Author(s)
|
Kreim, S (Heidelberg, Max Planck Inst.) ; Beck, D (Darmstadt, GSI) ; Blaum, K (Heidelberg, Max Planck Inst.) ; Bohm, Ch (Heidelberg, Max Planck Inst.) ; Borgmann, Ch (Heidelberg, Max Planck Inst.) ; Breitenfeldt, M (Leuven U.) ; Cakirli, R B (Heidelberg, Max Planck Inst. ; Istanbul U.) ; Herfurth, F (Darmstadt, GSI) ; Kowalska, M (CERN) ; Litvinov, Y (Darmstadt, GSI) ; Lunney, D (CSNSM, Orsay) ; Manea, V (CSNSM, Orsay) ; Naimi, S (RIKEN (main)) ; Neidherr, D (Darmstadt, GSI) ; Rosenbusch, M (Greifswald U.) ; Schweikhard, L (Greifswald U.) ; Stanja, J (Dresden, Tech. U.) ; Stora, Th (CERN) ; Wienholtz, F (Greifswald U.) ; Wolf, R N (Greifswald U.) ; Zuber, K (Dresden, Tech. U.) |
Abstract
| Accounting for the appearance of new magic numbers represents an exacting test for nuclear models. Binding energies o er a clear signature for the presence (or dis- appearance) of shell closures. To determine the strength of the purported N = 32 shell closure, we propose using the Penning-trap spectrometer ISOLTRAP for mass measure- ments of N = 34 isotones 58 Cr ( Z = 24), 55 Sc ( Z = 21) and 54 Ca ( Z = 20), as well as the N = 32 isotones 53 Sc and 52 Ca. We also propose measuring the mass of 60 Cr to test the shell model prediction of a new magic number at N = 34. In addition to the Penning-trap system at ISOLTRAP, we intend to use the newly commissioned multi-re ection time-of- ight mass separator, which enables direct mass measurements on nuclei with half-lives below 50 ms. |