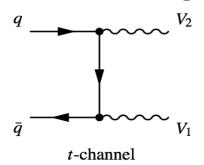
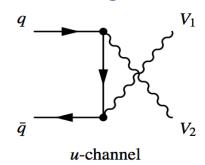
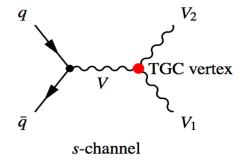
Measurement of Wγ and Zγ Production at ATLAS

International Europhysics Conference on High Energy Physics Grenoble, Rhône-Alps France July 21st-27th, 2011

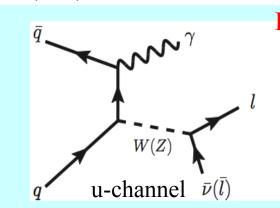
> Song-Ming Wang Academia Sinica

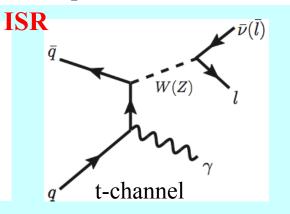

On behalf of the ATLAS Collaboration

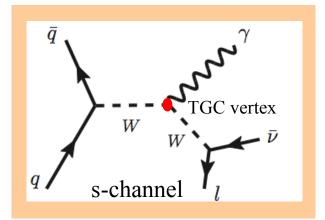




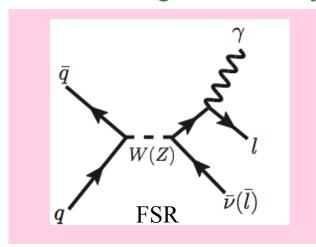
Introduction

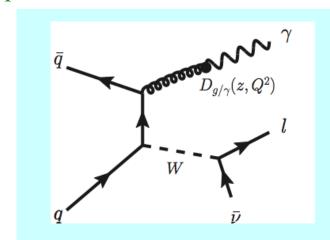

• At LHC di-bosons can be produced through:





•Wy, Zy are two such di-bosons produced :


- Measurement of Wγ and Zγ production provides a direct test of the Triple Gauge Boson Coupling (TGC) of the Electroweak theory
 - •Measure the WWy vertex in the s-channel
 - •Probing the existence of the ZZγ and Zγγ TGC (forbidden in SM at the tree level)


Definition of Signal

•Measurement of $W\gamma$, $Z\gamma$ in the final state :

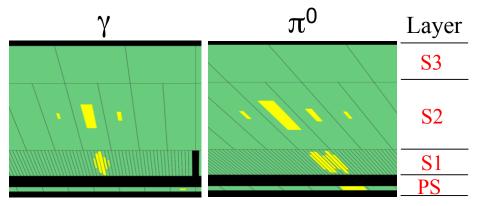
• W
$$\gamma: l \vee \gamma + X$$
 $l: e, \mu$
• $Z\gamma: l^+ l^- \gamma + X$ $\gamma: \text{ is isolated}$

- •Final state can include contributions from:
 - •Final State Radiation (FSR) γ from inclusive W(Z) production
 - •Photon from fragmentation of jets produced in association with W or Z boson

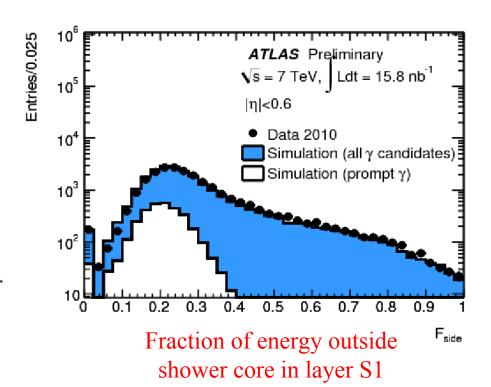
γ from fragmentation

- •Phase space of production measurement :

