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Abstract
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1 Introduction

The evaluation of the virtual corrections to processes including a large number of jets has become straight-
forward [1–19] due to the advent of algorithmic implementations [20–27] of generalized unitarity [28,29]
using parametric integration techniques [30]. The only required diagrammatic evaluations are partonic
tree-level amplitudes. These diagrams can be efficiently evaluated through algorithmic recursion rela-
tions [31–42]. As a consequence, all building blocks exist to construct a Next-to-Leading Order (NLO)
event generator for the evaluation of high multiplicity jetobservables. Such a generator would expand the
possible phenomenological studies at, for example, the Large Hadron Collider (LHC) significantly.

However, the integration of the bremsstrahlung events overphase space hinders further development
of such generators. Current methods for the automated numerical integration [43–50] of the real matrix
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elements over the high dimensional phase space require large computer resources. Already for2 → 4
processes, the obtainable statistical accuracy is a limiting factor for realistic phenomenology.

On the other hand, shower Monte Carlo programs [51–57] tell us efficient algorithms exist to generate
events closely following the physics [58]. It is therefore of interest to investigate phase-space generators
based on especially dipole showers [59–66] as they employ exact phase-space factorization. A shower
based NLO phase-space generator uses as a starting point ann-parton final state, which can have additional
multiple non-partonic particles.1 The origin of this final state does not affect the NLO generator. It can
be a previously generated Leading Order (LO) event (weighted or unweighted), an event provided by a
phase-space generator such as RAMBO [67], SARGE [68], HAAG [69], KALEU [70] or any other source.
The Forward Branching Phase-Space (FBPS) generator will interpret each of then parton momenta as a jet
momentum. Next, following the dipole shower formalism, it performs forward2 → 3 branchings, thereby
generating the(n+1)-parton phase space. The brancher is constructed in a way that a jet algorithm based
on a3 → 2 clustering algorithm exactly inverts the branching. As a consequence the observed final state
is unaltered during the phase-space integration.

As a result, any observable constructed from thefixed number of jet momenta remainsunalteredby
the FBPS generator and hence does not constrain the real-emission phase-space integration, which can
thus be viewed as integrating out the partonic degrees of freedom inside the jets. In this sense the jet has
become opaque and no information can be extracted about the internal jet structure, which is the domain
of resummed calculations, in particular parton showers. Wenote that if a dipole shower would use the
same brancher, the matching of this shower to the NLO calculation becomes a triviality as the shower, just
as the observables, factorizes from the bremsstrahlung integration. In other words, the shower does not
alter the NLO event weight nor does it change the partonic jetobservable.

The FBPS generator is an one-particle phase-space integrator, independent from the number of jets.
Therefore, for a givenn-jet configuration, the numerical accuracy is only affectedby the number of pos-
sible 2 → 3 branchings, i.e. the number of jet pairs. This means that in order to maintain constant
statistical accuracy, as the number of jets increase, the Monte Carlo program needsO(Nevts × n2) gen-
erated bremsstrahlung events whereNevts is a number of events independent of the jet multiplicityn. An
additional virtue is that all generated bremsstrahlung events are added to the same virtual event, making
the infra-red/collinear cancellations efficient and easy to optimize in the three-dimensional phase space.
This allows us to use a simple slicing method to facilitate the cancellation of the infra-red/collinear singu-
larities. Note that subtraction methods can be trivially implemented as any jet observable does not depend
on the generated bremsstrahlung event.

In the first implementation of this method, we use a special3 → 2 clustering jet algorithm, which is
an augmented2 → 1 jet algorithm. This augmentation adds a recoil parton to the2 → 1 clustering. As
a result, the NLO jet phase space becomes identical to the LO jet phase space. Specifically, jets resulting
from the clustering remain massless and the jet algorithm preserves momentum conservation, i.e. particles
“clustered” with the beam are not discarded. From these observations it is clear, the jet augmentations
will only modify the last step in the jet algorithm: the clustering prescription. The clustering step is added
rather ad-hoc to current jet algorithms, which makes it easier to implement the necessary modifications as
described later on in this paper.

1At this early stage of developing our method, we do not consider the cases where partonic decays of color-neutral bosons
may contribute to then-parton final state.
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The layout of the paper is as follows. In Section 2 we discuss issues regarding the infra-red safety of
jet observables. We will propose augmentations of the jet algorithms to make all possible jet observables
infra-red safe. Because of their enhanced infra-red safe behavior, these augmented jet algorithms have im-
proved theoretical properties. We will use these properties to construct the FBPS generator in Section 3.
With this phase-space generator at hand, we build – as a proof-of-principle – a leading-color NLO parton
level event generator forPP → n gluonic jets. This is detailed in Section 4, before we give our con-
clusions in Section 5. Finally, two appendices are added. The first appendix details the number and type
of branchings occurring in the FBPS generator. The second appendix lists the explicit jet configurations
utilized in Section 4 to perform the numerical studies.

2 The Fully Differential Jet Cross Section

At hadron colliders, jets form the basis of defining the eventtopology and thereby characterize the un-
derlying hard scattering event. It is therefore imperativeto understand jets in both experiment and theory.
An essential requirement of the jet defining algorithm is infra-red finiteness, which expresses the fact that
the addition of arbitrary soft/collinear particles does not alter the final-state jet multiplicity. The infra-red
finiteness requirement in jet algorithms is by now well understood (see e.g. [71]).

Before the advent of the numerical parton level NLO generators [72, 73], semi-numerical programs
calculated corrections to differential jet observables. For example, in Ref. [74] the NLO corrections to
the semi-exclusive dijet cross section are calculated for explicitly given values of the dijet mass and the
rapidities of the two leading jets. This gives a necessarilyinfra-red safe (finite) correction for each point
in the dijet phase space. Note that the jet algorithm inevitably forms an integral part of this calculation.

Current parton level NLO multi-jet generators perform a Monte Carlo integration over the bremsstrah-
lung phase space independently of any actual jet algorithm.This has the apparent advantage that any
experimental jet algorithm can be numerically accommodated in the Monte Carlo programs. However,
owing to the infra-red properties of the jet algorithms, thegenerators only produce infra-red safe results
for more inclusive jet observables. The resulting predictions from the Monte Carlo generators are not
infra-red safe for each point in the multi-jet phase space asthe LO and NLO jet phase spaces only coincide
on the boundary defined by soft/collinear emissions. A sufficient amount of jet phase-space averaging is
required to obtain finite results. For example, one cannot use arbitrarily small bin sizes in representing the
results of the Monte Carlo integration – sufficiently wide bins are needed.

As mentioned above while current jet algorithms are infra-red finite, the observables constructed from
these jets are not necessarily infra-red safe. This is a direct consequence of the clustering procedure
constituting the last step of the jet algorithms. For example, the dijet azimuthal angle de-correlation is
a typical non infra-red safe jet observable [75, 76]. At LO (n = 2), the two jets in the event are exactly
back-to-back in the azimuthal plane. At NLO, the generationof the jet mass will cause the bremsstrahlung
events to deviate from the back-to-back configuration leaving uncanceled logarithmic divergences. On the
contrary, with an infra-red safe jet algorithm, the NLO jet phase space is identical to the LO jet phase
space and the two jets remain balanced. All that is calculated at NLO is theK-factor; only a third jet will
induce a de-correlation.

It is important to note that the Kinoshita–Lee–Nauenberg (KLN) theorem is not a jet phase-space aver-
aged property. By integrating over all partonic contributions to afixedjet configuration, the KLN theorem
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should already hold. In other words, an infra-red safe jet algorithm must provide a proper cancellation
between virtual and bremsstrahlung events foreach jet phase-space point. As a consequence any jet
observable constructed through an infra-red safe jet algorithm is finite.

2.1 Jet algorithms and infra-red safe observables

To explore the issues with jet algorithms further, we will first look at final-state jets at a lepton collider:
ℓ+ℓ− → J1 · · · Jn. Here, a sequential jet algorithm is readily constructed bydefining, as a function of
the cluster momenta{ci}, an event resolution measureRevt(c1, . . . , cm). The event resolution separates
the soft/collinear region from the hard region of phase space. The clusters can be individual hadrons,
calorimeter cells, tracks and combinations thereof. IfRevt is smaller than the requested jet resolution,
Rjet, the number of clusters is recombined using the cluster procedure defined by the specific jet algorithm:
{c1, . . . , cm} 7→ {ĉ1, . . . , ĉm−1}. This is repeated untilRevt ≥ Rjet, at which point the remaining clusters
are identified as the jets.

