
EuCARD-CON-2011-010

European Coordination for Accelerator Research and Development

PUBLICATION

Intelligent Platform Management
Controller for Low Level RF Control

System ATCA Carrier Board

Predki, Pawel (TUL) et al

08 May 2011

The research leading to these results has received funding from the European Commission
under the FP7 Research Infrastructures project EuCARD, grant agreement no. 227579.

This work is part of EuCARD Work Package 10: SC RF technology for higher intensity
proton accelerators and higher energy electron linacs.

The electronic version of this EuCARD Publication is available via the EuCARD web site
<http://cern.ch/eucard> or on the CERN Document Server at the following URL :

<http://cdsweb.cern.ch/record/1349298

EuCARD-CON-2011-010

http://cern.ch/eucard
http://cdsweb.cern.ch/record/1349298


Intelligent Platform Management Controller for
Low Level RF Control System ATCA Carrier Board

Pawel Prędki, Dariusz Makowski, Member, IEEE

Abstract—High availability and reliability are among the most
desirable features of control systems in modern High-Energy
Physics (HEP) and other big-scale scientific experiments. One
of the recent developments that has influenced this field was
the emergence of the Advanced Telecommunications Computing
Architecture (ATCA).

Designed for the telecommunications industry it has been
successfully applied in other domains such as accelerator control
systems. A good example is the application of ATCA stan-
dard for the design of Low Level RF (LLRF) control system
for the X-Ray Free Electron Laser (XFEL) being developed
in Deutsches Elektronen Synchrotron (DESY). Reliability and
availability requirements for such a device play a crucial role
among other parameters. Thus, the ATCA standard, with five-
nines availability, is considered one of the best candidates for this
system.

This article focuses on the central management unit of every
ATCA board, namely the Intelligent Platform Management
Controller (IPMC), developed for the LLRF ATCA Carrier
Board (CB). It also argues that it is possible to create a fully
functional IPMC using base specifications only which is a much
more economical solution than acquiring such products from
various vendors dealing with ATCA-related products.

The solution presented here fully complies with all the most
recent revisions of specifications that are required for an ATCA
board to properly operate in an ATCA shelf, communicate with
the redundant Shelf Manager (ShM) and host Advanced Mez-
zanine Cards (AMCs). Full Electronic-Keying (EK) functionality
is present on the LLRF CB supporting such protocols as PCI
Express (PCIe), Gigabit Ethernet (GbE) and proprietary Low
Latency Links (LLL) making it possible to route connections
between all the boards in the system.

The IPMC solution presented here is mainly hardware inde-
pendent as proper code organization allowed to separate low-level
device drivers and high-level application logic dealing with the
ATCA standard, which makes it portable to new carrier board
designs.

Index Terms—Advanced Telecommunications Computing Archi-
tecture, Intelligent Platform Management Interface, Intelligent
Platform Management Controller, XFEL, Electronic Keying,
High-Energy Physics, ATCA, IPMC

I. INTRODUCTION

Modern high-energy physics (HEP) and other big-scale
experiments and scientific undertakings require a great level
of reliability, serviceability and availability as far as the
control subsystems of these activities is concerned [1]. For
many years this goal was not an easy thing to accomplish
since pieces of equipment used in the experiments, often
coming from various vendors, were not compatible with each

D. Makowski and P. Prędki are with the Technical University of Łódź,
Department of Microelectronics and Computer Science, 90-924 Łódź, Poland
(e-mail: ppredki@dmcs.pl, dmakow@dmcs.p.lodz.pl).