 - $E_T^{\gamma} > 15 \text{ GeV}$ $M(l^+l^-) > 40 \text{ GeV (for } Z\gamma)$
 - (to reduce FSR contribution)
 - $dR(l, \gamma) > 0.7$ particle level isolation : $\sum E_T^{had} < 0.5 \times E_T^{\gamma}$

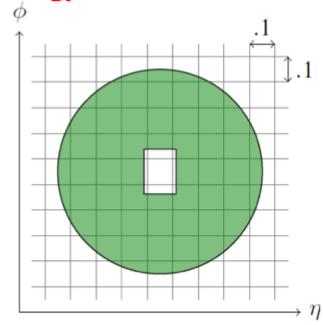

Photon Identification

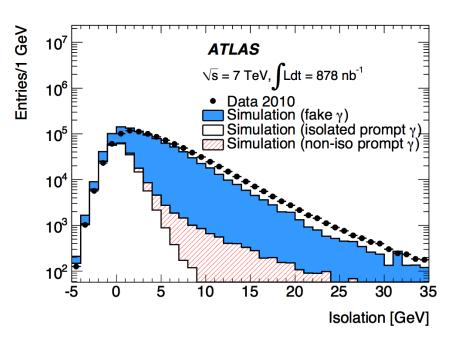
• γ identified in ATLAS LAr calorimeter



γ Reconstruction:

- Narrow energy cluster, require no/small energy leakage into hadronic calorimeter
- Cut on shower shape variables to discriminate γ from jets and π^0 , η




Fine granularity in S1 for γ/π^0 separation

Photon Isolation Energy

- Isolation energy is another important quantity to discriminate γ from jet
- Isolation : sum of transverse energy in ΔR =0.4 cone around γ
- Exclude energy from central core
- Correction:
 - •Remove energy leakage from photon energy into isolation cone
 - •Remove energy deposition from pile-up and underlying event by using "jet area/median" method (Cacciari, Salam and Sapeta, JHEP 04 (2010) 065) to measure the ambient energy density
- Photon isolation energy different between direct photon and photon from fragmentation
- Isolation not well modeled by simulation

Event Selection

•Perform measurement on data set collected in 2010 (L~35 pb⁻¹) (arXiv:1106.1592)

$W\gamma$	Ζγ			
• One lepton, $p_T(e,\mu) > 20 \text{ GeV}$	• 2 opposite charged leptons (e ⁺ e ⁻ , μ ⁺ μ ⁻)			
• $ \eta_e < 2.47$, $ \eta_{\mu} < 2.4$	• $p_T(e,\mu) > 20 \text{ GeV}$			
• E _T miss>25 GeV	• $ \eta_e < 2.47$, $ \eta_{\mu} < 2.4$			
• $M_T(l,v) > 40 \text{ GeV}$	• $M(l^+l^-)>40 \text{ GeV}$			
Photon Selection				
• 1 photon, E _T ^γ >15 GeV				
• $ \eta_{\gamma} < 2.37$				
• $dR(e/\mu,\gamma) > 0.7$				
• Isolation : $E_T^{iso} < 5 \text{ GeV}$				

Identification Efficiency:

• e : ~73% (tight), ~90% (medium)

