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What is known about
πK scattering lengths and the Kπ atom lifetime?

J. Schacher

The DIRAC experiment aims to measure the (1s) lifetime or inverse decay width of
the Kπ atom. From this measurement, using the Deser-type formula Γ ∝ |∆a|2 (∆a: scat-
tering length difference), data on basic πK scattering lengths can be extracted.

1 Introduction

The investigation of low-energy interaction between kaons and pions by means of
Kπ Coulomb bound states (atoms) enables an explicit probing of the 3-flavour structure
of low-energy hadron scattering, an issue not covered in the ππ case. Measurements can
be compared with predictions from SU(3)L×SU(3)R chiral perturbation theory (ChPT)
and also with dispersion relation calculations based on Roy-Steiner equations.

In this note we present the status of the available theoretical and experimental
information about low-energy πK scattering.

2 Atom lifetime and scattering lengths

For ππ atoms or pionium many authors [1–6] studied the relation between the atom
lifetime or decay width and the corresponding scattering lengths. As a result of these
investigations the following Deser-type formula for the decay rate A2π(ground state) →
π0π0 was derived by using low-energy QCD [7]:

ΓA2π→π0π0 =
2

9
α3 p |a0 − a2|2 (1 + δΓ). (1)

In Eq. (1) α is the fine structure constant, p the π0 momentum in the pionium system,
and a0 and a2 are the S-wave ππ scattering lengths in units of inverse charged pion mass
mπ for isopin I = 0 and 2, respectively. The small term δΓ = (5.8±1.2) ·10−2 [7] accounts
for corrections of order α as well as for those due to the quark mass difference mu 6= md.

In the framework of low-energy QCD, namely ChPT, the scattering length difference
|a0 − a2| has been calculated at the 2% level: a0 − a2 = 0.265 ± 0.004 [8]. Inserting this
value in (1) one gets in good approximation

τA2π ≈ Γ−1
A2π→π0π0 = (2.9± 0.1)fs. (2)
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In the case of the di-mesonic Kπ atom 1), the atom decays predominately by strong
interaction into the neutral meson pair K0π0:

Figure 1: The dominant decay channel of the Kπ atom (AKπ).

The decay width of the Kπ atom in the ground state is given by the relation [3,9]:

Γ(AKπ) ' Γ(AKπ → K0π0) = 8 α3 µ2
+ p (a−0 )2 (1 + δΓ). (3)

In this formula, the S-wave isospin-odd πK scattering length a−0 = 1
3
(a1/2 − a3/2)

(aI for isospin I) is defined in pure QCD for (u,d) quark masses mu = md . Further, α is
the fine structure constant, µ+ the reduced mass of the charged mesons π+ and K+ and p
the outgoing K0 or π0 3-momentum in the Kπ atom system. Finally, the term δΓ accounts
for corrections, due to isospin breaking, at order α and quark mass difference mu−md [9].
Inserting mπa

−
0 = 0.090 ± 0.005 [10] (dispersive analysis) and δΓ = 0.040 ± 0.022 [9] in

Eq. (3) leads to a theoretical lifetime τKπ = (3.7± 0.4) · 10−15 s.
Hence, a measurement of τKπ = Γ(AKπ)−1, taking into account small corrections

due to additional decay channels, provides a value for the scattering length a−0 and so
tests low-energy QCD including u, d as well as s quarks.

3 Predictions for scattering lengths

In the 1960s Weinberg started to investigate meson-meson and meson-nucleon scat-
tering lengths in the mathematical framework of current algebra (CA). In his language
he deduced for ππ scattering [11] a0 = 7

4
L, a2 = −1

2
L and so a0 − a2 = 9

4
L with

L = m2
π

8πF 2
π

= 0.09078. In the πK case he found for a−0 the expression (tree level) [11]

mπa
−
0 (CA) = L(1 +

mπ

mK

)−1 = mπ
µ+

8πF 2
π

= 0.071. (4)

Going one step further and including 1-loop (1l) effects (order p4), SU(3) ChPT
provides – by treating the pion and the heavier strange kaon as “weakly interacting”
Goldstone bosons – the following scattering length [12,13]:

mπa
−
0 (1l) = 0.0793± 0.0006. (5)

We notice that a−0 at O(p4) is essentially parameter free and thus can be predicted to the
high accuracy above.

1) The Kπ atom AKπ is a Coulomb bound πK state with a Bohr radius of 248 fm and a ground state
Coulomb binding energy of 2.9 keV.
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Further progress could be achieved by calculating a−0 at the 2-loop (2l) level or at
order O(p6) [14]:

mπa
−
0 (2l) = 0.089. (6)

In accordance with the results (4), (5) and (6), the SU(3) chiral expansion of a−0
can be written in the following way:

mπa
−
0 = mπa

−
0 (CA)(1 + δ(2) + δ(4) + . . .) = mπ

µ+

8πF 2
π

(1 + 0.11 + 0.14 + . . .). (7)

It should be emphasized that the 1-loop contribution δ(2) adds 11% to the current algebra
value, whereas - surprisingly - the 2-loop contribution δ(4) with 14% is even larger! Ac-
cording to a SU(2) low-energy theorem with the s quark considered as heavy partner [15]
one would expect, higher order corrections to the scattering lengths to be quite small.

At this point we present the latest outcome of the dispersive πK scattering length
analysis from Roy-Steiner equations [10]:

mπa
−
0 (dis) = 0.090± 0.005. (8)

Let us graphically summarize the theoretical investigations above in Fig. 2:

Figure 2: Predictions for S-wave πK scattering lengths a1/2, a3/2 and a−0 . The three straight
lines correspond to relation (7): mπ(a1/2−a3/2) = mπ 3a−0 (CA) · {1; 1.11; 1.25}, i.e. tree
level, 1-loop and 2-loop calculations for a−0 . The current algebra result CA, the standard
error ellipse from ChPT at O(p4) and the result from ChPT at O(p6) are shown together
with the standard error ellipse from solving the Roy-Steiner equations.
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We notice that up to now experimental information about low-energy πK scattering
parameters was only available indirectly, since this region of interest could not be inves-
tigated by experiments directly: πK phases, measured decades ago, were extrapolated by
means of dispersion relations [16]. As already presented in Eq. (8), the same technique
yielded quite precise results for πK scattering lengths [10].

4 Conclusion about low-energy πK interaction

The phenomenological dispersive analysis [10] based on the Roy-Steiner equations
differs quite remarkably from the 1-loop prediction for a−0 . Furthermore, an estimate at
the 2-loop level leads to a large correction. Is there a convergence problem in ChPT for
πK scattering?

To shed more light on this apparent discrepancy a first experimental study of low-
energy πK interaction is needed. This can be done by investigating Kπ atoms [4].
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