other due to lack of a widely accepted standard which the
production and application of this equipment could be based
on. In mid-2004, however, a new standard emerged. Ad-
vanced Telecommunications Computing Architecture (ATCA),
although designed primarily for telecom industry, has found
its use in other applications, including high-energy physics
experiments and accelerator control systems [2]–[4]. At the
heart of the coveted reliability and availability features of
ATCA stands the Intelligent Platform Management Interface
(IPMI) specification [5] which has been adapted by ATCA
as the communication protocol of the standard. Each ATCA
board is equipped with an Intelligent Platform Management
Controller (IPMC) which is responsible, among others, for
controlling the hot-swap activation and deactivation of the
board, managing the on-board sensors, verifying that the
values given by them are limited to specific thresholds [6].
These modules monitor the most crucial components of the
whole system and play an important role in early detection of
any failures that might arise. This, in turn, enables the user to
remove or replace a faulty module or take necessary actions
to prevent the upcoming failure. Any messages that need to be
delivered to the active Shelf Manager (ShM) concerning the
aforementioned events are processed and sent by the IPMC.
That is why it is a vital component of the system and its proper
operation is crucial in order for the high levels of reliability
and availability to be upheld [7].

Implementations of IPMC are hardware-dependent and thus
ready-made solutions are neither easily obtainable nor rela-
tively cheap. Although there exist reference designs offered by
some vendors, their flexibility implies resource wastage when
implemented in less-demanding applications. On the other
hand, more robust projects which include specialized hardware
require drivers for these devices to be written separately from
the available IPMC solutions and integrated into the ready-
made product, e.g. for Advanced Mezzanine Card (AMC)
management [8] or Electronic Keying (EK) purposes [9],
[10]. This could be a difficult task to accomplish taking into
consideration limited access to the source code offered by
some vendors.

Taking into consideration the fact that many projects include
development of proprietary, but still standard compliant, hard-
ware it is not an issue to create a proprietary IPMC as well.
This article focuses on one such application developed for
the Low Level RF Control System of the XFEL Accelerator
designed in the Department of Microelectronics and Computer
Science (DMCS) at the Technical University of Lodz (TUL),
Poland and describes the IPMC designed for ATCA Carrier
Boards (CB) used in the system [11].



II. ATCA CARRIER BOARD FOR LLRF SYSTEM

In order for the CB to be compatible with other ATCA
boards as well as ShM cards controlling the shelf, it needs to
comply with the standard as far as both hardware and software
are concerned [12].

The Carrier Board communicates with the ShM over a
redundant I2C bus called IPMB-0 and with up to three AMCs
over IPMB-L. Other peripheral devices are connected to the
one remaining I2C bus. These include voltage, temperature
and current sensors, I/O port expanders, an external EEPROM
memory chip, integrated clock generator, cross-switches and
an integrated clock buffer, see Fig. 1 [9].

III. IPMC REQUIREMENTS FOR LLRF ATCA CARRIER
BOARD

The proprietary IPMC proposed by the authors needs to
fulfill specific requirements that follow from the general re-
quirements of the LLRF system architecture as well as the
hardware available on the CB itself. These features are:

• Compliance with the basic IPMI commands required by
the ATCA standard,

• Compliance with the PICMG 3.0 extension commands,
• Carrier board management including hot-plug function-

ality; EK functionality for PCIe, GbE, LLL; Blue LED
control; Hardware Address (HA) recognition,

• Management of three AMC modules including hot-plug
functionality, EK functionality, power supply control,

• External sensor monitoring for stand-alone devices (e.g.
MAX6626) and integrated devices (e.g. ATC210) includ-
ing voltage, temperature and current sensors,

• Debugging and diagnostic functionality,
• Economical, easy to implement and low-area solution
The messaging between the IPMC on the CB and one on

the ShM takes into account the requirements and structure as
shown in the version 2.0 of the IPMI specification and the
PICMG 3.0 Revision 3.0 document [13]. All the messages
that are mandatory as defined by those documents have
been implemented allowing the Carrier Board to operate in
all standard-compliant shelves. This implementation includes
the EK feature which allows dynamic configuration of links
between the boards in one shelf [14] as well as between the
AMC modules and other devices in the shelf.

