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Introduction - ATLAS

LPS

COPPEPolVUFRY

» The ATLAS detector

= Physics operation in the

LHC beam line

= Large amount of data
from pp collisions

= Currently, Vs =7 TeV

= Subdetectors
» Inner tracker
» Calorimeters
» Muon detectors

25m

Tile calorimeters

‘ ° LAr hadronic end-cap and
. forward calorimeters
Pixel detector

LAr electiromagnetic calorimeters

Toroid magnets
Muon chambers Solenoid magnet | Transition radiation tracker

Semiconductor tracker
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Several technologies, multiple layers

Lead / liquid argon electromagnetic (e.m.)

calorimeters
= 3 layers plus presampler

» Copper/ liquid argon and iron
scintillator hadronic calorimeters

= 3 layers

» Tungsten rods / liquid argon as
forward calorimeters to complete
the detector

» Fine granularity for precise energy
measurements

= |Improve particle identification

= Heavy load for the data acquisition
system
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Introduction - Trigger System
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» Level-1(L1)

= Based on hardware

= Maximum of 2.5 us latency

= Define Regions of Interest — Rol’s
» Level-2 (HLT)

= Based on software (PC farm)

= Mean processing time: 40 ms

= Full granularity data within Rol

= Specialized algorithms
» Event filter (HLT)

= Based on software (PC farm)

= Mean processing time: 4 s

= Full event access

= Adapted offline reconstruction algorithms
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Level-1

Fast Custom
electronics
t<2.5us

Calo, Muon,
Min. Bias

L1 Accept Front-end

pipeline memories

High Level
Trigger - HLT

500 PC
<t> = ~40ms

1800 PC
<t>=~4-5s

Rol Data
request

1< 75 kHz

Back-end
Readout buffers

1 ~3 kHz

~300 MB/s ‘~200 Hz

Full event

Data Storage

offline processing
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Introduction - Online Trigger
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» Trigger Chain: sequence of reconstruction and selection algorithm
» Trigger Menu
= Collection of trigger chains (and prescale factors)

= Flexibility: menus and prescales evolve with LHC luminosity and physics
requirements

» HLT Calo Algorithms
= Set of algorithms running on HLT that use only calorimeter information

= Common structures and designs (Feature Extraction - FeX - and
Hypothesis test - hypo)

» Calorimetry plays an important role on electron identification
» L2 Neural Ringer alternative trigger algorithm

= FeX by ring concentric sums

= Artificial Neural Network for hypothesis testing
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The Ringer Algorithm
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Second EM LaE

Operates over the Rol’s identified by L1

Feature extraction (FeX)
= Rings built for each calorimeter
layer

» e.m. presampler + 3 e.m.
layers + 3 hadronic layers

Forward calorimeter is not

considered
Most energetic cell (layer based) is

the first ring
Outer cells form the consecutive
rings
» Hypothesis test (HYPO)

= Feedforward MLP neural network
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Methodology
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» Simulated Monte Carlo data
= /Z->ee as signal
= Jet as background
= Pileup is also simulated
= Nearly 10k events for each class

» Ringer implementation on HLT for collision operation
= Detailed Valgrind analysis

= |Increase algorithm speed
= Reduce total amount of data
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» Tag-and-Probe

= Data-driven method for efficiency
estimation

= Performance: “Probe-like” objects
within a properly “tagged” sample
of events

= Suitable for physics processes
characterized by a double-object
final state signature

= Electron pairs must be considered
by offline algorithms and the
reconstructed mass should match
the Z boson’s

Tag electron
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Methodology

Neural Network design

=

=

=

=

EM Rol’s matched to simulated electrons from Z boson
Jet: all fake EM Rol’s (L1 approved as EM) considered as background
Normalization: total energy as the factor
Two sets: development (train) and generalization (test), 50%-50%
Architecture

» One hidden layer with 10 neurons (from previous works)

» Hyperbolic tangent as activation function

» Training targets: electron (1), jets (-1)

Training method: resilient back-propagation

» Considers only the variation of the gradient descent sign

» 100 different initializations: avoid local minima
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Methodology
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= SP index

» Balanced design with respect to electrons (P,) and a jet (P))
identification probabilities

2

» Discrimination threshold selected to maximize the SP index

= Relevance mapping: how much a ring is relevant for discrimination

» Measured from the relative variation of the maximum SP index
achieved when a given input is fixed to its mean value

_ SPruy — SE;

R;
SPrui
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Algorithm Implementation

LPS

COPPEPoliVUFRJ

» Optimization led to a ~59% faster execution time (FeX)
= QOverhead of 0.3 ms/Rol
» Represents 6.2% of the total payload for electron/photon HLT algorithms

| RingerFex Timer |
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Neural Network Training
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» ROC: receiver operating characteristic

= Electron detection efficiency and jet false
alarm (jet misclassified as electron)

behavior as a function of the < 100 .
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Neural Network Training
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» Relevance
= Considering the train set

» 26 selected rings — 100
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Neural Network Training
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» Network output against one of the offline discriminant variable (test set)

= Energy ratio (RCore): energy sum, at the second e.m. layer, in a 3x7 window on

the nx¢ plane, divided by energy sum in a 7x7 window (both centered at the
most energetic cell)

» Close to unity for electrons (narrow electronic cascade)

Z->ee
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Tag-and-Probe Evaluation
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» Z->ee detection
= Tag is the standard algorithm with strong criteria for electron selection

= Probe is the neural network and its threshold maximizes SP index
» Jet false alarm: EM Rol’s which have passed the neural network threshold
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Conclusions
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» Ringer implementation

= Code optimization and architecture remodeling reduced the total algorithm
execution time to 59% faster

= Data payload represents 6% of total used by electron/photon algorithms at L2

» Algorithm performance with Monte Carlo simulations and pileup
= Ringer is able to identify electrons with high performance
= Trained neural networks could be used with collision data
» Tag-and-Probe over the test set showed good performance

= Relevance study reduced in 74% the neural network input dimension, with small
impact on detection performance

» Guidance from offline quantity RCore shows good agreement with the neural network
response for electrons and jets
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