4 Method 4: Interseéted Segment is an Arc

Each arc segment is a section of the circle defined by the arc
segment end points, the radius, and the centre calculated in sub-
routine CENTR. If a mesh line intersects this circle, it does so at
two points - only one of which is- the "correct" intersection point
used to find the distance DR(J) and DZ(J).

Each boundary mesh point lies in one of the four quadrants, Q.
If a mesh line intersects an arc segment, then distances DR(J) and
DZ(J) will depend on Q. Using the known BPR(J) or BPZ(J) and the sub-
routines ROOTR or ROOTZ, the program determines the two intersection
points, RTl and RT2 (with RT1 2 RT2) on the circle.

For the R mesh line intersecting a CW or CCW arc, the distance

DZ(J) is given by

DZ(J) = RTLl - BPZ(J) when Q is 1 or 2, and by
DZ(J) = RT2 - BPZ(J) when Q is 3 or 4.
ICRZ = M

where M=I if distance is to the current segment, or
M=N if distance is to the next segment.
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For the Z mesh line intersecting a CW or CCW arc, distance
DR(J) is given by

DR(J) = RT2 - BPR(J) when Q = 1 or 4, and by
DR(J) = RT1 - BPR(J) when Q = 2 or 3.
ICRR = M

where M=I if the distance is to current segment, or
M=N if the distance is to next segment.

If for an arc, a mesh line does not intersect the arc, then
the roots, RT1 and RT2, are imaginary. For a CCW arc this is accepta-
ble and the DR(J) or DZ(J) would be set to 2.0. For a CW arc, the
boundary mesh point must be "inside" the circle and the mesh line rust
intersect the circle - imaginary roots for RTl or RTZ constitute an

error condition.

4.1.5 Method 5: Mesh Line Does Not Intersect the Current or Next
Boundary Segment

If there is no intersection along the Z mesh line, DZ(J) = 2.0
and ICRZ = N. If there is no intersection along the R mesh Tine,
DR(J) = 2.0 and ICRR = N.

Modifications of DR(J) and DZ(J) by RESULT
Any |DR(J)| or |DZ(J)| value 2 1.0 is set to 2.0 by RESULT.
In addition, RESULT will make further modifications (depending on the

boundary shapes and types involved), so that the DR(J) and DZ(J)
values conform to the SLAC gun code requirements.

4.2.1 |DR(J)| 2 1.0 and/or [DZ(J)] z 1.0

For all situations, RESULT will set DR(J) and/or DZ(J) = 2.0.
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4.2.2 DR(J) = 0.0 and DZ(J) = 0.0

If the R and Z mesh lines intersect the same Neumann boundary

segment, no changes are made.

If the R and Z mesh lines intersect the same transition
boundary segment, RESULT sets DR(J) = DZ(J) = 2.0.

If the R and Z mesh 1lines intersect the same Dirichlet
boundary segment, RESULT sets DR(J) = + 0.01 and DZ(J) =+ 0.01, with
the sign ‘dependent on the direction from the boundary mesh point to
the boundary surfaceva1ong the R and Z mesh lines.

If the R and Z mesh lines intersect different segments (not
possible for crossovers involving Dirichlet boundaries), RESULT will
set the DR(J) and/or DZ(J) = 2.0 for the transition boundary segment
involved.

4.2.3 DR(J) # 0.0, DZ(J) = 0.0

This situation is only possible if the boundary mesh point is
on the current boundary segment; which must be a vertical Neumann or
transition. The next segment may be any type. If the vertical
segment is a transition boundary, RESULT sets DR(J) = 2.0.

4.2.4 DR(J) = 0.0, DZ(J) # 0.0

This situation is only possible if the boundary mesh point is
on the current boundary segment, which must be a horizontal Neumann or
transition. The next segment may be any type. If the horizonta]v
segment is a transition boundary, RESULT sets DZ(J) = 2.0.
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4.2.5 DR(J) # 0.0, DZ(J) # 0.0

This situation is only possible if the segments involved are
Dirichlet boundaries. Any |DR(J)| or |DZ(J)] 2 1.0 is set to 2.0 by
RESULT.

Determination of Potential Number, IBPT(J)

The potential number for a boundary mesh point is used by the
SLAC gun code to select a potential value for the point from a
potential array. In general, the potential number of a boundary mesh
point is the same as the potential number of the 1line segment,
SEGP(M), where M = ICRZ or ICRR, depending on the intersected segment.
The potential number will depend on the values DR(J) and DZ(J), and on
the intersected boundary segment types.

If the intersected segment pointers are different, i.e.,
ICRZ # ICRR, then the potential number depends on the DR(J) and
DZ(J) values as well as the intersected boundary segment types.

4.3.1 |DZ(J)| < 1.0 and |DR(J)| 2 1.0

The potential number is the same as the potential number for
the intersected boundary segment ICRZ.