There are four I2C channels supported by the IPMC.
Two of those are used for the redundant Intelligent Platform
Management Bus (IPMB-0) over which the CB communicates
with the ShM, one is used for the local IPMB bus (IPMB-L)
to which the AMC modules are connected. A maximum of
three single-width AMC modules can be controlled by the CB.
Again, the communication between these components is fully
in accordance with the documents mentioned before as well
as the AMC.0 Revision 2.0 specification [8] which describes
in detail the communication patterns between CBs and AMCs.

The HA translates directly to a I2C address the board needs
to use on the IPMB-0 bus. Its recognition is done on the CB
with the aid of the I/O expanders which collect this informa-
tion from the backplane, as detailed in the specification. Two
more crucial ATCA-specific elements are the hot-swap plug

and the Blue LED. The former is required for the board to
be safely removed and replaced on-the-fly without the need
to stop the whole system and the latter indicates the state
of the board to the user which can perform specific actions
depending on this information. The CB IPMC is able to detect
the changes of the hot-swap plug as well as control the Blue
LED as defined by the requirements.

Although all the vendors of ATCA components boast full
compliance with the specification, experience shows that this is
not always true. While working with AMC modules and ATCA
boards provided by several manufacturers it has been observed
that some of the IPMI messages sent over the appropriate bus
do not correspond to the ones described in the specification.
Whether a matter of wrong bit or byte ordering or sending
hot-swap messages in an incorrect order, such discrepancies
do occur and can influence the proper operation of the system.
In order to eliminate such errors in the IPMC development it
has been designed with support of a debugging feature that
can work with the IPMI Analyzer, developed in parallel, or
send plain-text messages over the serial interface directly to
the user without the need of extra equipment.

The IPMC reads data from all the sensors present on
the CB and is capable of sending event messages to the
ShM whenever any of the thresholds specified for any of the
sensors is crossed. These messages are then interpreted by the
ShM and stored in the System Event Log (SEL) where the
system manager can spot unusual behavior and take actions
accordingly, such as increasing the speed of fans in the shelf
for overtemperature alerts. This mechanism greatly contributes
to the overall stability and reliability of the system.

IV. IPMC HARDWARE AND SOFTWARE

Taking into consideration the requirements set for the IPMC,
suitable hardware and software solutions needed to be found.
Although some of them force the designer to use specific
components, such as those for power distribution, there is a
wide range of possibilities to choose from as far as the sensors,
the microprocessor for IPMC or the software implementation
are concerned.

The IPMC code can be easily divided into several parts
which correspond directly to the LLRF system requirements
for this solution. The major software components, which will
be described in more detail in the next sections, are:

• IPMI library including functions dealing with all the base
IPMI and PICMG 3.0 commands,

• Communication section including functions dealing with
messaging between MMC and IPMC and IPMC and
ShMC,

• AMC management section for proper AMC activation,
deactivation and EK operation,

• Sensor management section for initializing, controlling
and event detection from on-board sensors,

• Firmware upgrade section as specified by the HPM.1 doc-
umentation for both the IPMC and other programmable
devices,

• Debugging section for sending human-readable output
over a serial interface for diagnostic and verification
purposes



Fig. 1. IPMC and peripheral devices

A. Microprocessor Selection

The IPMC on the CB is implemented using an Atmel
AVR ATmega 1281 microprocessor. It comes with 128 kB of
Flash program memory, 8 kB of SRAM and 4 kB of internal
EEPROM. This chip has been chosen in order to utilize its
resources as optimally as possible. The program memory is
filled in around 70% while the SRAM in just below 90%.
The internal EEPROM is used for storing the debug messages
sent over the serial interface. Also, what is more important,
it contains the Field Repeatable Unit (FRU) information each
IPMC is required to implement. Data stored there is supplied
to the ShM and details all of the crucial features of the CB
such as power consumption, number of supported AMCs or
supported interfaces used in EK negotiations. Although this
information may be modified at run-time it is a very rare
occurrence and thus storing it in a non-volatile memory is
justifiable. This is also a requirement of the standard.