• μ : ~88%

• $\gamma : \sim 70\%$

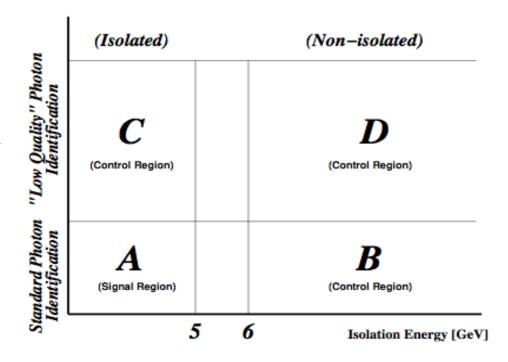
Number of Selected Candidate Events

	e	μ
Wγ	95	97
Ζγ	25	23

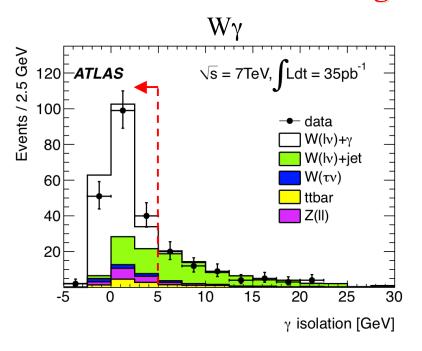
Background Estimation

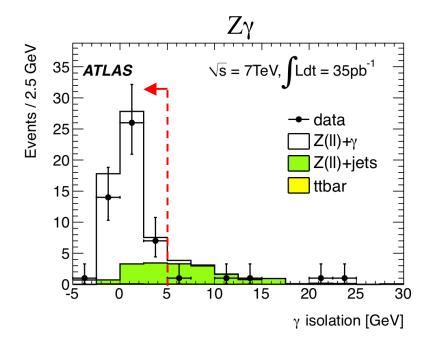
•Main sources of background:

 $\underline{\mathbf{W}}\underline{\mathbf{y}}$: • W+jets *


- $W \rightarrow \tau \nu$
- $Z \rightarrow ll$
- ttbar
- negligible contribution from QCD multi-jet, WW, single-top

- $\underline{Z}\underline{\gamma}$: Z+jets *
 Z $\rightarrow \tau \tau$ ttbar
- *: most dominating source, jet fakes as photon.

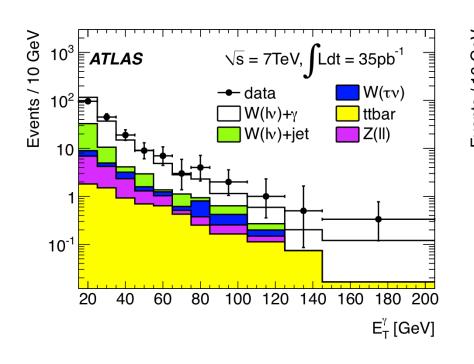

- For Wγ, estimate W+jets background from data control regions
- Assume photon identification (ID) cuts not strongly correlated to photon isolation for W+jets

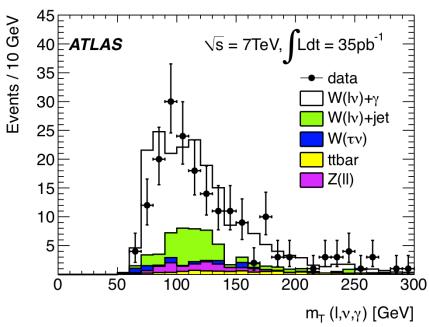

$$N_A^{W+jets} = N_B \cdot \frac{N_C}{N_D}$$

(Contributions from non-W+jets backgrounds and signal leakage in control regions B,C and D are removed)

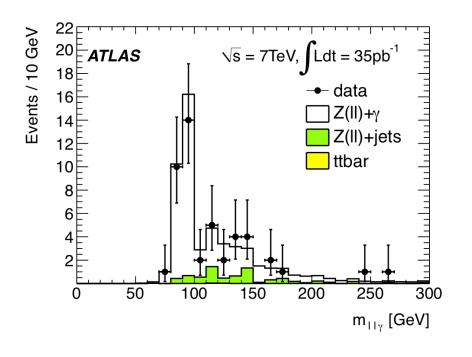
Background Estimation

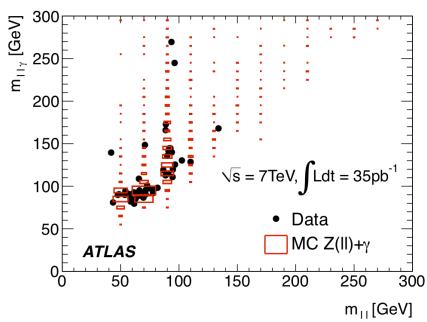
- W+jets background (green) isolation shape is taken from data's "low-quality" ID control region
- Since low statistics in $Z\gamma$ events, estimate Z+jets background based on simulation (assign large systematic uncertainty)