Jet algorithms currently used by experiments ( [71, 77–81])define the event resolution function in
terms of resolution functions of pairs of clusters:Revt = minij Rij : Rij = R(ci, cj). The minimization
procedure identifies the least resolved pair of clusters andrecombines these two clusters to one new cluster,
thereby decreasing the total number of clusters in the eventby one. In here lies a fundamental issue: either
the newly formed cluster has a four-momentum, which is massive due to adding the momenta of the two
clusterŝcij = ci+ cj , or overall momentum conservation is violated. From a theoretical point of view, the
2 → 1 clustering causes the NLO jet phase space to separate from the LO jet phase space. The LO jets
are massless, while the NLO jets now necessarily are massive. They only match in the exact soft/collinear
limit, in which case the new cluster is massless:ĉij = 0. As a result we have infra-red finiteness, but no
infra-red safety. The necessary care has to be taken when defining jet observables. For a given value of a
jet observableOobs, the virtual correction contributes at a single pointδ(O −Oobs) while, because of the
jet mass, the bremsstrahlung is distributed aslog(O − Oobs). This behavior is “cured” by allowing, for
example, sufficient smearing in histogram bins.

To maintain infra-red safety, we need to both keep massless clusters and maintain overall momen-
tum conservation when combining clusters. The minimal procedure to do this is by defining the reso-
lution function in terms of triplets of clusters [82]:Revt = minijk R(ci, cj , ck). The triplets of clusters
{ci, cj , ck} can be recombined to pairs of clusters{ĉi, ĉj}, while maintaining both momentum conserva-
tion, ĉi + ĉj = ci + cj + ck, and keeping the newly formed clusters massless,ĉ2i = ĉ2j = 0.2 With this
type of jet algorithm one can define infra-red safe jet cross sections. As a consequence the fully differ-
ential cross sectiond(n)σ/dJ1 · · · d Jn, and all possible distributions of jet observables derivedfrom it,
are infra-red safe. The reason this can be done is that the LO and NLO jet phase spaces exactly match.
We can therefore construct a phase-space brancher similar to the ones used in dipole showers [61,64]. By
choosing the branching map as the inverse of the3 → 2 clustering used in the jet algorithm, all generated
bremsstrahlung events are mapped back to the same jet phase-space point. This results in an infra-red safe,
fully differential jet cross section by virtue of the KLN theorem. That is, both virtual and bremsstrahlung
corrections contribute toδ(O −Oobs) only and no smearing is required to obtain a finite result.

As is clear from the above discussions, it is straightforward to construct a FBPS generator for lepton
colliders. It would calculate theK-factor to a fixed jet phase-space point, i.e. the fully differential jet

2If flavor-tagged clusters are involved,ĉ2i 6= 0, the possible quark mass has to be taken into consideration.
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cross section. However, for hadron colliders, the incomingpartons cause additional complications. The
current jet algorithms used in hadron colliders augment thelepton collider jet algorithms by including
a resolution measure of clusters with respect to the beam. Ifa cluster is combined with the beam, it
is effectively removed. As a result the remaining clusters violate momentum conservation as we have
un-clustered momenta. To get infra-red safety, momentum conservation must be preserved during the
clustering. There are two options: either build up a beam jet, or perform final-state clusteringsonly.

The first option is to construct a beam jet: instead of removing the final-state clusters, when combining
with the incoming beam, they are combined with the respective (separate) beam cluster. Once the event
resolution passes the jet resolution, we are left with two incoming beam jets and the final-state jets. All
jets are massless and four-momentum is conserved. However,the two beam-jet momenta are not along
the incoming (anti-)proton directions. To map onto the LO jet phase space, where the two beam-jet
momentaare along the incoming (anti-)proton directions, we have to define thejet observables in the
frame where the two beam jets are along the (anti-)proton directions. That is, we have to perform a
transverse momentum boost to this frame. From a theoreticalpoint of view, this has the desirable feature
that the effect of “initial-state radiation” is minimized as this radiation does not affect the observable due to
the boost. Effectively, the initial-state radiation is integrated out within the jet cone and the KLN theorem
guarantees a properly defined fully differential jet cross section.

The second option is to constrain the initial-state clusters to remain along the respective beam direction
during the clustering phase: the beam particle momenta are only rescaled. While not immediately obvious,
this can always be accomplished using the3 → 2 clustering maps.3 From an experimental point of view,
this is not a particular desirable option as all radiation isassigned to the final-state jets.

For a proof-of-principle calculation, the second option ishighly desirable as it minimizes theoretical
complications. It will be used in this paper. As this is a NLO calculation, only one clustering step is
performed. We start with the partonic scatteringpapb → p1 · · · pn+1 and reduce this to the jet final
stateJaJb → J1 · · · Jn. Note thata andb are only used to label the incoming partons or jets; no flavor
information is associated with these labels. Out of the large class of infra-red safe jet algorithms, which
can be constructed, the explicit jet algorithm used in this paper is as follows:

1. Find initial- or final-state partoni and final-state partonj by minimizing the resolution parameter

Rij = |sij| =
∣∣(±pi + pj)

2
∣∣ (1)

where “+” is used fori being a final-state particle and “−” for being an initial-state particle.

2. Given partonsi andj of the previous step, find final-state partonk by minimizing

Rij;k = min (Rik, Rjk) . (2)

3. If partoni is a final-state parton: cluster partoni andj, pij = pi + pj, and use partonk as the
recoil momentum to make the cluster massless:

{
Ji = pij + (1− γ) pk ,

Jk = γ pk
(3)

3This clustering only works for final states with at least one jet.
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with γ = 1 + sij/(sik + sjk). This maps the three final-state partons onto two massless jets:
{pi, pj , pk} 7→ {Ji, Jk} while preserving momentum conservation:Ji + Jk = pi + pj + pk.

4. If partoni is an initial-state parton, sayi = a: cluster the two final-state momenta,pjk = pj + pk,
and use the initial-state partona as the recoil momentum to make the cluster massless:

{
Ja = γ pa ,

Jj = pjk − (1− γ) pa
(4)

with γ = 1 − sjk/(saj + sak). The two final-state partons are now mapped onto one masslessjet
and a rescaled initial-state parton:{pa, pj , pk} 7→ {Ja, Jj}, while maintaining overall momentum
conservationJa − Jj = pa − pj − pk.

We will use aninclusivemode of the algorithm. This means, we keep clustering until the desired (LO
predefined) number of jets is reached. The alternative is to cluster until the jet resolution exceeds the preset
minimum, after which the event is vetoed, if the number of jets is not equal to the desired number of jets.
This is theexclusivemode of the algorithm, which isnot used in this paper. Note that for reproducing
the usual NLOn-jet inclusive observables, we have to perform a two-stage run. First, generate the NLO
K-factors for the exclusiven-jet events, next, add the(n + 1)-jet events at LO. From this event sample
the observable can be determined.

2.2 Defining the fully differential jet cross section

We want to calculate the fully differential cross section ofann-jet final state characterized by the jet-axis
momentaJ1, . . . , Jn using the inclusive version of the jet algorithm specified inthe previous subsection.
The jet event kinematics are given by

xa Pa + xb Pb = J1 + · · ·+ Jn , (5)

J2
i = 0 ,

wherePa,b denote the incoming hadron momenta and

xa,b Pa,b = xa,b

√
S

2
(1,±1, 0, 0) . (6)

The collider energy is given by
√
S and the momentum fractionsxa andxb are calculated from the recon-

structed jets:

xa,b =
1√
S

n∑

i=1

p
(i)
T e±yi , (7)

using the transverse momenta and rapidities of the jets,

p
(i)
T =

√
(p

(i)
x )2 + (p

(i)
y )2 and yi =

1

2
log

(
E(i) + p

(i)
z

E(i) − p
(i)
z

)
, (8)
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respectively. Note that here we have used the conventionp = (E, pz, px, py).

We define the differential cross section of the jet observableO as

dσ

dO =
1

n!