This microprocessor was chosen as the best compromise
between price and efficiency. The memory as well as periph-
eral resources usage shows that a smaller chip might not have
been able to deal with the IPMC functionality and a bigger
one would introduce resource wastage. Also, the tools used
to write the source code are easily obtainable and free. These
include the GNU toolchain for C-language adapted for the
AVR architecture and an Integrated Development Environment
available from the Atmel website. The chip itself is not
expensive either compared with more robust microprocessors.

B. Code Organization

As mentioned before, the internal operation of the IPMC is
hardware-dependent. It needs to know what kind of sensors
and other peripheral devices are present on the board and how
to communicate with them. Also, the hardware implementation
of I2C controllers may vary from board to board and the
IPMC has to be able to read and send the IPMI messages
over the IPMB buses. The ATmega 1281 present on the CB
has only one built-in Two-Wire Interface (TWI) controller

used for communication with AMC modules and all the other
I2C buses are managed by external chips connected to the
IPMC by a parallel bus. Other implementations may use
microprocessors with a higher number of built-in controllers
or use other devices altogether such as Field Programmable
Gate Arrays (FPGAs).

The IPMC source code, written in C language, is invul-
nerable to some of these variations because of the way it
has been structured. Most of the interactions between IPMC
and the low level devices have been wrapped in high level
functions with an API available in form of doxygen gener-
ated documents. Thus, the device driver part of the design
is separated from the logic of the program. Similarly, the
reception and transmission of the IPMI messages is largely
independent of the logic processing this information. The low
level I2C device driver monitors the bus, collects the data and
then inserts it into a receive queue where it is read from by a
high level function that analyzes the whole packet. Likewise,
the response message is packed into a send queue and the low
level device driver deals with sending it over the I2C interface.
If a change to hardware needs to be made only those drivers
need to be changed while the core logic remains untouched.

For debugging purposes an additional application has been
developed that gives the user control over most of the on-
board peripherals. Presented with a graphical user interface
he or she is able to read the values of the sensors or the I/O
port expanders, reconfigure said sensors, check and change
the LEDs states, etc. [15]. Such a tool is invaluable in the
early stages of system development enabling to verify both
the hardware and software components. The functions dealing
with communication with this application can be switched on
or off at compile time of the IPMC and, if on, they do not
interfere with the IPMC functionality.

C. Real-Time Pseudokernel

It is understandable that a system controlling high-energy
physics experiments of which high reliability and availability



TABLE I
MAIN IPMC LOOP

Action Associated Function
Process CB-related events processEvent()

Process AMC-related events processAMCEvent()
Process ShM IPMI messages dispatchMsg()
Process AMC IPMI messages dispatchIPMB_L()

are required should present response times to various event
which are as low as possible. The external events include
arrival of IPMI messages, sensor interrupts or user hot-swap
interaction. Fast message processing maximizes the utilization
of the bus because no timeout message repetitions occur if the
original message is handled and responded to quickly. Since a
fully-featured real-time operating system would consume too
many resources and be too complicated in implementation
and analysis, a hybrid pseudokernel has been implemented
to perform real-time actions for this application. The idea
of event-driven cyclic executives in conjunction with exter-
nal device interrupts has been employed [16]. The Interrupt
Service Routines (ISR) have been reduced to minimum in
order to maximize the response time of the application. Nested
interrupts are disabled by default in ATmega1281 and are not
enabled in the proposed solution in order to avoid the overhead
associated with pushing and popping register values onto and
from the stack. Thus, the faster one interrupt is serviced the
sooner another one will be. Actually, the major role of ISRs
in this solution is feeding the event-driven part of the code
organization with specific events where the cyclic executives
nature of the application takes over. This approach involves
executing short processes in a continuous loop as depicted in
TABLE I.