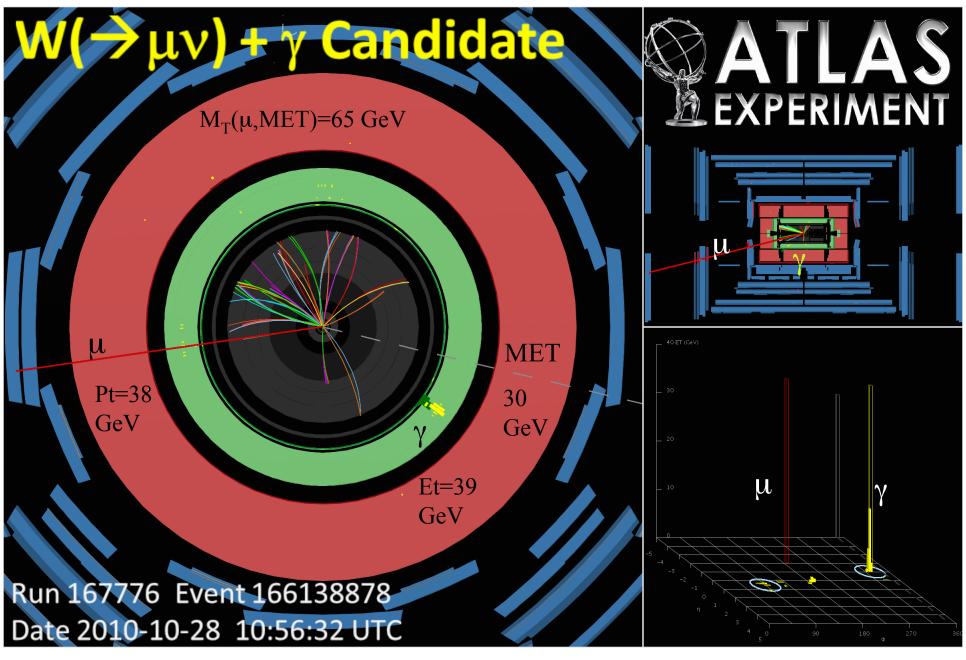

Signal Yield

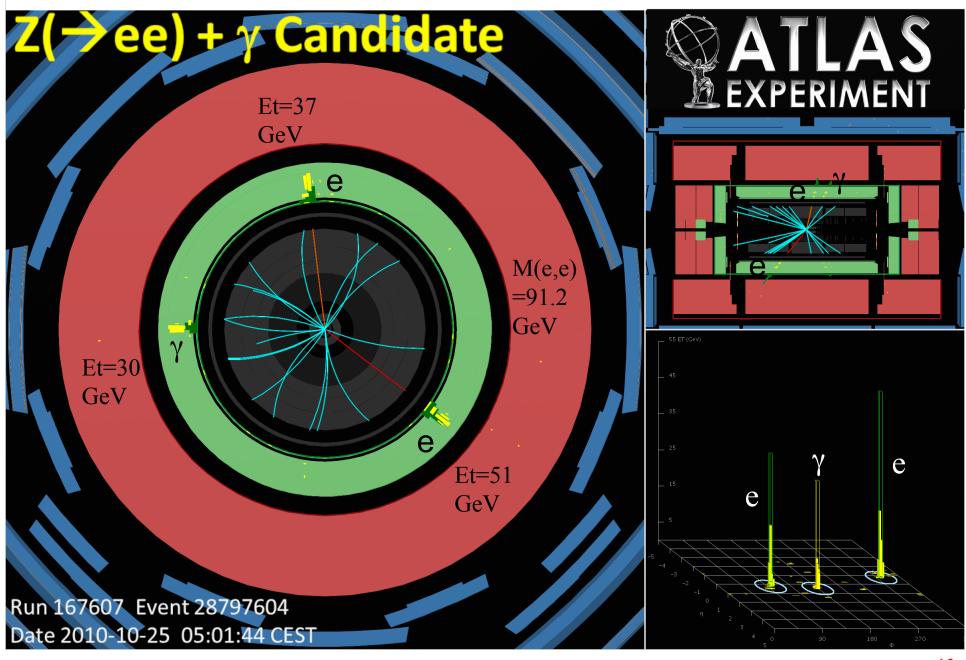

Process	Observed	$\mathrm{EW}{+}tar{t}$	$W+{ m jets}$	Extracted
	events	background	background	signal
$N_{obs}(W\gamma o e^{\pm} u \gamma)$	95	$10.3 \pm 0.9 \pm 0.7$	$16.9 \pm 5.3 \pm 7.3$	$67.8 \pm 9.2 \pm 7.3$
$N_{obs}(W\gamma o \mu^{\pm} \nu \gamma)$	97	$11.9 \pm 0.8 \pm 0.8$	$16.9 \pm 5.3 \pm 7.4$	$68.2 \pm 9.3 \pm 7.4$
Process	Observed	$\mathrm{EW}{+tar{t}}$		Extracted
	events	background		signal
$N_{obs}(Z\gamma ightarrow e^+e^-\gamma)$	25	3.7 ± 3.7		$21.3 \pm 5.8 \pm 3.7$
$N_{obs}(Z\gamma o \mu^+\mu^-\gamma)$	23	3.3 ± 3.3		$19.7 \pm 4.8 \pm 3.3$

Systematic Uncertainties on Extracted Signal:


- •Stability of control regions using shower shape : ~9%
- •Stability of control regions using isolation : ~4%
- •Modeling of signal leakage : ~3%
- •Background correlation in control regions : ~3%


Kinematic Distributions of Selected Events (Wγ)





Kinematic Distributions of Selected Events (Zγ)

Cross Section Measurements

Fiducial Cross Section:

•Performed in the phase space defined by kinematic cuts in event selection

$$\sigma_{W\gamma(Z\gamma)}^{fid} = \frac{N_{W\gamma(Z\gamma)}^{Sig}}{C_{W\gamma(Z\gamma)} \cdot L_{W\gamma(Z\gamma)}}$$

 $N_{W\gamma(Z\gamma)}^{Sig}$: Number of measured signal events

 $C_{\mathit{Wy}(\mathit{Zy})}$: Reconstruction and identification efficiency

Production Cross Section:

• Extrapolate the measurement in fiducial phase space to full decay phase space of W and Z boson

 $\sigma_{W\gamma(Z\gamma)}^{prod} = \frac{\sigma_{W\gamma(Z\gamma)}^{fig}}{A_{W\gamma(Z\gamma)}}$

 $A_{W\gamma(Z\gamma)}$: Acceptance of fiducial phase space with respect to total production phase space