∫
dΦ
(
xaPa, xbPb 7→ J1, . . . , Jn

)
dxa dxb δ

(
O −O

(
J1, . . . , Jn

)) d(n)σ

dJ1 · · · d Jn
, (9)

where the jet phase space is given by

dΦ
(
xaPa, xbPb 7→ J1, . . . , Jn

)
=

(
n∏

i=1

d(4)Ji δ(J
2
i ) θ(Ei)

)
δ(xaPa + xbPb − J1 − · · · − Jn)

=

(
n∏

i=1

d(3) ~Ji
2Ei

)
δ(xaPa + xbPb − J1 − · · · − Jn) . (10)

We consider all jets as indistinguishable and hence have to introduce the “identical-jets” averaging factor
of (n!)−1. The fully differential jet cross section at LO is given by

d(n)σLO

d J1 · · · d Jn
=

(2π)4−3n

2xaxb S

∑

{fafb→f1···fn}

Ffa(xa)Ffb(xb)
∣∣∣M(0)(

xaPa, xbPb;J1, . . . , Jn
)∣∣∣

2
,

(11)

where theFfa,b are the parton density functions of the partons in the beam particles and
∣∣M(0)∣∣2 is the

squared LO scattering amplitude, spin/color summed (averaged) over final (initial) states. The flavor sum
runs over all possible, distinguishable partonic subprocessesfafb → f1 · · · fn that contribute to the jet
final state.4 For example, aqq̄ + (n − 2)g final state hasn(n − 1) distinct flavor terms to be added for
one specific initial-state configuration. This way we account for all ways of assigning the distinguishable
partons of the final statef1, . . . , fn to the jetsJ1, . . . , Jn. Note that at LO no phase-space integration is
left for the fully differential jet cross section. However,using our definition, the fully differential jet cross
section will be symmetric under any exchange of partons without the need of integrating over phase space.
Once one does the phase-space integration, as in Eq. (9), theusual symmetry factors are recovered.

Because the jet algorithm preserves explicit momentum conservation and keeps the jets massless, we
can define aK-factor per jet phase-space pointJ1, . . . , Jn. The NLO corrections to the fully differential
jet cross section can hence be written as

d(n)σNLO

d J1 · · · d Jn
= KNLO

(
J1, . . . , Jn

)
× d(n)σLO

d J1 · · · d Jn
. (12)

In the remainder of the paper we will derive the expression for KNLO and develop, as a proof-of-principle,
a Monte Carlo integrator for the explicit evaluation of theK-factor for the pure gluonic contribution of an
n-jet event at a hadron collider. TheK-factor is composed of three contributions, the Born contribution

4The flavor labelsfi denote gluons and massless (anti-)quarks. We omit specifying other than the partonic flavors for reasons
of keeping the notation simple. For example, we could have a vector boson decaying leptonically in all subprocesses.
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expressed as “1”, the virtual contribution,V , and the bremsstrahlung part,R. We write

KNLO

(
J1, . . . , Jn

)
= 1 + Ṽ

(
J1, . . . , Jn

)
+ R̃

(
J1, . . . , Jn

)

= 1 +

(
αSNC

2π

)(
V (J1, . . . , Jn) + R(J1, . . . , Jn)

)
, (13)

where we have factorized the strong-coupling expansion parameterαS/2π and the color factorNC.
Eq. (13) expresses the cancellation of infra-red singularities per jet phase-space point,Ṽ andR̃ on their
own diverge but their sum gives a finite contribution to theK-factor. For the calculation of the virtual cor-
rections, many packages have been developed [1–10,16,22,24–26], which can be readily used to calculate
this part of theK-factor. On the other hand, the calculation of the bremsstrahlung contributionR requires
a careful derivation.

To summarize, for the calculation of a jet observable, we generate, using Eq. (9), the jet configurations
contributing to the specific value of the observable. For each generated jet phase-space point, we calcu-
late the LO weight according to Eq. (11) and the NLO re-weighting multiplicativeK-factor as given in
Eq. (12).

3 The Forward Branching Phase-Space Generator

The explicit construction of the FBPS generator proceeds inseveral steps. In Section 3.1 the first step is
taken by the decomposition of the bremsstrahlung phase space into sectors using the event resolution func-
tion given by the jet algorithm. Each sector is defined through the jet algorithm selecting an unique triplet
of partons to be clustered. Next, owing to the invertibilityof the clustering, we develop in Section 3.2 the
real-emission phase-space formalism based on forward branching off the Born level jet configurations. In
Section 3.3, we derive the specific forward branchers, whichfill each sector such that the3 → 2 cluster
map given by the jet algorithm will recombine the three partons to the same two jets specified by the jet
phase-space point. Finally, in Section 3.4, the procedure is validated using the RAMBO flat phase-space
generator.

3.1 An invertible sector decomposition of phase space

The bremsstrahlung contribution to the jet cross section, with the jet kinematics specified in Eq. (5), is
given by

R̃
(
J1, . . . , Jn

)
=

(
d(n)σLO

d J1 · · · d Jn
(
J1, . . . , Jn

)
)−1

× (2π)1−3n

2S
× 1

(n+ 1)!

×
∑

{fafb→f1···fnfn+1}

∫
dΦ
(
x̂aPa, x̂bPb 7→ p1, . . . , pn+1

)
d x̂a d x̂b

Ffa(x̂a)Ffb(x̂b)

x̂ax̂b

× ∆jet

(
J1, . . . , Jn | pa, pb, p1, . . . , pn+1

) ∣∣∣M(0)(
pa, pb; p1, . . . , pn+1

)∣∣∣
2
, (14)
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wherepa = x̂aPa andpb = x̂bPb. Compared to the LO case, we now have to sum over all partonic
subprocesses with one more parton in the final state. As before, cf. Eqs. (9) and (11), the flavor sum
in combination with the (identical-particle) averaging factor 1/(n + 1)! guarantee the correct symmetry
factors for the(n+ 1)-particle final states.

The generalized jet delta-function∆jet decides whether a specific subprocess with its parton kinematics
contributes to the bremsstrahlung factorR̃ at the jet phase-space pointJ1, . . . , Jn. This jet delta-function
is equal to unity if the jet algorithm clusters the parton momentapa, pb, p1, . . . , pn+1 to the jet-axis four-
vectorsJ1, . . . , Jn and is zero otherwise. The function (as used here) is flavor blind – the jets as well
as the partons are indistinguishable, therefore,∆jet has to be symmetric under any exchange of jet and
parton momenta. To integrate over the jet delta-function, we make use of the3 → 2 clustering algorithm
discussed in the previous section. This allows us to expand the jet delta-function over a sum of dipoles,
each selecting three partons, which will be clustered by thejet algorithm to two jets and, as a result, a
value for the resolution parameterRij;k will be returned for any of these combinations. The expansion
can then be written as follows:

∆jet

(
J1, . . . , Jn | pa, pb, p1, . . . , pn+1

)

= δ(xa − x̂a) δ(xb − x̂b) ×

∑

i 6= j
i,j=1,...,n

∑

k∈Sn+1

∆jet

(
Ji;Jj | pki , pkn+1

; pkj
) Θveto

kikn+1;kj

2

∏

s 6= i,j
s=1,...,n

δ(Js − pks)

+ δ(xb − x̂b)
∑

k∈Sn+1

i=1,...,n

∆jet

(
Ji | pa; pkn+1

, pki
)
Θveto

akn+1;ki

∏

s 6= i
s=1,...,n

δ(Js − pks)

+ δ(xa − x̂a)
∑

k∈Sn+1

i=1,...,n

∆jet

(
Ji | pb; pkn+1

, pki
)
Θveto

bkn+1;ki

∏

s 6= i
s=1,...,n

δ(Js − pks) , (15)

where the sums are over all possible pairs of jet-axis momentaJ1, . . . , Jn and permutations of the brems-
strahlung four-momentap1, . . . , pn+1. The index vectork describes the elements of the permutations
Sn+1 of the set{1, 2, . . . , n + 1}. The permutation sum ensures that all dipole–spectator configurations
and their respective(n − 2)! phase-space combinations in the leftover parton momenta are taken into
account.

The sector veto (or, just as well, jet resolution) cutΘveto
ir;j implements the first two steps of our jet

algorithm proposed in Section 2.1. According to Eq. (1), we evaluate

Rmin ≡ Rv̄w̄ ≡ min
vw

Rvw (16)
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wherev,w = 1, . . . , n+ 1 andv < w. If we takev̄, w̄ 6= r = 1, . . . , n+ 1 and define

R′
min ≡ min

r
Rv̄w̄;r = min

r
min(Rv̄r, Rw̄r) , (17)

cf. Eq. (2), we can formulate this cut as

Θveto
im;j = θ (Rmin −Rim) θ

(
R′

min −Rim;j

)
, (18)

using the Heaviside step functionθ(x), which equals one ifx ≥ 0 and is zero otherwise.5 Step 3 and 4
of the proposed jet algorithm are executed when one computeswhether the generic∆jet building blocks
are different from zero. They will return one, only if the parton momenta reconstruct to the two given
jet momenta or, in the initial–final state cases, to the one given jet momentum. More specifically, we
understand∆jet(J ;J

′ | pi, pm; pj) ≡ 1, if and only if J ≡ pim + (1 − γ) pj andJ ′ ≡ γ pj , cf. Eq. (3).
Neither in the vice versa caseJ ↔ J ′, nor in any other combination we find the generic∆jet 6= 0. This
way we avoid double counting when we permute over all parton momentum configurations. The emitter–
emitted parton symmetry inΘveto

im;j, however, leads to double counting the same event in the final–final
parton sum of Eq. (15), which we remove by multiplying the factor 1/2 to the veto.6 Since the order of the
bremsstrahlung momenta is permuted, we guarantee that all combinations are tested (in∆jet as well as the
product of theδ(Js − pks) terms) to make sure that the bremsstrahlung events are selected, which match
the considered jet phase-space point kinematics and, therefore, give a contribution tõR(J1, . . . , Jn).