The CB-related events include opening or closing the hot-
swap handle by the user, alerts from external sensors, re-
quests for EK link reconfiguration, I2C bus stuck alerts,
watchdog alerts, requests for IPMI message transmission to
ShM. The AMC-related events include requests for TWI
reconfiguration, requests for IPMI message transmission to
AMC, insertion/removal of AMC alert, requests for sending a
ping message to AMC. This way, all of the major events that
influence the operation of IPMC are dealt with in one place
where it is easy to control and modify them. For example,
adding or removing a sensor would only require to add an
event to the event list and no changes to the core loop would
have to be made.

D. IPMI Message Processing

The IPMI message processing is a crucial activity of the
main loop of IPMC. The communication between the CB and
the ShM or AMCs should be carried out as smoothly as pos-
sible and, although the IPMI standard assumes the possibility
of resending unanswered requests, these occurrences should
be limited to a minimum in order not to overload the buses.
Taking into account the high level functions the whole process
can be subdivided into four parts:

• Read an IPMI message from the receive buffer,
• Process the message,

• Formulate the response and put it in the transmit buffer,
• Indicate a message ready event.

Before the first action and after the last one the low level
drivers are responsible for putting the received message into
the input buffer and transmitting the response out of the
output buffer, respectively. The input and output buffers are
implemented in form of First-In First-Out (FIFO) queues, eight
messages deep, where each message can hold up to 32 bytes,
which is also defined by the standard.

The first function merely copies the message indicated by
the read pointer of the FIFO queue to a local buffer and passes
control to the processing function. This procedure verifies
the checksum of the message and analyzes the frame itself
according to the IPMI core specification as well as the PICMG
3.0 documentation. The messages are divided into several
groups following the division of the latter document, see
TABLE II. The first five categories represent the core IPMI
specification commands while the last two follow the PICMG
3.0 commands extension.

TABLE II
IPMI COMMANDS CATEGORIES

Command Category Associated File
IPM Device "Global" Commands ipmi_global.c

BMC Watchdog Timer Commands ipmi_watchdog.c
Event Commands ipmi_events.c

Sensor Device Commands ipmi_sensors.c
FRU Device Commands ipmi_fru.c

AdvancedTCA ipmi_picmg.c
AMC Communication Commands ipmi_amc.c

If the checksum verification was successful the read pointer
in the input FIFO queue is moved. During the processing of
the message appropriate actions are taken depending on what
the message was. These actions may be visible to the user
(e.g. blinking the front panel LED) or hidden from the user
(e.g. changing the threshold value of a certain sensor). Some
messages are not followed by an action altogether - data may
be simply gathered corresponding to the original request (e.g.
FRU information, Sensor Data Repository (SDR) information).
Regardless of the resulting activity, a response is formed with
a suitable Completion Code (CC) and the overall message
format as specified in the IPMI documentation.

Afterwards, the message is copied from the local buffer to
the output FIFO queue. No transmission is made but an event
is asserted indicating that the low level I2C device driver
should try sending the response the next time it is called from
the main program loop.

The scenario described above holds true for cases when
the originally received message was a request. For a received
response message, no further response formulation is required
and no event indication takes place, obviously. However,
the output FIFO queue read pointer is updated following a
successful response reception.

V. UPGRADE FUNCTIONALITY

A. HPM.1 IPMC Upgrade

The proposed IPMC solution implements the HPM.1 func-
tionality which defines management firmware upgrade capa-



Fig. 2. HPM.1 Upgrade Stages

bility [17]. The main idea behind this specification is stan-
dardization of firmware upgrade procedures as far as manage-
ment controllers, i.e. IPMC, Module Management Controller
(MMC), are concerned. Before the introduction of this docu-
ment in mid-2007 every vendor had used their own proprietary
solution for firmware upgrade. Thus, for systems where com-
ponents from different manufacturers where used, the problem
of upgrading those various elements was significant. Now this
issue is non-existent since a so-called upgrade agent following
the specification is able to upgrade the firmware of every
HPM.1-compliant device, including the LLRF carrier board
IPMC.