4.3.2 |DZ(J)| 2 1.0 and |DR(J)| < 1.0

The potential number is the same as the potential number for
the intersected boundary segment ICRR.
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4.3.3 |Dz(J)] < 1.0 and |DR(J)] < 1.0

(1) If ICRZ = ICRR, then the potential number is the same as the
potential number of the intersected boundary segment ICRZ.

(2) If ICRZ # ICRR, there are three possibilities

(1) both segments have the same potential number: the
potential number of the boundary mesh point is the same as
the current segment's,

(ii) one segmént is a Dirichlet boundary type: the potential
number is the same as the one for the Dirichlet boundary

segment, and

(iii) one segment is a Neumann- and the other is a transition:
the potential number is always zero.

4.4 Coordinates of Next Possible Boundary Mesh Point

The position of the next possible boundary mesh point depends
on the current DR(J) and DZ(J) values, and on the current and next
segment shapes. For current boundary mesh point at BPR(J), BPZ(J),
there are four possible combinations of DR(J) and DZ(J)

(1) [DR(J)| 2 1.0 and [DZ(J)| = 1.0
(ii) |DR(J)| 2z 1.0 and |DZ(J)| < 1.0
(ii1) [DR(J)| < 1.0 and |DZ(J)| 2 1.0
(iv) | DR(J)| < 1.0 and [DZ(J)| > 1.0
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For case (i), the directed DR(J) and DZ(J) are not acceptable
and the current boundary mesh point is invalid. The coordinates of a
new boundary mesh point are then determined in terms of the invalid
point's coordinates and the current value for SG. This new point is
always determined within the current segment's subroutine.

For cases (ii), (iii) and (iv), the directed distances are
valid and the boundary mesh point data is saved (and ‘printed if
requested by the user) by the subroutine RESULT. The next boundary
mesh point's coordinates are then determined in terms of the TJast
point's coordinates and the current value for SG.

4.4.1 Determination of Segment Direction Indicator, SG
Before describing the individual cases, the method of deter-

mining SG, the segment direction indicator, fis described. In all
cases, SG will always be either +l1 or -1, depending on the current

segment type.

(1) For straight line segments, SG depends only on the R and Z
direction of the segment.

(i) HORIZONTAL SEGMENT

in +Z direction: SG = +1

in -Z direction: SG = -1
(i1) VERTICAL SEGMENT

in +R direction: SG = +1

in -R direction: SG = -1
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(iii) POSITIVELY SLOPED SEGMENT

in +R and +Z direction: SG = +1

in -R and -Z direction: SG = -1
(iv) NEGATIVELY SLOPED SEGMENT

in +R and -Z direction: SG = +1

in -R and +Z direction: SG = -1

(2) For an arc segment, SG depends on the quadrant position (Q) of
the current boundary mesh point and the CW or CCW direction of

the arc.
Q CW arc CCW arc
lor?2 SG = -1 SG = +]
3oré SG = +1 SG = -1

4.4.2 Determination of Next Boundary Mesh Point Coordinates
4.4.2.1 CASE I |DR(J)| 2 1.0 and |DZ(J)| 2 1.0

Since a boundary point can not have both |[DR(J)| and |DZ(J)| 2
1.0, the point is shifted by 1 mesh unit along either the R or the Z

mesh line using either equation A or B.

BPR(J) + SG

A) BPR(J)

B) BPZ(J) = BPZ(J) - SG
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A) is selected if the current segment 1is horizontal, positively
sTloped, or an arc segment (CW or CCW) for which the Q is 1 or 3.

B) is selected if the current segment 1is vertical, negatively
sloped, or an arc segment (CW or CCW) for which the Q is 2 or 4.

The boundary mesh point pointer, J, remains unchanged.
4.4.2.2 CASE II |DR(J)| 2 1.0 and |DZ(J)| < 1.0

The next possible boundary mesh point has pointer J=J+1 and

coordinates given by

BPR(J) = BPR(J-1) + SG

BPZ(J) = BPZ(J-1)

4.4.2.3 CASE IIT  |DR(J)| < 1.0, |DZ(J)| 2 1.0
The next possible boundary mesh point has pointer J=Jd+1.

If Q=2 or 3 for the current boundary mesh point, or if the
current boundary segment has a negative slope, the coordinates of the
next possible boundary mesh point are given by

BPR(J) = BPR(J-1)

BPZ(J) = BPZ(J-1) + SG



46

For all other situations, the coordinates are given by

BPR(J) = BPR(J-1)

BPZ(J)

BPZ(J-1) + SG
4.4.2.4  CASE IV |DR(J)| < 1.0 and [DZ(J)| < 1.0
(1) R and Z mesh lines intersect the current segment.

(i) ‘current segment is a positively sloped segment or an arc
segment with Q = 1 or 3

BPR(J) = BPR(J-1)

[]

BPZ(J) = BPZ(J-1) + SG -

(ii) current segment is a negatively sloped segment or an arc
segment with Q = 2 or 4

BPR(J) = BPR(J-1) + SG

BPZ(J) = BPZ(J-1)

(2) R mesh line intersects the current segment, and
Z mesh line intersects the next segment.