We observe in Eq. (15) that the jet delta-function breaks up phase space in two types of sectors: final–
final state sectors and initial–final state sectors. Note that in principle there could be an initial–initial state
sector as well. However, this will only occur if we allow for the build-up of beam jets.

We finally note that for each jet phase-space point exactly one sector contributes. WithR′
min (based

onRmin) a global event resolution measure is given, which depends on all initial-state and jet momenta.
This partitioning of phase space is dictated by the event resolution function given by the jet algorithm, see
Eq. (1). As a consequence the phase space is invertible: given the jet four-momentaJi andJj one can –
by inverting the cluster map of the jet algorithm – generate the three-parton configurations for each sector,
which will cluster back to these two initial jets. Such a forward branching Monte Carlo integrator exactly
integrates out the internal jet structure. In the next section we will formulate these forward branchers.

3.2 Phase-space construction through forward branching

To construct the forward brancher for a sector, we have to integrate Eq. (14) over the jet delta-function of
Eq. (15). The jet delta-function selects those(n + 1)-parton final states, which reconstruct to the given
n-jet phase-space point. We can turn the approach around and use the jet delta-function as a prescription to
explicitly generate then+1 bremsstrahlung parton momenta given then-jet momenta. This establishes the
forward-branching picture, which in addition allows for the avoidance of the dipole and permutation sums
of Eq. (15). To see this, we can write down the final–final statepiece of Eq. (14) for a single subprocess

5The jet clustering of Section 2.1 is symmetric under the exchange of the emitter and emitted parton (Rwv = Rvw and
Rwv;r = Rvw;r). Therefore, we do not have to considerw > v to determine theRmin andR′

min.
6Later on, we resolve this issue by partitioning the phase space further according to the different parton emitter settings.
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neglecting all prefactors, including the Born matrix element:

R̃FF

(
J1, . . . , Jn

)

∼
∑

i 6= j
i,j=1,...,n

∑

k∈Sn+1

dΦ
(
Jij 7→ pki , pkn+1

, pkj
)
∆jet

(
Ji;Jj | pki , pkn+1

; pkj
)

×
Θveto

kikn+1;kj

2
×
∣∣∣M(0)(

xaPa, xbPb; {pks = Js}s 6=i,j, pki , pkn+1
, pkj

)∣∣∣
2

(19)

whereJij = Ji+Jj . We observe that the phase-space integration has been broken up into many factorized
pieces of splitting dipoles. Furthermore, we can exchange the order in performing the dipole phase-space
integrations and summations. The integration over the three-parameter phase spaces can be accomplished
through Monte Carlo techniques. We can treat the explicit dipole and permutation sums similarly: in-
stead of carrying them out, we can choose dipole and parton configurations at random.7 We just have to
keep track of and include possible weights that may occur in the selection of dipoles and bremsstrahlung
partons.

Eqs. (11) and (14) have complete flavor sums running over all possible subprocesses that contribute to
then-jet and(n + 1)-jet final states, respectively. We can maintain this inclusive-flavor approach in the
forward generation of the real-emission events. No knowledge of the particular LO process and its flavors
is needed apart from the given set of the jet-axis momenta, which we interpret as the initial four-vectors
before the parton branching. The forward branching occurs,in principle, independently of flavor; the
pure generation of the bremsstrahlung momenta in fact has noflavor dependence. The only place where
flavor conditions enter is in combining phase space with the matrix element for the randomly chosen
subprocess containing2 → n+1 strongly interacting particles: the number of3 → 2 clusterings as given
by combinatorics may reduce owing to flavor constraints.8

To simplify the discussion, we focus on the pure gluonic case. Consequently, the flavor sums in
Eqs. (11) and (14) collapse to single terms. We also can simply arrange to set the firstn partonic four-
vectors according to the jet-axis momenta. In the final–finalcase for example, two of these, the emitter
and spectator momenta, will change owing to the generation of the additionally emitted parton, which
we can always choose to label byn + 1. For ordered amplitudes, one may insert the new parton right
after the emitter partonl − 1 and shift all subsequent ones by one,l → l + 1. Because of the forward
construction of the parton momenta, the criteria underlying the generic∆jet(Ji;Jj | pi, pr; pj) terms will
be satisfied by construction. Thus, these terms are redundant and the constrained generation ofpi, pr and
pj already accounts for the(n+1)n (n−1) combinations of arranging three partons to be clustered to the
two jets picked for forward branching. Still, with respect to the non-branching part of the final state, we
have(n− 2)! possibilities to assign the parton momenta with certain jetmomenta. However, owing to the

7Owing to the flavor blindness of the jet definition, the partonconfigurations have to be varied too as long as the chosen
subprocess contains different parton flavors. We can use anyset of indistinguishable particles though to reduce the initial number
of (n+ 1)! possibilities.

8As an alternative the FBPS generator may be designed such that the parton flavors are treated as in dipole showers. For
example, select a flavor assignment at LO as in Eq. (11), now consider an initial-state branching; if the LO subprocess hasan
incoming quark, there are two bremsstrahlung contributions: q → qg andg → qq̄ where the gluon and anti-quark are radiated
off, respectively. The correspondingn+ 1 matrix element then determines the weight of the selected option.
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symmetry of the final state, the leftover permutation sum canbe replaced by a multiplicative factor. The
Θveto

ir;j is included to the three-parton phase space and acts as a phase-space cut implementing the jet res-
olution criteria. Applying similar arguments to the initial–final state cases, we can take all modifications
and write the result of the phase-space integration as

R̃
(
J1, . . . , Jn

)
=

1

(2π)3
1

n (n+ 1)

∣∣∣M(0)(
Ja = xaPa, Jb = xbPb;J1, . . . , Jn

)∣∣∣
−2

×

[
∑

i 6= j
i,j=1,...,n

1

n− 1

∫
dΦveto (Ji, Jj 7→ pi, pr, pj)

∣∣∣M(0)(
Ja, Jb; {ps = Js}s 6=i,j, pi, pr, pj

)∣∣∣
2

+
n∑

j=1

∫
dΦveto (Ja, Jj 7→ pa, pr, pj)

xa Ffa(x̂a)

x̂a Ffa(xa)

∣∣∣M(0)(
pa, Jb; {ps = Js}s 6=j, pr, pj

)∣∣∣
2

+

n∑

j=1

∫
dΦveto (Jb, Jj 7→ pb, pr, pj)

xb Ffb(x̂b)

x̂b Ffb(xb)

∣∣∣M(0)(
Ja, pb; {ps = Js}s 6=j, pr, pj

)∣∣∣
2
]
.

(20)

Note that the(n+1)! term in the denominator has been combined with the multiplicative numerator factors
(n − 2)! and(n − 1)! for final–final and initial–final state branchings, respectively. Also,r ≡ n + 1 and
pa,b = x̂a,bPa,b while Ja,b = xa,bPa,b. As before, the dipole sum and the three-parameter phase space can
be calculated using a Monte Carlo integration, i.e.

∑∫
→ (1/NMC)

∑
i=1,...,NMC

d R̃(i).

The dipole factorization of phase space is obvious from the equation above. The2 → 3 differential
phase-space volumes can be described by dipole or antenna phase-space factors, which are also used in
shower algorithms. In our calculation the combination withthe matrix element then fully specifies the
branching, which in showers is achieved only approximatelyby the use of the splitting function. The
final–final state antenna phase space, cf. [72,83], is given by

dΦveto

(
Ji, Jj 7→ pi, pr, pj

)
=

Θveto
ir;j

2

π

2

1

sirj
d sir d srj

dφ

2π
, (21)

whereas the initial–final state antenna phase space, cf. [73,84] is expressed as

dΦveto

(
Ja = xaPa, Jj 7→ x̂aPa, pr, pj

)
= Θveto

ar;j

1

2π

d(3)~pr
2Er

(
Pa · Jj

Pa · Jj − Pa · pr

)
. (22)

In the latter case,pj is given by momentum conservation, i.e.xaPa − Jj = x̂aPa − pr − pj. The new
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momentum fraction̂xa can be calculated using the conditionp2j = 0; we obtain

x̂a = xa +
Jj · pr

Pa · Jj − Pa · pr
. (23)

In both cases above, the phase-space factors have to be supplemented by the corresponding sector veto
(or jet resolution) cut. The cuts guarantee the partitioning of the bremsstrahlung phase space such that no
overlapping regions can emerge. The actual sector phase-space volume is then measured by the Monte
Carlo integration by means of the sector veto cut.