The upgrade procedure uses IPMI-based messages and is
capable of transmitting the new firmware over the same IPMB-
0 or IPMB-L buses the rest of the communication takes place.
However, there is also an option of sending the firmware
directly over the payload interface. The developed solution
supports only the former method.

The IPMC is capable of receiving the updated software
without the need of terminating normal operation. The new
firmware is stored in a buffer area in memory and the actual
update may be deferred to a later, more convenient point in
time. A rollback mechanism is also being developed in case the
new firmware contains serious flaws which disable proper op-
eration of the IPMC. The software upgrade process is divided
into three stages as presented in Fig. 2. In the preparation
step the upgrade agent verifies whether the upgrade image
of the new firmware and the target device have the same
manufacturer and device type and are altogether compatible.
After that, the upgrade stage begins where the upgrade agents
goes through upgrade action records, which contain the actual
firmware data that should be stored on the target board. The
data structure is of no interest to the upgrade agent so it is
not important what kind of component is updated as long as
the IPMC understands and correctly processes the incoming
messages. The final stage is activation, which may happen
instantaneously or be deferred. No self-tests are implemented
in the current version of the IPMC.

B. Upgrade of Programmable Devices Firmware

The HPM.1 specification is not limited to upgrading man-
agement controller firmware. Any kind of device can be
updated using the procedure described in the preceding sub-
section as long as the IPMC is able to process the upgrade
action records received from the upgrade agent. The firmware
of programmable devices available on the Carrier Board, like
microcontrollers, FPGAs or DSPs can be uploaded in similar
way as IPMC firmware. FPGA devices can be programmed
using parallel bus or serial interface based on a JTAG standard.

The JTAG standard allows to connect more than one device,
therefore more FPGA devices or PROMs (Programmable
Read Only Memories) can be included into JTAG chain. The
JTAG interface of the main Xilinx FPGA present on the
Carrier Board is connected to a multiplexer. The JTAG signals
available on AMC modules’ connectors are also supplied to the
multiplexed. Therefore the devices in JTAG chain, selected by
the IPMC, can be programmed using the same HPM.1 protocol
that was implemented for IPMC microcontroller firmware
upgrade. The programmer for FPGAs was implemented in
IPMC according to Xilinx note [18]. The firmware of DSP
processor is stored in non-volatile flash memory controlled by
SystemACE controller [19]. The flash memory can be also
programmed using JTAG.

VI. TESTS AND EVALUATION

The ATCA-based LLRF Conrol System was tested in the
FLASH free-electron laser at DESY, which is also used as a
test platform for the systems which will be ultimately applied
in the XFEL accelerator. Three test sessions were carried
out in January, March and September 2009 [20]. The IPMC
functionality of the LLRF CB was one of the test subjects
as the device itself, equipped with AMC modules and a rear
transition module (RTM), was used to control the super-
conducting cavities. The task of the IPMC was to properly
activate the CB inside the ATCA shelf which is necessary
for further activation of AMC modules. All three AMC slots
were occupied and all three modules were controlled by the
IPMC. The activation process was completed successfully and
the PCI Express (PCIe) links [21] were established between
them and the PCIe switch on the Carrier Board as well as an
external PC station taking advantage of the EK functionality.
These links are used for sending configuration parameters to
the LLRF controller [9]. They can be transmitted over Ethernet
connection to the PC and, subsequently, over PCIe to other
devices [22].

More tests have been carried out in laboratory environment
with emphasis put on proper AMC management. A Pigeon
Point ShMM-500 ShM has been used for shelf management
with the LLRF CB being the only ATCA board in the
shelf during testing. The following AMC modules have been
thoroughly tested:

• TEWS TAMC900 8 Channel 105 MSps 14 Bit AD
Converter,

• Emerson PrAMC-6210 PowerPC based AdvancedMC
Module,

• NAT NAMC-8560-xE1/T1/J1,
• SanBlaze SAS/SATA Hard Drive Module SB-AMC-HD.
For all the AMC modules full activation and deactivation

was achieved. For the TEWS TAMC module, which supports
PCIe, EK negotiations allowed it to be connected to the
PCIe switch present on the LLRF CB proving that the EK
functionality is properly implemented in the IPMC.