• Use full simulation to calculate acceptance $A_{Wy(Zy)}$

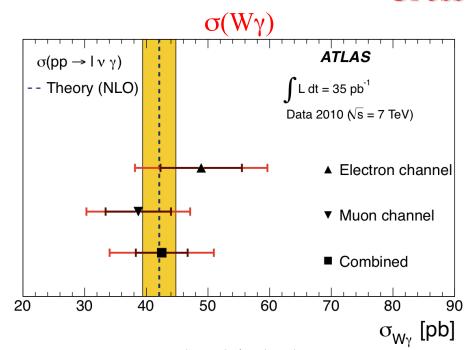
Uncertainties

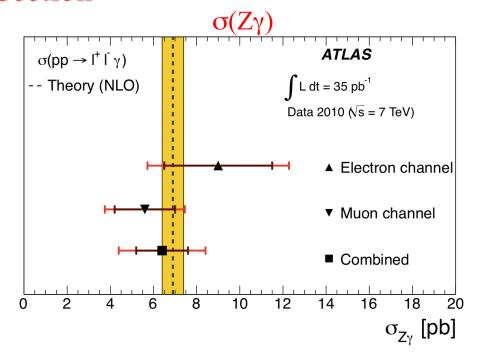
Electron Channel

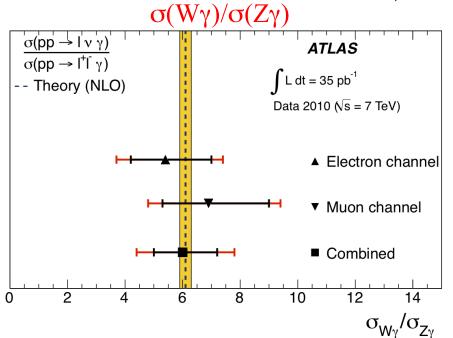
	<u> </u>	
Parameter	$rac{\delta C_{W\gamma}}{C_{W\gamma}}$	$rac{\delta C_{Z\gamma}}{C_{Z\gamma}}$
Channel	$e^{\pm} u\gamma$	$e^+e^-\gamma$
Trigger efficiency	1%	0.02%
Electron efficiency	4.5%	4.5%
Photon efficiency	10.1%	10.1%
EM scale and resolution	3%	4.5%
$E_{\mathrm{T}}^{\mathrm{miss}}$ scale and resolution	2%	_
Inoperative readout modeling	1.4%	2.1%
Photon simulation modeling	0.3%	0.3%
Photon isolation efficiency	3.3%	3.3%
Total uncertainty	12.1%	12.5%

Muon Channel

Parameter	$rac{\delta C_{W\gamma}}{C_{W\gamma}}$	$rac{\delta C_{Z\gamma}}{C_{Z\gamma}}$
Channel	$\mu^{\pm} u\gamma$	$\mu^+\mu^-\gamma$
Trigger efficiency	0.6%	0.2%
Muon efficiency	0.5%	1%
Muon isolation efficiency	1%	2%
Momentum scale and resolution	0.3%	0.5%
Photon efficiency	10.1%	10.1%
EM scale and resolution	4%	3%
$E_{ m T}^{ m miss}$ scale and resolution	2%	-
Inoperative readout modeling	0.7%	0.7%
Photon simulation modeling	0.3%	0.3%
Photon isolation efficiency	3.3%	3.3%
Total uncertainty	11.6%	11.2%

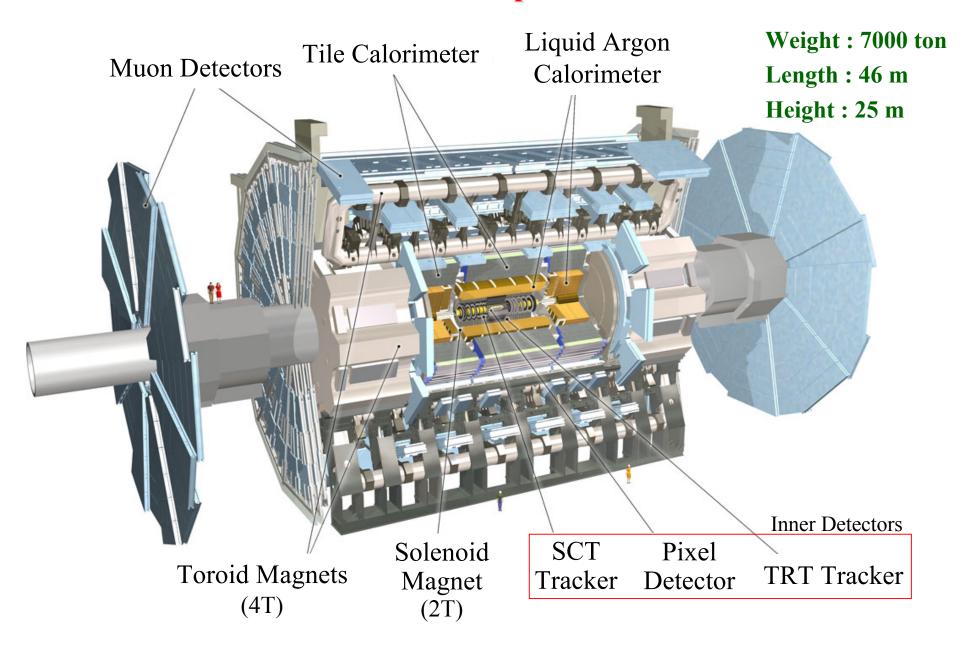

Dominant Uncertainties:


- Photon reconstruction/ID efficiency : $\sim \! 10\%$ (uncertainty in upstream material and contribution from fragmentation photon)
- Electron reconstruction/ID: ~4.5%
- Electromagnetic energy scale and resolution : ~3 4.5%


Cross Section

		Experimental measurement	SM prediction	
		$\sigma^{ m fid}[m pb]$	$\sigma^{ m fid}[m pb]$	
$\mathbf{W}_{\mathbf{\gamma}}$ $\Big\{$	$\begin{array}{c} pp \to e^{\pm}\nu\gamma \\ pp \to \mu^{\pm}\nu\gamma \end{array}$	$5.4 \pm 0.7 \pm 0.9 \pm 0.2$	4.7 ± 0.3	
VV Y $\stackrel{\sim}{\downarrow}$	$pp ightarrow \mu^{\pm} u \gamma$	$4.4 \pm 0.6 \pm 0.7 \pm 0.2$	4.9 ± 0.3	Fiducial
$Z\gamma$	$ pp \to e^+e^-\gamma pp \to \mu^+\mu^-\gamma $	$2.2 \pm 0.6 \pm 0.5 \pm 0.1$	1.7 ± 0.1	cross section
	$pp o \mu^+ \mu^- \gamma$	$1.4 \pm 0.3 \pm 0.3 \pm 0.1$	1.7 ± 0.1	J
		$\sigma[ext{pb}]$	$\sigma[ext{pb}]$	
	$pp o e^\pm u\gamma$	$48.9 \pm 6.6 \pm 8.3 \pm 1.7$	42.1 ± 2.7	
$\mathbf{W}\gamma$ $\{$	$pp o \mu^{\pm} u \gamma$	$38.7 \pm 5.3 \pm 6.4 \pm 1.3$	42.1 ± 2.7	
	$pp ightarrow l^{\pm} u \gamma$	$42.5 \pm 4.2 \pm 7.2 \pm 1.4$	42.1 ± 2.7	Production
	$pp \rightarrow e^+e^-\gamma$	$9.0 \pm 2.5 \pm 2.1 \pm 0.3$	6.9 ± 0.5	cross section
$\mathbf{Z}\gamma$ $\{$	$\begin{array}{c} pp \to \mu^+\mu^-\gamma \\ pp \to l^+l^-\gamma \end{array}$	$5.6 \pm 1.4 \pm 1.2 \pm 0.2$	6.9 ± 0.5	
	$pp \rightarrow l^+ l^- \gamma$	$6.4 \pm 1.2 \pm 1.6 \pm 0.2$	6.9 ± 0.5]]

Cross Section


• All measurements are consistent within their uncertainties with the SM expectation

Summary

- Have performed the first measurement of Wy, Zy production at \sqrt{s} =7 TeV with the ATLAS detector, using data sample of 35 pb⁻¹ (arXiv:1106.1592)
- Experimental measurements are consistent with Standard Model expectation within their uncertainties
- Dominant uncertainty is due to photon identification efficiency
- Expect to improve the precision of measurement with larger data sample available this year
- Extend analysis to search for new physics and to measure the anomalous TGC limits.