The formulation of the effective FBPS generator used in the remainder of the paper is now simple.
Given ann-jet event, we generate the bremsstrahlung events in the following manner: with probability
(n − 1)/(n + 1), select a pair of final-state jets randomly and perform a final–final state branching.
Else, select one of the two incoming partons and one final-state jet and perform an initial–final state
branching. Appendix A gives more explanations regarding this selection. The bremsstrahlung event now
hasn + 1 final-state partons, which reconstruct back to the originaljet configuration using our specific
jet algorithm. We repeat the procedure until a sufficient number of bremsstrahlung events have been
generated to estimate theK-factor for this particular jet event. This in fact is the execution of the Monte
Carlo integration, whose uncertainty can be controlled by the number of generated Monte Carlo events
per jet phase-space point.

3.3 Forward branchers

To completely assemble the forward-branching buildup of the bremsstrahlung phase space, we still have
to define the generated three-parton final state in terms of the original jets and the dipole phase-space
integration variables. In doing so we have to respect the constraint that the jet algorithm clusters the
three generated partons back to the two initiator jets. In the next two subsections, we will formulate the
branchers, explicitly designed for this task.

3.3.1 The final–final state brancher

From the final–final state phase-space factor of Eq. (21) we extract the phase-space factor for the FBPS
generator. We write

dΦveto

(
Ji, Jj 7→ pi, pr, pj

)
=

π

2
sirj d yir d yrj

dφ

2π
θ (1− yir − yrj) θ (yij − yrj) Θveto

ir;j (24)

where the sector veto cut has been introduced in Eq. (18). Several comments are in order. We have defined
ykl = skl/sirj with skl = (pk + pl)

2 andsirj = (pi + pr + pj)
2 = (Ji + Jj)

2. Apart from the kinematic
constraint,yir + yrj ≤ 1, we added an additional constraint,yrj ≤ yij, which divides each sector into two
(sub)sectors, breaking the emitter–emitted parton (i ↔ r) symmetry. As a result, the factor1/2 formerly
present in Eq. (21) is dropped here. The additional constraint is needed to accommodate for the integration
over asymmetric functions inpi andpr, e.g. over ordered amplitudes (or over quark–gluon states,which
is important for later applications). The distinction is particularly important when we combine the sectors
with ordered matrix elements as each sector has its own singularity structure. It manifests the notion of
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pi, pr andpj respectively being the emitter, emitted parton and spectator in the phase-space branching.

The algorithmic description of the final–final state brancher is as follows: starting from two final-state
jetsJi andJj ;

1. generate the integration variablesyir, yrj andφ/(2π) on the interval(0, 1] and fulfill the constraints
yir+ yrj ≤ 1 andyrj ≤ yij. Notice that the sector veto cutΘveto

ir;j guaranteesyir < yrj, cf. Eq. (18).

2. rescale the four-momentaJi andJj :

{
ki = Ji + γ Jj ,

kj = (1− γ)Jj ,
(25)

whereγ = yir such that we findk2i = yir sirj.

3. determine the final-state partonspi andpr by invoking the phase-space decay ofki → pi + pr with
the on-shell conditionp2i = p2r = 0.

4. setpj = kj .

5. pass the event if and only if the sector decomposition cutΘveto
ir;j has been satisfied. Assign the weight

sirj π/2 to the event.9

Using this construction procedure, the final–final state clustering of the jet algorithm maps the partonic
set{pi, pr, pj} created through this FBPS generator back onto the jet pair{Ji, Jj}. Note that each of the
forward branchers would generate the “same” one-particle phase space, if the sector veto cutΘveto

ir;j was
removed from Eq. (24). An additional integration over then-jet phase space would generate the whole
(n+ 1)-particle bremsstrahlung phase space.

3.3.2 The initial–final state brancher

From the initial–final state phase-space factor of Eq. (22) we extract the corresponding phase-space factor
for the FBPS generator:

dΦveto

(
xaPa, Jj 7→ x̂aPa, pr, pj

)

=
1

2π

d(3)~pr
2Er

(
Pa · Jj

Pa · Jj − Pa · pr

)
θ (|srj | − |sar|) Θveto

ar;j . (26)

Because the initial-state parton is distinct from the final-state partons, no additional ordering requirements
are present. Note that – as in the previous case – by removing the sector veto cutΘveto

ar;j , one allows for
this forward brancher to generate the whole(n + 1)-parton bremsstrahlung phase space. The algorithmic
construction underlying this FBPS generator is outlined below. It is set up such that the initial–final state

9This may be supplemented by a possible weight from the generation of the integration variables. For example, one may
rewriteds ass d(log s), which would generate an additional weight to be included.
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clustering of the jet algorithm maps the generated triplet of momenta{x̂aPa, pr, pj} back onto the initial–
final jet pair {xaPa, Jj}. The generation of the momenta then proceeds as follows: starting from an
initial-state partonxaPa and a final-state jetJj ;

1. generate the one-particle phase-space momentum~pr within the appropriate integration boundaries.

2. having generatedpr, calculate
{

z = x̂a/xa = 1 + (Jj · pr)
/[

xaPa · (Jj − pr)
]
,

pj = Jj − pr + (z − 1)xaPa .
(27)

3. pass the event with weight12π

(
Pa·Jj

Pa·(Jj−pr)

)
assigned, if and only if the jet resolution cutΘveto

ar;j has

been satisfied.

3.4 Numerical validation of the phase space generator

We want to verify the FBPS generator on itself, before we use the generator to calculate theK-factor
for ann-jet phase-space point. For this purpose we do not add in the contributions stemming from the
matrix elements and PDFs. This is an important validation toensure the correct treatment of the weight
generation during the build-up of the bremsstrahlung phasespace. We use the flat phase-space generator
RAMBO [67] for the numerical validation of the FBPS generator. Thephase space generated by Rambo,
dRn, is connected to the customary flat phase spacedΦ through:

dΦ
(
xaPa, xbPb 7→ J1, . . . , Jn

)
=

(π
2

)(n−1)
(

(xaxb S)
(n−2)

(n− 1)! (n − 2)!

)
dRn

(
xaPa, xbPb 7→ J1, . . . , Jn

)
. (28)

For this test, we do not include parton density functions; instead we choose the parton fractions uniformly
between zero and one. We define ann-jet event at collider energy of 7 TeV using the following selection
criteria for then jets regarding their transverse momentum, rapidity and geometrical jet–jet separation:
p
(i)
T > 250 GeV, |yi| < 2.0 and∆Rij > 0.5. We present the results of our tests in Figures 1 and 2 where

we exemplify the FBPS validation by means of comparisons of distributions for two distinct observables.
Here, we define

HT =

√√√√
∑
i

∣∣∣~p (i)
T

∣∣∣
2

S
, (29)

as a dimensionless (scaled) variant of an ordinaryHT variable where instead of using the scalar sum of
the jetpTs, the squared quantities have been summed up. With the second observable, we want to look
into an angular distribution, namely the azimuthal angle between the two leading jets. This variable is
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Figure 1: TheHT and∆φ12 pure phase-space comparisons between clustered(n + 1)-particle RAMBO events
(blue lines) and forward-branchedn-particle RAMBO events (red lines) forn = 2-jet (upper graphs) andn = 3-jet
(lower graphs) configurations. The lower panels show the ratio between the clustered and branched predictions
minus one. The black lines represent the results of the correspondingn-particle RAMBO generations. To focus on
the phase-space validation, the matrix-element and PDF weights have not been included in these calculations.
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calculated by

∆φ12 = arccos

(
~p
(1)
T · ~p (2)

T

|~p (1)
T | |~p (2)

T |

)
. (30)

For variousn-jet final states, theHT and∆φ12 distributions resulting from our phase-space tests are
displayed in Figures 1 and 2. All plots contain three curves labeled by “Rambo”, “Rambo+Branching”
and “Rambo+Clustering” (represented by the black, red and blue lines, respectively); in the corresponding
lower panes, we always show the ratio, subtracted by one, between the latter two predictions. In general
we observe steeper tails in theHT spectra for an increasing number of jets. The∆φ12 distributions show
the opposite behavior; their low angle-difference bins become more populated owing to a larger amount
of phase space being filled. For the same reason of enhanced phase-space filling, the total energy is shared
among more jets, which leads to the suppression of theHT tails.