All the goals of the tests have been reached during the
sessions and it has been shown that the ATCA-based solution
can be used in situations where processing of many signals
of small levels is required with as little noise as possible and
with latencies of a few hundred nanoseconds.



VII. SUMMARY

The proposed IPMC has done its job well as the heart of the
CB used in the ATCA-based LLRF system for FLASH tests.
Few problems have been encountered in the first sessions all
of which have subsequently been eliminated. The IPMC has
been shown to be able to work on CBs equipped with different
sensors taking advantage of the driver / logic separation. The
activation and deactivation procedures, defined in the PICMG
3.0 specification, have been followed directly as have been
interactions with AMC modules and EK processes. Both PCIe
and Gigabit Ethernet (GbE) links have been established.

Utilization of the HPM.1 firmware upgrade capability makes
it easy for changing the IPMC even during operation of the
system which is a much sought-after feature in accelerator
applications and other HEP experiments. The same can be said
about the hot-swap functionality that comes with the ATCA
standard enabling removal and replacement of devices without
disrupting the system. Thus, all the requirements imposed by
the LLRF control system on the IPMC have been met.

By proving all the above functionality it has been shown
that it is possible to develop and apply a proprietary IPMC
code able to work in conditions requiring high availability
and reliability rates proposed by the ATCA standard. Such
a solution is economically sound when compared to those
offered by major vendors dealing with this architecture at the
same time giving the firmware developer full control of the
features that need to be implemented for a given application
which, in turn, assures that the utilization of all the system
resources will be optimal.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Commission under the EuCARD
FP7 Research Infrastructures grant agreement no. 227579
and Polish National Science Council Grant 642/N-TESLA-
XFEL/09/2010/0. The authors are a scholarship holders of
project entitled "Innovative education ..." supported by Eu-
ropean Social Fund.

REFERENCES

[1] R. Larsen, “Advances in developing next-generation electronics stan-
dards for physics,” in Real Time Conference, 2009. RT ’09. 16th IEEE-
NPSS, May 2009, pp. 7 –15.

[2] X. Hao, W. Qiang, L. Lu, J. Dapeng, L. Zhen’an, J. Lang, S. Lange,
L. Ming, and W. Kuehn, “Application of ATCA in trigger and DAQ
system for experimental physics,” in Real Time Conference, 2009. RT
’09. 16th IEEE-NPSS, May 2009, pp. 571 –573.

[3] A. P. Lowell and W. Sun, “Real-time X-ray tomosynthesis imaging using
an ATCA general-purpose data acquisition and analysis platform,” in
Nuclear Science Symposium Conference Record, 2008. NSS ’08. IEEE,
Oct. 2008, pp. 27 –31.

[4] B. Goncalves, J. Sousa, A. Batista, R. Pereira, M. Correia, A. Neto,
B. Carvalho, H. Fernandes, and C. Varandas, “ATCA advanced control
and data acquisition systems for fusion experiments,” in Real Time
Conference, 2009. RT ’09. 16th IEEE-NPSS, May 2009, pp. 28 –34.

[5] IPMI v2.0 rev. 1.0 specification. [Online]. Available:
http://www.intel.com/design/servers/ipmi/spec.htm/

[6] J. Lang, K. W. Ming Liu, Qiang Wang, and H. X. Zhen’an Liu,
“Intelligent platform management controller for ATCA compute nodes,”
in Real Time Conference, 2009. RT ’09. 16th IEEE-NPSS, May 2009.