(i) straight segment to straight segment crossover
(a) SG*ITN>O0

BPR(J-1) + SG

BPR(J)

BPZ(J) = BPZ(J-1)
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(b) SG*ITN<O

BPR(J-1) - SG

BPR(J)

BPZ(J) = BPZ(J-1)

(ii) arc segment to straight segment crossover
(a) Q=2o0r4

BPR(J-1) + SG

BPR(J)

]

BPZ(J) BPZ(J-1)
(b) Q=1or3

BPR(J-1) - SG

BPR(J)

BPZ(J) = BPZ(J-1)

(iii) straight segment to arc segment crossover

BPR(J) = BPR(J-1) - SG

BPZ(J) = BPZ(J-1)

(3) R mesh line intersects the next segment, and
Z mesh line intersects the current segment.
For all types of crossovers

BPZ(J-1)

i

BPR(J)

BPZ(J) = BPZ(J-1) + SG
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The above four cases hold true for most of the boundary mesh
points generated. But there are some situations that require special
considerations, all of them involving crossovers. Section 5 discusses
some typical crossover situations and the specia] treatment required.

Some Typical Crossover Examples

Figure 4 shows some examples of crossovers from an arc or
sloped segment to a straight line segment. In discussing these cases
the following definitions apply:

I is the current segment number

N is the next segment number

A is the last valid boundary mesh point generated
B is the current possible boundary mesh point

C, D are other mesh points.

For the type of crossover shown in Figs. 4(a) and 4(b),
SLACINPT calculates three values for the current possible boundary
mesh point:

(1) DZ(J), the distance to the segment I,

(2) DR(J), the distance to the current segment or to the next
segment, and

(3) TZ, the distance to the next segment.

After mesh point A has been validated as a boundary mesh
point, RESULT has put the next possible boundary mesh point at B.
SLACINPT finds that mesh point B is not within one mesh unit of the
current or of the next segment. Normally SLACINPT would discard B and
make mesh point C the next possible boundary mesh point. But as is
seen in Fig. 4(b), mesh point C would then be a single point row,
j.e., it is less than one mesh unit from two different boundary
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(a)

(b)

Figure 4

Examples of typical crossovers. I is the current segment
number, N is the next segment number, A is the last valid
boundary mesh point generated, B is the current possible
boundary mesh point and C and D are other mesh points.
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segments in the Z direction and the SLAC gun code considers this as an
error condition. SLACINPT tests mesh point C before discarding B. In
Fig. 4(a), the |DZ(J)| for mesh point C is < 1.0 while the [TZ| is 2
1.0 and point C becomes a valid boundary mesh point and B is dis-
carded. In Fig. 4(b), for C the |DZ(J)| is < 1.0 and the |TZ] is also
< 1.0 - mesh point C cannot be a boundary mesh point. SLACINPT then
forces B to become a valid boundary mesh point by setting DR(J) =
0.999, the sign depending on the direction to the boundary. RESULT

then selects D as the next possible boundary mesh point.

Figure 4(c) shows‘a slightly different crossover situation.
RESULT has selected mesh point B as the next possible boundary mesh
point. Both [DZ(J)| and |DR(J)| for B are 2 1.0 but [TZ| is < 1.0. B
is therefore a boundary mesh point since it is within one mesh unit of
the next boundary segment and SLACINPT sets DZ(J) = TZ. The SLAC gun
code requires that the end points of a cé]umn of boundary mesh points
have the |DR(J)| < 1.0 - a condition not fulfilled by point B.
SLACINPT therefore sets the DR(J) = + 0.999, the sign depending on the
direction to the boundary. B is now a valid boundary mesh point and
RESULT selects D as the next possible boundary mesh point.

Figures 4(d) and 4(e) are similar to 4(a) and 4(b),
respectively, except they are concerned with the R direction. In Fig.
4(e), mesh point C cannot be a boundary mesh point since it is a
single point column - an error condition for the SLAC gun code.
SLACINPT therefore forces mesh point B to be the boundary mesh point
by setting its DZ(J) = + 0.999, the sign depending on the direction to
the boundary. Figure 4(f) is similar to 4(c) except here mesh point B
is a row end point with |DZ(J)] 2 1.0 - SLACINPT makes B a valid
boundary mesh point by setting DZ(J) =+ 0.999, the sign depending on
the direction to the boundary.
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Surmmary

The program SLACINPT has been used extensively at CRNL, both
on test cases and on many problems that use the SLAC gun code.
Solutions for special-case situations (some of which have been
described in sections 3, 4 and 5 of this report) have been introduced
as the need arose; at present the program can cope with virtually all
reasonable electrode configurations. Should difficulties arise,
however, the user can make minor modifications to the problem boundary
shape to resolve the difficulty.

Combining the new code SLACINPT with the existing SLAC gun
code has created a versatile program package capable of solving a
great variety of electrostatic electrode and charged particle tra-
jectory design problems in a fast, accurate and efficient manner.
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