We now explain the three different predictions, which we usefor the validation and show in the figures.
The “Rambo” curves are obtained from jet momenta generated according to Eq. (28) where we define the
“LO” n-jet phase space as then-particle uniform phase space. The jet momenta satisfy the acceptance
cuts given above. To produce the “NLO”n-jet phase space, we generaten + 1 particles in flat phase
space with the help of RAMBO and apply our jet algorithm to findn jets from which we can calculate
the jet observables. Again, these jets have to fulfill the acceptance criteria. This procedure gives us
the “Rambo+Clustering” predictions in Figures 1 and 2. The differences seen between “Rambo” and
“Rambo+Clustering” visualize the pure phase-space effectwhen generating the “NLO” corrections.

We can now validate the FBPS generator: we construct “LO”n-jet configurations using the flat phase-
space generator as we did for the “Rambo” predictions. For each configuration, we subsequently generate
bremsstrahlung events using the FBPS. As the generated events always reconstruct back to the origi-
natingn-jet event, we only have to average over the generated event weights.10 This determines the
“Rambo+Branching” curves, which have to coincide – apart from statistical fluctuations – with the re-
spective curves of the “Rambo+Clustering” procedure. The ratio plots in Figures 1 and 2 illustrate how
well this is achieved by directly comparing the flat phase-space “NLO” predictions and the FBPS gen-
erated “NLO” predictions. We see excellent agreement between the two results and thereby validate the
FBPS generator. It is interesting to note that at “NLO” the∆φ12 distribution for two jets does not show
the usual feature of de-correlating. Because the jet algorithm is infra-red safe for all jet observables, the
two jets are always exactly back-to-back (in the azimuthal angle) for both “LO” and “NLO”, i.e. this dijet
observable is not affected by the initial-state radiation.

4 The Gluonic Jet Generator

As a proof-of-principle we describe in this section a generator, which calculates the NLOK-factor per
jet phase-space point for the pure gluonic part ofn-jet production at hadron colliders in the leading-color
approximation.

The determination of theK-factor for a givenn-jet event requires the evaluation of a single virtual event
and a three-dimensional Monte Carlo integration over the bremsstrahlung phase-space sectors defined by

10Of course, we also cross-checked that the backward clustering indeed recovered then-jet phase-space point.
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Figure 2: TheHT and∆φ12 pure phase-space comparisons between clustered(n + 1)-particle RAMBO events
(blue lines) and forward-branchedn-particle RAMBO events (red lines) forn = 6-jet (upper graphs) andn = 10-jet
(lower graphs) configurations. The lower panels show the ratio between the clustered and branched predictions
minus one. The black lines represent the results of the correspondingn-particle RAMBO generations. To focus on
the phase-space validation, the matrix-element and PDF weights have not been included in these calculations.
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the jet resolution scale. This is discussed in Section 4.1. Finally, in Section 4.2 our results are presented:
we verify the cancellation of the slicing parameter in theK-factor and the evaluation of the full leading-
color NLO corrections up to15-jet configurations.

4.1 Evaluation of the K-factor

In terms of ordered amplitudesm, the fully differential gluonic leading-order, leading-color contribution
to then-jet cross section is given as

d(n)σLO

d J1 · · · d Jn
=

(2π)4−3n

2xaxb S
Fg(xa)Fg(xb) N

n
C

(
N2

C − 1
)

×




∑

σ ∈Sn+1

∣∣∣m(0)
(
xaPa, Jσ1

, Jσ2
, . . . , Jσn+1

)∣∣∣
2
+ O

(
1

N2
C

)
 , (31)

where the color,NC, dependence has been made explicit. The sum is over all(n+ 1)! different permuta-
tions of the ordered amplitudes and the|m(0)|2 are the corresponding helicity averaged/summed squared
matrix elements. Note that theσi take values fromb, 1, . . . , n whereJb = xbPb. We can now define the
fully differential NLO cross section through orderedk-factors,

d(n)σNLO

d J1 · · · d Jn
=

(2π)4−3n

2xaxb S
Fg(xa)Fg(xb) N

n
C

(
N2

C − 1
)

×




∑

σ ∈Sn+1

kNLO

(
Ja, Jσ1

, Jσ2
, . . . , Jσn+1

) ∣∣∣m(0)
(
Ja, Jσ1

, Jσ2
, . . . , Jσn+1

)∣∣∣
2
+ O

(
1

N2
C

)
 (32)

with Ja = xaPa. Notice that each ordering has been assigned its ownk-factor.

We further detail the orderedk-factor similar to Eq. (13) by dividing the virtual contribution into two
parts, which we callvD andf . The former is proportional to the LO term and contains the singularities;
the latter describes the finite virtual corrections. We now furthermore specify helicity dependentk-factors
and write representative for all orderings

kNLO

(
Jλa
a , Jλb

b , Jλ1

1 , . . . , Jλn
n

)
= 1 +

(
αSNC

2π

)
×

(
vD

(
Ja, Jb, J1, . . . , Jn

)
+ r

(
Ja, Jb, J1, . . . , Jn

)
+ f̂

(
Jλa
a , Jλb

b , Jλ1

1 , . . . , Jλn
n

))
, (33)

where

f̂
(
Jλa
a , Jλb

b , Jλ1

1 , . . . , Jλn
n

)
=

f
(
Jλa
a , Jλb

b , Jλ1

1 , . . . , Jλn
n

)
∣∣∣m(0)

(
Jλa
a , Jλb

b , Jλ1

1 , . . . , Jλn
n

)∣∣∣
2 . (34)
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Note that thevD part is independent of the helicity structure and is known inanalytical form [72,73]. The
helicity information is carried by the LO amplitude. We use the code of Ref. [5] to calculate the finite,
helicity dependent contributionf . The unresolved soft/collinear contributions contained in r are obtained
using a phase-space slicing method [72, 73]. Similarly to the singular virtual terms, this analytically cal-
culated contribution is helicity independent and proportional to the Born level expression. We add it to
thevD term, which now becomes dependent on the slicing parameter:vD → vD(smin), while the resolved
contribution is contained inr → r(smin). The ordered resolved bremsstrahlung factorr(smin) is defined
such that it is independent of the helicity choice. This is done in the same manner as for the unordered

bremsstrahlung factorR = 2π R̃
αSNC

in Eq. (20). We define the bremsstrahlung factor as the ratio of the
helicity summed bremsstrahlung contribution divided by the helicity summed LO contribution, schemat-
ically written as|mλ1,...,λn

brems |2 ≡
(∑

κ |m
κ1,...,κn+1

brems |2/
∑

κ |m
κ1,...,κn
LO |2

)
× |mλ1,...,λn

LO |2. By doing so we
have arranged for having all the helicity dependence carried by the jetsJ1, . . . , Jn, i.e. the Born level
ordered amplitude. This approach of defining the helicity dependence gives us the correct behavior: the
soft/collinear limit is found to be proportional to the LO helicity dependent ordered amplitude. Further-
more, if the helicity sum over the jets is carried out, one retrieves the helicity summed bremsstrahlung
amplitude.

At this level of the Monte Carlo program development, it is convenient to have an explicitlog2(smin)
dependence in the unresolved parton contribution. In the previous section we validated the FBPS generator
based on and using flat phase-space generation. However, thesoft/collinear limit is hardly probed by
distributing the momenta uniformly in phase space. As thesmin dependence of thevD part has to cancel
against that of the FBPS generator, we get an excellent probeon the crucial correctness of the soft/collinear
behavior of the FBPS generator.

In the future we can switch to a subtraction method, eliminating the dependence on the slicing param-
eter. For the class of infra-red safe jet algorithms, this isalmost trivial. The observable jet final state
is invariant under the bremsstrahlung Monte Carlo integration. This means we only have to add to the
k-factor, an integral over the unresolved phase space. The integrand is simply given by the difference
between the bremsstrahlung matrix element squared and its antenna approximation. Thesmin parameter
then becomes equivalent to the so-calledα parameter introduced in Ref. [85].