[7] K. Przygoda, A. Piotrowski, G. Jablonski, D. Makowski, T. Pozniak,
and A. Napieralski, “ATCA-based control system for compensation
of superconducting cavities detuning using piezoelectric actuators,” in
Nuclear Science Symposium Conference Record, 2008. NSS ’08. IEEE,
Oct. 2008, pp. 38 –43.

[8] PICMG AMC.0 AdvancedMC Mezzanine Module R2.0. [Online].
Available: http://www.picmg.org/v2internal/specifications.htm/

[9] D. Makowski, W. Koprek, T. Jezynski, A. Piotrowski, G. Jablonski,
W. Jalmuzna, and S. Simrock, “Interfaces and communication protocols
in ATCA-based LLRF control systems,” Nuclear Science, IEEE Trans-
actions on, vol. 56, no. 5, pp. 2814 –2820, Oct. 2009.

[10] V. Ricchiuti, A. Orlandi, and G. Antonini, “High speed serial links
characterization for ATCA backplanes,” in Signal Propagation on In-
terconnects. SPI 2008. 12th IEEE Workshop on, May 2008, pp. 1 –4.

[11] S. Karstensen, I. Sheviakov, L. Frohlich, K. Rehlich, M. Staack, and
P. Vetrov, “Machine protection system (mps) for the xfel,” in Real Time
Conference, 2009. RT ’09. 16th IEEE-NPSS, May 2009, pp. 16 –21.

[12] W. Qiang, A. Jantsch, J. Dapeng, A. Kopp, W. Kuehn, J. Lang, S. Lange,
L. Lu, L. Ming, L. Zhenan, L. Zhonghai, D. Muenchow, J. Roskoss, and
X. Hao, “Hardware/software co-design of an ATCA-based computation
platform for data acquisition and triggering,” in Real Time Conference,
2009. RT ’09. 16th IEEE-NPSS, May 2009, pp. 485 –489.

[13] PICMG 3.0 advancedTCA Base R3.0. [Online]. Available:
http://www.picmg.org/v2internal/specifications.htm/

[14] P. Predki and D. Makowski, “Hot-plug based activation and deactivation
of ATCA FRU devices,” in Mixed Design of Integrated Circuits Systems,
2009. MIXDES ’09. MIXDES-16th International Conference, June 2009,
pp. 119 –122.

[15] J. Wychowaniak, P. Predki, D. Makowski, and A. Napieralski, “Diag-
nostic application for development of custom ATCA carrier board for
LLRF,” in Mixed Design of Integrated Circuits Systems, 2009. MIXDES
’09. MIXDES-16th International Conference, June 2009, pp. 97 –102.

[16] P. A. Laplante, Real-Time System Design and Analysis. Wiley, 2004.
[17] PICMG hpm.1 Management Firmware Upgrade Capability. [Online].

Available: http://www.picmg.org/v2internal/specifications.htm/
[18] Xilinx, “Xilinx Xilinx In-System Programming Using an Embedded

Microcontroller,” in XAPP058, March 2009.
[19] ——, “System ACE CompactFlash Solution,” in DS080, October 2008.
[20] S. Simrock, “Demonstration of ATCA based LLRF control system at

FLASH,” in ICALEPS 2009, October 2009.
[21] T. Kucharski, A. Piotrowski, D. Makowski, and G. Jablonski, “PCIEx-

press communication layer for ATCA-based linear accelerator control
system,” in Mixed Design of Integrated Circuits Systems, 2009. MIXDES
’09. MIXDES-16th International Conference, June 2009, pp. 140 –144.

[22] S. Simrock, L. Butkowski, M. Grecki, T. Jezynski, W. Koprek, G. Jablon-
ski, W. Jalmuzna, D. Makowski, A. Piotrowski, and K. Czuba, “Evalu-
ation of an ATCA based LLRF system at FLASH,” in Mixed Design of
Integrated Circuits Systems, 2009. MIXDES ’09. MIXDES-16th Interna-
tional Conference, June 2009, pp. 111 –114.