BACK UP

ATLAS Experiment

Cross Section

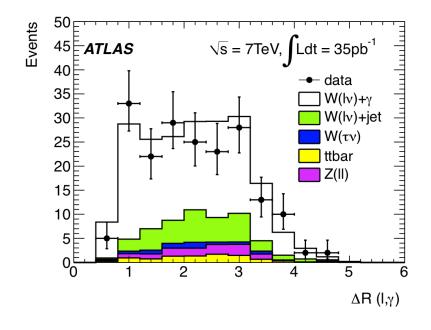
Experimental

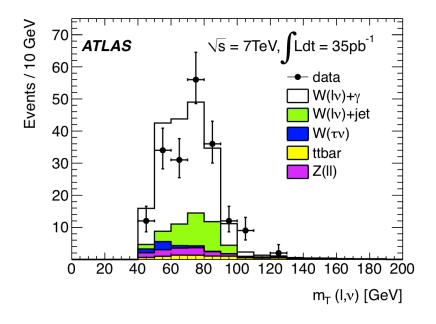
	Experimental measurement	SM prediction
	$\sigma^{ m fid}[m pb]$	$\sigma^{ m fid}[m pb]$
$pp o e^{\pm} u \gamma$	$5.4 \pm 0.7 \pm 0.9 \pm 0.2$	4.7 ± 0.3
$pp o \mu^\pm u \gamma$	$4.4 \pm 0.6 \pm 0.7 \pm 0.2$	4.9 ± 0.3
$pp \rightarrow e^+e^-\gamma$	$2.2 \pm 0.6 \pm 0.5 \pm 0.1$	1.7 ± 0.1
$pp ightarrow \mu^+ \mu^- \gamma$	$1.4 \pm 0.3 \pm 0.3 \pm 0.1$	1.7 ± 0.1
	$\sigma[ext{pb}]$	$\sigma[ext{pb}]$
$pp o e^{\pm} u \gamma$	$48.9 \pm 6.6 \pm 8.3 \pm 1.7$	42.1 ± 2.7
$pp o \mu^\pm u \gamma$	$38.7 \pm 5.3 \pm 6.4 \pm 1.3$	42.1 ± 2.7
$pp ightarrow l^{\pm} u \gamma$	$42.5 \pm 4.2 \pm 7.2 \pm 1.4$	42.1 ± 2.7
$pp ightarrow e^+e^-\gamma$	$9.0 \pm 2.5 \pm 2.1 \pm 0.3$	6.9 ± 0.5
$pp ightarrow \mu^+ \mu^- \gamma$	$5.6 \pm 1.4 \pm 1.2 \pm 0.2$	6.9 ± 0.5
$pp \rightarrow l^+ l^- \gamma$	$6.4 \pm 1.2 \pm 1.6 \pm 0.2$	6.9 ± 0.5

Fiducial cross section

Production cross section

		ratio	measurement	
		Fiducial phase space		
		$\sigma_{pp o e^{\pm} u \gamma}^{ m fid} / \sigma_{pp o e^{+} e^{-} \gamma}^{ m fid}$	$2.5^{+0.8}_{-0.6}\pm0.5$	2.8 ± 0.3
		$\sigma_{pp o e^\pm u\gamma}^{ m fid}/\sigma_{pp o e^+e^-\gamma}^{ m fid} \ \sigma_{pp o \mu^\pm u\gamma}^{ m fid}/\sigma_{pp o \mu^+\mu^-\gamma}^{ m fid}$	$3.1^{+1.1}_{-0.8} \pm 0.6$	2.9 ± 0.3
$\sigma(W\gamma)/\sigma(Z\gamma)$	/ 	Phase space for production cross section		
		$\sigma_{pp o e^\pm u\gamma}/\sigma_{pp o e^+e^-\gamma}$	$5.4^{+1.8}_{-1.3} \pm 1.2$	6.1 ± 0.2
		$\sigma_{pp o\mu^\pm u\gamma}/\sigma_{pp o\mu^+\mu^-\gamma}$	$6.9^{+2.3}_{-1.7} \pm 1.4$	6.1 ± 0.2
		$\sigma_{m \to l^{\pm} \nu \gamma} / \sigma_{m \to l^{+} l^{-} \gamma}$	$6.0^{+1.3}_{-1.0} \pm 1.3$	6.1 ± 0.2


Cross section


Fiducial cross section ratio

Production cross section ratio

SM prediction

Kinematic Distributions of Selected Events (Wγ)