4.2 Numerical studies of NLO high multiplicity jet events

For all numerical studies we use single, exclusiven-jet events. As for the numerical validation of the
FBPS generator in Section 3.4, all events pass the jet cutsp

(i)
T > 250 GeV, |yi| < 2.0 and∆Rij > 0.5

at a collider energy of 7 TeV using the CTEQ6M PDF set [86]. Therenormalization/factorization scale is
set to one half times the average dijet mass. This scale choice is closely connected to shower Monte Carlo
approaches where the dijet mass is often used as the startingscale for branchings off the particular dipole
antenna.

We first have to study the dependence on the slicing parametersmin for explicit jet configurations. To
this end we calculate the resolved,r(smin), and the unresolved,vD(smin), helicity independent contribu-
tions to thek-factor. The results are shown in Figures 3, 4 and 5 together with the helicity independent

part of thek-factor, 1 +
(
αSNC

2π

) [
r(smin) + vD(smin)

]
, for a single2-jet, 3-jet, 4-jet, 5-jet and8-jet

event and two different orderings per kinematic configuration. The notation in the figures is such that
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Figure 3: The cancellation of thesmin dependence for the 2-jet and 3-jet configurations given in Appendix B. The
upper panels show the resolved contribution in red, the unresolved contribution in black and the helicity independent
part of thek-factor defined in Eq. (33) in blue. In the lower panel, the dependence onsmin of the helicity independent
part of thek-factor is shown in finer detail. The different color orderings (indicated in the respective plot titles) use
the same events in the Monte Carlo evaluation, leading to correlated statistical fluctuations.
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Figure 4: The cancellation of thesmin dependence for the 4-jet and 5-jet configurations given in Appendix B. The
upper panels show the resolved contribution in red, the unresolved contribution in black and the helicity independent
part of thek-factor defined in Eq. (33) in blue. In the lower panel, the dependence onsmin of the helicity independent
part of thek-factor is shown in finer detail. The different color orderings (indicated in the respective plot titles) use
the same events in the Monte Carlo evaluation, leading to correlated statistical fluctuations.
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−−++ · · ·+ −−−+ · · ·++ −+−+ · · · −+

jets r-factor
∣∣m(0)

∣∣2 k-factor
∣∣m(0)

∣∣2 k-factor
∣∣m(0)

∣∣2 k-factor

2 172± 1 1.72216 1.15± 0.05 1.6×10−31 −−− 0.00552438 1.09± 0.05
3 243± 2 120.638 1.13± 0.08 0.043632 1.18± 0.08 5.98249 1.10± 0.08
4 392± 3 125.234 1.30± 0.13 0.282847 1.17± 0.13 0.0498892 1.18± 0.13
5 366± 4 5941.55 0.94± 0.17 849.054 0.87± 0.17 31.5083 0.80± 0.17
6 529± 5 1202.54 1.15± 0.24 69.0066 1.06± 0.24 0.469815 0.82± 0.24
8 650± 7 26732.0 1.41± 0.34 1364.49 1.32± 0.34 1.41604 1.15± 0.34
10 844± 11 6575.23 1.49± 0.49 579.066 1.26± 0.49 6.09232×10−6 0.97± 0.49
15 1264±20 4690.02 1.39± 0.95 671.554 1.28± 0.95 4.37178×10−7 1.24± 0.95

Table 1: The LO ordered amplitude squared|m(0)(Ja, Jb, J1, . . . , Jn)|2 and its correspondingr(smin) and ordered
k-factor as defined in Eq. (33) for an exclusiven-jet event. The explicit jet momenta for the different jet multiplicities
are given in Appendix B. The slicing scalesmin is set to10−4 × S and the Monte Carlo integration over the
bremsstrahlung phase space has been done with 100,000 generated events.

m(0)(1, 2, . . . , n + 2) ≡ m(0)(Ja, Jb, J1, . . . , Jn) with 1 ↔ a, 2 ↔ b, 3 ↔ 1 etc. For each antenna, we
only have to perform a three-parameter integral, giving us good control over the cancellations. The graphs
demonstrate that the cancellation of thesmin parameter dependence is achieved in a satisfactory manner at
values of the order of10−4 ×S and smaller. Moreover, we were able to maintain good numerical stability
down to values ofsmin < 10−9 × S (= Scollider in the figures), even though we did not use any adaptive
Monte Carlo integration such as VEGAS [87] to obtain these results.11

We can now proceed to make some predictions for then-jet configurations listed in Appendix B. In
Table 1 we show the results for several helicity configurations of the calculations of thek-factors de-
fined in Eq. (33) multiplying the ordered amplitudes squared. As can be seen from the table, the scale
choice described above leads to relatively smallk-factors, i.e. the normalization of the LO prediction is
fairly close to the NLO rate. In other words, the correction of the LO weight due to radiative correc-
tions is of the order of one. In addition to thek-factors, our table also displays the numerical results
r(smin) of the bremsstrahlung phase-space integration using the FBPS generator. As expected, for a fixed
number of bremsstrahlung events, the uncertainty on the integration results scales with the square root
of the number of dipoles, i.e. it grows linearly in the numberof final-state jets (except for the two high-
est jet multiplicities, where with the chosen number of events we did not achieve a sufficient accuracy
for determining a reliable uncertainty estimate). The number of final–final and initial–final dipoles is
n(n− 1) and2n, respectively. To obtain an integration uncertainty independent of then-jet multiplicity,
we would have to scale the number of bremsstrahlung events evaluated in the Monte Carlo integration as
n(n− 1) + 2n = n(n+ 1).

From Table 1 one also reads off that the relative errors on thek-factors become sizeable for a large
number of jets. This is when the values of ther-factors turn big and one finds large cancellations between

11For future applications, the resulting three-parameter integration can readily be optimized by important sampling and adap-
tive stratification.
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Figure 5: The cancellation of thesmin dependence for the 8-jet configurations given in Appendix B.The upper
panels show the resolved contribution in red, the unresolved contribution in black and the helicity independent part
of thek-factor defined in Eq. (33) in blue. In the lower panel, the dependence onsmin of the helicity independent
part of thek-factor is shown in finer detail. The different color orderings (indicated in the respective plot titles) use
the same events in the Monte Carlo evaluation, leading to correlated statistical fluctuations.

the single terms in Eq. (33). Owing to the use of a slicing method and its explicit dependence onlog(smin),
we are not able to avoid this behavior easily without switching to an approach based on subtractions.

Because of these large cancellations, the absolute values of ∆r multiplied by
(
αSNC

2π

)
∼ 1/20 are hence

pivotal in determining the uncertainty on thek-factors.

5 Conclusions

In this paper we derived a new type of NLO phase-space generator. This forward-branching phase-space
generator has the property of inverting the clustering occurring in the jet algorithm. Because of this, the
bremsstrahlung phase space of a fully exclusive jet final state is generated. The bremsstrahlung events
constructed in this way do not change the value of a jet observable; they are all added to the single virtual
contribution. This gives a perfect cancellation of the divergent pieces – the soft/collinear real and virtual
contributions – as dictated by the KLN theorem for any jet observable.

However, the current jet algorithms used by the experimentsemploy a2 → 1 clustering scheme.
Furthermore, a beam jet is not defined leading to transverse momentum imbalance in jet events. As a
result the LO and NLO jet phase spaces are different and only match at the soft/collinear boundary. This
makes the jet observables infra-red finite, but not necessarily infra-red safe. The KLN theorem becomes
applicable only after some phase-space averaging. As a consequence, the fully exclusive multi-jet event
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is not defined at NLO.

Any infra-red finite jet algorithm using a3 → 2 clustering scheme, which includes beam jets, suffices
to define the fully exclusive multi-jet differential cross section. For the purposes of this paper, we worked
out a theoretically simple jet algorithm such that fully exclusive jet final states can be defined at NLO.
Nevertheless, the difference between an observable determined by this more theoretical jet algorithm and
one currently used by the experiments amounts to a finite correction. This correction is readily calculated
for a particular observable by an extra bremsstrahlung phase-space integration, extending the applicability
of the forward-branching phase-space generator beyond jetalgorithms using3 → 2 clustering schemes.

Since the forward-branching bremsstrahlung phase-space generator does not alter the jet configuration,
aK-factor can be defined for a given multi-jet phase-space point. TheK-factor can be determined from
the leading-order probability associated with the particular jet phase-space point. In this sense, the proba-
bilistic interpretation of the NLO prediction is restored by quantifying it as a positive-weight adjustment.
We validated our method in two steps: first, we verified the construction of the bremsstrahlung phase
space; second, we calculated the radiative corrections forindividual events with up to15 jets. As our test
scenario, we chose2 → n gluon production in the leading-color approximation.
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A The Enumeration of Branchings

We can choose the branching pair of jets in Eq. (20) by Monte Carlo means. However, it is useful to
control the ratio of initial–final and final–final branchingsfor optimization purposes. This ratio is given
by the number of ways then + 3 partons can be clustered ton jets plus2 incoming partons. If no flavor
constraints are taken into account, the derivation of the ratio for the jet algorithm used in this paper goes
as follows:

– Given an initial-state parton, there aren (n+1) possible clusterings since it is the final-state parton
pair that effectively gets combined. This number is based ontreating all final-state partons as dis-
tinguishable particles. The recoil is taken by one of the twopartons in the initial state, giving the
number of initial–final state clusteringsNIF = 2n (n + 1).

– The number of final–final state clusterings is given byn (n + 1). For each of these clusterings, we
haven − 1 remaining possible recoil partons. For the number of final-state clusterings, we hence
obtainNFF = (n− 1)n (n+ 1).

– Accordingly, the total number of possible clusterings isNtot = NIF +NFF = n (n+ 1)2.
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– Following these observations, the fraction of final–final state branchings to be generated is then
given byNFF/Ntot = (n − 1)/(n + 1). Similarly, the fraction of initial–final state branchingsthus
is NIF/Ntot = 2/(n + 1). As we see for a very large number of jets, the fraction of purefinal-state
branchings tends towards one as expected.

Note that in Eq. (20) we see that each dipole term is “averaged” by exactly the number of final–final state
dipoles,NFF, or the number of initial–final state dipoles per beam,1

2NIF.

B The Explicit Jet Events

The jet configurations used to calculate the results in Table1 are given in this appendix, together with some
kinematic properties of the particularn-jet event. These properties are calculated from the final-state jets.

• Forn = 2, we have:

αS

(
1

2
〈mjj〉

)
= 0.0854525 , 〈mjj〉 = 2320.1 GeV ,

min (mjj) = 2320.1 GeV , max (mjj) = 2320.1 GeV (35)

and the momenta (in GeV) are given by

xa Pa = (651.429, 651.429, 0, 0) ,

xb Pb = (2065.78,−2065.78, 0, 0) ,

J1 = (988.026, 4.76957, 150.427, 976.496) ,

J2 = (1729.19,−1419.12,−150.427,−976.496) . (36)

• Forn = 3, we have:

αS

(
1

2
〈mjj〉

)
= 0.08936 , 〈mjj〉 = 1546.75 GeV ,

min (mjj) = 837.178 GeV , max (mjj) = 2342.36 GeV (37)

and the momenta (in GeV) are given by

xa Pa = (1002.78, 1002.78, 0, 0) ,

xb Pb = (1789.36,−1789.36, 0, 0) ,

J1 = (1203.62,−339.322, 1151.26,−90.3834) ,

J2 = (1243.44,−297.018,−1187.58,−218.141) ,

J3 = (345.076,−150.236, 36.3206, 308.525) . (38)

• Forn = 4, we have:

αS

(
1

2
〈mjj〉

)
= 0.0873363 , 〈mjj〉 = 1899.39 GeV ,

min (mjj) = 906.006 GeV , max (mjj) = 2636.08 GeV (39)
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and the momenta (in GeV) are given by

xa Pa = (2293.54, 2293.54, 0, 0) ,

xb Pb = (2359.46,−2359.46, 0, 0) ,

J1 = (1725.71, 877.743, 982.549, 1114.55) ,

J2 = (954.182, 356.832,−669.803,−578.359) ,

J3 = (1037.51,−521.634,−809.127,−386.844) ,

J4 = (935.596,−778.871, 496.381,−149.35) . (40)

• Forn = 5, we have:

αS

(
1

2
〈mjj〉

)
= 0.0921983 , 〈mjj〉 = 1074.2 GeV ,

min (mjj) = 365.996 GeV , max (mjj) = 1794.95 GeV (41)

and the momenta (in GeV) are given by

xa Pa = (883.985, 883.985, 0, 0) ,

xb Pb = (3263.37,−3263.37, 0, 0) ,

J1 = (684.733,−446.345,−519.146, 11.084) ,

J2 = (780.483,−90.2618, 684.399,−364.149) ,

J3 = (1081.8,−949.154, 502.292, 130.739) ,

J4 = (458.187,−330.582, 216.105,−232.271) ,

J5 = (1142.15,−563.042,−883.651, 454.598) . (42)

• Forn = 6, we have:

αS

(
1

2
〈mjj〉

)
= 0.0898744 , 〈mjj〉 = 1470.28 GeV ,

min (mjj) = 372.579 GeV , max (mjj) = 2307.33 GeV (43)

and the momenta (in GeV) are given by

xa Pa = (2711.42, 2711.42, 0, 0) ,

xb Pb = (2989.73,−2989.73, 0, 0) ,

J1 = (1305.48,−936.767,−465.008, 781.36) ,

J2 = (416.233, 43.8532, 163.26,−380.359) ,

J3 = (1255.05, 418.867, 211.911, 1163.96) ,

J4 = (809.408,−755.773,−267.267,−111.885) ,

J5 = (1029.43, 606.551, 515.234,−652.956) ,

J6 = (885.548, 344.959,−158.13,−800.121) . (44)
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• Forn = 8, we have:

αS

(
1

2
〈mjj〉

)
= 0.0956911 , 〈mjj〉 = 861.375 GeV ,

min (mjj) = 239.955 GeV , max (mjj) = 1483.52 GeV (45)

and the momenta (in GeV) are given by

xa Pa = (1566.71, 1566.71, 0, 0) ,

xb Pb = (3315.09,−3315.09, 0, 0) ,

J1 = (771.638, 72.2583, 756.755, 132.381) ,

J2 = (799.106,−447.319,−526.283,−401.875) ,

J3 = (362.664,−225.218, 127.162,−254.228) ,

J4 = (455.86, 294.142,−344.111,−53.627) ,

J5 = (336.571,−176.658, 48.6816, 282.315) ,

J6 = (897.978,−705.684, 548.115, 89.1335) ,

J7 = (897.601,−802.832,−399.01, 44.0329) ,

J8 = (360.374, 242.933,−211.31, 161.867) . (46)

• Forn = 10, we have:

αS

(
1

2
〈mjj〉

)
= 0.0950109 , 〈mjj〉 = 913.794 GeV ,

min (mjj) = 237.586 GeV , max (mjj) = 1830.56 GeV (47)

and the momenta (in GeV) are given by

xa Pa = (2827.46, 2827.46, 0, 0) ,

xb Pb = (3322.41,−3322.41, 0, 0) ,

J1 = (547.589, 302.187, 339.049, 305.912) ,

J2 = (956.324,−806.585, 389.162, 335.454) ,

J3 = (350.22,−95.7603, 228.577, 247.461) ,

J4 = (259.829,−26.1444,−35.2505,−256.096) ,

J5 = (314.102,−35.8975, 4.96171, 312.004) ,

J6 = (986.504,−606.912, 589.914,−506.804) ,

J7 = (889.429,−326.063,−798.032,−218.89) ,

J8 = (891.285, 649.951,−560.226,−241.04) ,

J9 = (518.799, 168.343,−476.506, 117.284) ,

J10 = (435.784, 281.925, 318.35,−95.2848) . (48)

• Forn = 15, we have:

αS

(
1

2
〈mjj〉

)
= 0.0993949 , 〈mjj〉 = 633.545 GeV ,

min (mjj) = 147.1 GeV , max (mjj) = 1497.81 GeV (49)
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and the momenta (in GeV) are given by

xa Pa = (3403.1, 3403.1, 0, 0) ,

xb Pb = (3096.06,−3096.06, 0, 0) ,

J1 = (349.237, 141.394,−212.337,−238.51) ,

J2 = (272.807,−73.295, 214.113,−152.339) ,

J3 = (465.556, 289.402, 279.374, 234.392) ,

J4 = (269.21, 54.8123,−263.571,−0.174956) ,

J5 = (451.568, 254.001, 87.8387,−362.88) ,

J6 = (437.866, 292.297, 303.293,−119.594) ,

J7 = (368.167,−241.648, 223.073, 165.504) ,

J8 = (355.366,−41.1757,−217.718,−277.828) ,

J9 = (328.823,−87.4318,−296.434,−112.281) ,

J10 = (458.585,−188.764,−88.852, 408.379) ,

J11 = (332.789, 159.417,−133.945, 259.603) ,

J12 = (572.199,−470.06,−321.957,−52.8996) ,

J13 = (746.136,−332.113, 245.182,−621.534) ,

J14 = (830.982, 518.077, 212.244, 614.069) ,

J15 = (259.874, 32.133,−30.3028, 256.093) . (50)
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