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Abstract

In the following report we want to review some beam dynamics
problems in accelerator physics� Theoretical tools and methods are
introduced and discussed� and it is shown how these concepts can
be applied to the study of various problems in storage rings� The
�rst part treats Hamiltonian systems �proton accelerators� whereas
the second part is concerned with explicitly stochastic systems �e�g�
electron storage rings��
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� electron� ring proton � ring
circumference �����km �����km

energy �����GeV ���GeV
No� of colliding bunches ��� ���

particles�bunch �� ���� ��	� ����

bunch�width at interaction point ����mm ����mm
bunch� height at interaction point ����mm ����mm
bunch� length at maximum energy �mm 	�mm

An accelerator constitutes a complex many
body system 
 namely an en

semble of ���� to ���� charged ultrarelativistic �v � c� particles subject to
external electromagnetic elds� radiation elds and various other in�uences
such as restgas scattering� space charge e�ects and e�ects due to the beam
induced electromagnetic elds in the surrounding metallic structures � vac

uum tubes� cavities etc��� the so
called wakeelds� Two key issues in the
performance of colliders are�

� the storage and connement of particles over many hours corresponding
to ��� to ���� revolutions in the toroidal vacuum chamber and

� a high reaction rate when the particle beams collide at the interaction
points where the experimental detectors are located�

In order to achieve a high number of revolutions inside a tube with a diameter
of a few centimeters one has to control and understand the e�ects which cause
degradation of the beam lifetime or which cause the particles to hit the wall
of the vacuum chamber and thus be lost� Various loss mechanisms are�

� intrabeam scattering

� reaction rate losses during colliding beam operation �wanted�

� restgas scattering and imperfect vacuum

� nonlinear dynamics e�ects

� e�ects due to noise
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�x�t� � �x�����x��
T with �f � �f�����f��

T some vector function of �x� The quan�
tities �i�t� which may depend on time �deterministically or randomly� rep�
resent a set of control parameters�

As we will show later� the classical proton dynamics �heavy particle with
negligible radiation e�ects� is described by a Hamiltonian� On the other
hand the dynamics of light particles like the electron� where radiative e�ects
play an important role� is governed by a stochastically and dissipatively per�
turbed Hamiltonian� In order to solve the dynamical equations ���� various
numerical and analytical tools have been developed� some of which will be
described in greater detail in the following�

This survey is organized as follows	 In the 
rst part we will consider
storage rings where radiation phenomena can be neglected� i�e� accelerators
for protons or heavy ions up to the TeV range� In HERA� for example� the
radiation losses of a proton are about � eV at �� GeV whereas an electron
loses more than �� MeV at �� GeV� This large di�erence is due to the fact
that the radiation losses are inversely proportional to the fourth power of
the rest mass m�� At the same energy the ratio of the energy losses of
an electron and a proton is given by Pelectron

Pproton
� �m�p

m�e
�� � ���� � ����� Thus

proton storage rings can be modelled mathematically by nonlinear �in general
nonintegrable� Hamiltonians� Nonintegrable means that the corresponding
nonlinear equations of motion cannot be solved analytically� As we will
see later the phase space dynamics of these systems shows a very rich and
complicated structure� The questions we want to answer in the 
rst part are	

� what does the Hamiltonian for the particle dynamics look like�

� what is in principle possible in these systems� �qualitative theory�

� which analytical �i�e� perturbative� tools are available for a quantitative
study of these problems�

In the second part of this survey we will treat systems where radiation ef�
fects or noise e�ects are important� Because of the stochastic emission of the
radiation� radiative systems can be modelled by explicit stochastic dynamical
systems� A straightforward way to extend deterministic systems to include
noise e�ects and explicit stochastic phenomena is to write down stochastic
di�erential equations� In this contribution we will illustrate some of the sub�
tleties related to stochastic di�erential equations including Gaussian white

�



noise� and we will mention and illustrate some applications in accelerator
physics�

In the third part of this review we will brie�y mention and discuss the
problems� which arise when one also takes into account the spin degree of
freedom of the relativistic particles� We will describe the classical spin mo�
tion within the framework of the Thomas�Bargman�Michel�Telegdi �TBMT�
equation� In particular we show how depolarizing phenomena like spin dif�
fusion can be calculated�

Some details of the calculations have been relegated to the appendices�
This work cannot cover the whole subject exhaustively� we can only sketch

the basic ideas and illustrate these ideas with simple �sometimes oversimpli�
�ed� models� For many details we have to refer the reader to the references�
Concerning the list of references we have tried to include a lot of informa�
tion� However� due to the many topics treated in this review the list of cited
research papers is by no means exhaustive� The choice we made is purely
subjective and re�ects our personal 	taste	�

The main aim of this review is to show in an informal way how tools and
methods of dynamical systems theory �sometimes very old and well known in
other �elds� can be applied to various problems of particle motion in storage
rings�
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� Hamiltonian dynamics

��� Hamiltonian for coupled synchro�betatron motion

In this section we will investigate the motion of charged particles under the
in�uence of electromagnetic �elds� The dynamics is governed by the well
known Lorentz�equation� which we will write in canonical form�

Starting point is the following relativistic Lagrangian for a charged par�
ticle under the in�uence of an electromagnetic �eld described by the vector
potential �A and the scalar potential � ��	


L � �m�c
�

vuut
� �

��r
�

c�


e

c
� ��r �A�� e� ���

with

� e�elementary charge

� c�speed of light

� m��rest mass of the particle

� ��r�particle velocity �

Following the rules of analytical mechanics one changes to a Hamiltonian
description of motion and one introduces the curvilinear coordinate system
depicted in Figure � ���
� It consists of three unit vectors �e� ��ex� �ez attached
to the design orbit of the storage ring� s is the pathlength along this trajec�
tory� For simplicity we have assumed a plane reference orbit with horizontal
curvature � only� Using s as an independent variable and introducing di�er�
ence variables with respect to an equilibrium particle on the design orbit one
obtains in a certain gauge �see Appendix A�

H�x� z� �� px� pz� p� � s� �

� ���  �x�f��  p� �
� � �px �

e

E�

Ax�
� � �pz �

e

E�

Az�
�g��� �

���  �x� �
e

E�

�A�  ��  p� � ���

where we have used
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H describes the oscillations of a particle with respect to a design particle
travelling with velocity c along the design trajectory� The oscillations in
the transverse directions �x� z� px� pz� are called betatron oscillations and the
oscillations in the longitudinal direction ��� p� � are called synchrotron oscil�

lations� Some simple examples for the vector potential �A�x� z� s� are shown
below�

rf � cavity�

A� � �
L

��k
� V� � cos�k

��

L
� � � ��s� s�� ���

with

� V��peak voltage of cavity

� L�circumference of storage ring

� k�harmonic number

� ��s� s���delta function �localized cavity�

bending �dipole� magnet�

e

E�

A� � �
	

�
�	 
 � � x� ���

with

� � � e

E�

Bz�x � z � ���horizontal curvature of design orbit� Bz�z
component of magnetic �eld

quadrupole�

e

E�

A� �
	

�
g� � �z

�
� x�� ���

with

� g� �
e

E�

� ��Bz

�x
�x�z��� focusing strength of quadrupole
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multipole �sextupole��

e

E�

�A� � �
�

�
� �� � �x

�
� �xz�� ����

with

� �� �
e

E�

� ��
�Bz

�x�
�x�z��� strength of sextupole

multipole �octupole��

e

E�

�A� �
�

�	
� �� � �z

�
� �x�z� 
 x�� ����

with

� �� �
e
E�

� ��
�Bx

�z�
�x�z���strength of octupole

Further examples for other types of electromagnetic �elds can be found
in ��	�

Generally� by expanding the square root in equation ��� and the vec�

tor potential �A�x� z� s� into a Taylor series around a reference orbit� vari�
ous examples of nonlinear motion can be investigated�The linear part of the
Hamiltonian is given by ���

H��x� z� �� px� pz � p� � s� �
�

�
p�x 


�

�
����s� 
 g��s�� � x

�




�

�
p�z �

�

�
g��s� � z

�
�

�

�
V �s� � � � � ��s� � x � p� ����

where V �s� � V���p�s�s�� with �p�s�s�� �
Pn���

n��� ��s��s�
n�L�� describes
a localized cavity at position s� and where g��s� characterizes the �periodic�
focusing strength of the magnet system� H� describes three coupled linear
Floquet oscillators ��� �see also Appendix B��

Two simple examples of nonlinear motion are given below�
Example ��Nonlinear Cavity

H�x� z� �� px� pz � p� � s� �
�

�
p�x 


�

�
p�z




�

�
g��s� � �x

�
� z�� 


�

�
���s� � x� � ��s� � x � p� 
 V �s� � cos�� � ����

�	



Introducing the dispersion function D de�ned by

D���s� � �����s� � g��s�� �D�s� � ��s� ����

with

���� �
d

ds

via the canonical transformation 	�
��	���	��� �depending on the old coordi�
nates x� z� � and the new momenta �px� �pz � �p��

F��x� z� �� �px� �pz � �p� � s� � �px � �x� �p� �D�s���

��p
�
�D��s� � x� �p

�
� � � �p

z
� z �

�

�
�D�s� �D��s� � �p�

�
����

and the corresponding transformation rules�
���
��

x � �x� �p
�
�D�s�

z � �z
� � �� � �px �D�s� � �x �D��s�

��
�

���
��

p
x
� �p

x
� �p

�
�D��s�

pz � �pz
p� � �p�

���

one obtains the Hamiltonian in the new variables ��x� �z� �� � �p
x
� �p

z
� �p

�
� as follows

�H��x� �z� �� � �px� �pz � �p� � s� �

�
�

�
�p�
x
�

�

�
�g��s� � ���s�� � �x� �

�

�
�p�
z
�

�

�
g��s� � �z

�
� ����

�
�

�
��s� �D�s� � �p�

�
� V �s� � cos��� �D�s� � �p

x
�D��s� � �x��

If there is no dispersion in the cavity region �V � D � ��� and �V � D� � ��
the synchrotron motion ��� � �p

�
� is completely decoupled from the betatron

motion ��x� �z� �px� �pz� 	����
Example ��multipole

As a second example of nonlinear motion we consider the in�uence of
transverse multipole �elds with the following Hamiltonian�
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H�x� z� px� pz � s� �
�

�
p�
x
�

�

�
p�
z
�

e

E�

�A��x� z� s� ����

The equations of motion are given by

�������������
������������

d

ds
x � px

d

ds
z � pz

d

ds
px �

e

E�

�
�A�

�x
� �

e

E�

�Bz�x� z� s�

d

ds
pz �

e

E�

�
�A�

�z
� e

E�

�Bx�x� z� s��

����

The magnetic 	eld components Bx and Bz are usually expressed in terms
of the skew and normal multipole expansion coe
cients a and b according to

�Bz � iBx� � B� �

�X
n��

�bn � ian� � �x� iz�n��� ����

It is an easy exercise to verify� that these simple examples ���� and ����
contain the standard map ��� ���

�
�� �n� � ���n � �� � �p� �n�

�p� �n� � �p� �n� �� � V � sin��� �n� ���
����

and the quadratic map of H�enon ��� �� is the tune of the machine��
x�n� ��
px�n� ��

�
�

�
cos����� sin�����
� sin����� cos�����

��
x�n�
px�n�

�
�

�
x��n� � sin�����
x��n� � cos�����

�
����

as special cases� These maps are extensively studied in nonlinear dynamics
and show a very complex behaviour� Regular and chaotic motion is intricately
mixed in phase space� For the quadratic map of H�enon this is illustrated in
Figure � �created with the help of GIOTTO �����

Thus one can expect� that the original system as described by ��� also
shows highly nontrivial behaviour�

In order to get a better understanding of this complex dynamical phase
space pattern� we will brie�y repeat some facts from the qualitative theory of
dynamical systems with an emphasis on weakly perturbed integrable Hamil�
tonian systems�

��





where �x � �x�� ���� xn�
T speci�es a vector in the n� dimensional phase space�

The mathematical problem is to investigate � qualitatively and quantitatively
� the time evolution of �x�t� for a given initial value �x��� and vector �eld
�f � �f�� ����fn�

T 	 or stated di
erently to understand the phase �ow of the
system ���	 T t	 which associates to each �x��� the corresponding vector �x�t�
at time t	

�x�t� � T t�x���� ����

Varying t one obtains a solution curve of ���	 i�e� a curve in n� dimensional
phase space passing through �x��� with a tangent vector in each point �x

along the trajectory that is determined by �f ��x�� In the following we will
always assume	 that our dynamical system has unique solutions	 which can
be assured	 if	 for example	 �f is continuously di
erentiable ����	 �����

Special questions of a qualitative study are�

� Is the motion described by ��� stable� i�e� does a solution	 that starts
near a given solution always stay near this solution or even approach
it �asymptotic stability�� Stability studies require the investigation of
neighbouring solutions and trajectories�

� Are there periodic solutions� i�e� are there solutions such that for �xed
T �periodicity�

�x�t� T � � �x�t�� ����

� How does a given solution depend on parameters �external control pa�
rameters or initial conditions��

� Are there other types of solutions �chaotic solutions	 which � as we will
see � depend sensitively on the initial conditions��

These and other questions are studied in the framework of the qualitative
theory of di
erential equations �dynamical systems�	 the foundations of which
have been laid by H�Poincare more than a century ago �����

Key issues of such a theory are�

� stationary solutions

��



which are determined by

d

dt
�x�t� � � � �f�x�� ����

Investigating the linearized motion around �xF�P� �a solution of the algebraic

equation �f�x� � � �����

�x� �xF�P� � �y

d

dt
�x�t� �

d

dt
�y�t� � �f��xF�P� � �y� � �f��xF�P�� �Df ��xF�P�� � �y�t� � ���

or

d

dt
�y�t� � Df ��xF�P�� � �y�t� ��	�

�with Df the Jacobian matrix resulting from the Taylor
 expansion of �����
one can extract information about the local stability of these stationary so

lutions or �xed points� Having determined the eigenvalues and eigenspaces
�eigenvectors� of the linearized system the following statements can be proven
and formulated as theorems �	�� ���� The �xed point solution of ���� is
�asymptotically� stable if all the eigenvalues of the linear system �Jacobi
matrix� ful�ll �Re designates the real part of a complex number�

Re�i � �

and the stationary solution is unstable if at least one of the eigenvalues ful�lls

Re�i � ��

Furthermore� for hyperbolic systems� i�e� systems where there is no eigen

value with

Re�i � �

the phase space dynamics of the linearized system near the �xed point looks
locally the same as for the nonlinear system� This is the content of the
Hartman
Grobman theorem which reads�

��





liptic� �xed points additional information is needed to determine stability�
We will come back to this point later� when we investigate the dynamics of
Hamiltonian systems�

Similar statements hold also for discrete systems �maps�� However� there
is one important di�erence� Whereas the stable and unstable invariant man�
ifolds of hyperbolic �xed points of time continuous systems cannot intersect
because of the assumed uniqueness� these manifolds can cross each other for
discrete mappings� In this case discrete points are mapped to discrete points�
and intersection points are mapped to intersection points� These intersection
points or homoclinic points � are the source of chaotic and complex dynam�
ics as we will see in the following� when we study the special features of
Hamiltonian systems�

Other important issues of a qualitative theory are

� periodic orbits�

The determination of periodic orbits of a dynamical system i�e� �nding so�
lutions such that

�x�t� 	 �x�t
 T �

is in general a very di�cult task� Only few exact results are available �
especially for higher�dimensional �n � �� systems� One problem that often
arises is the investigation of the stability of a given periodic orbit� This is
facilitated by the Poincare�return map� which reduces the time continuous
dynamics to a discrete map� This map is constructed as follows� Let a
plane � intersect the periodic trajectory transversely� The intersection of
the periodic orbit with � is �x�� Let us ask what happens to a point near to
�x� namely �y�� If the point �y� is close enough to �x� then� because of continuity�
this neighbouring point will evolve in time such� that after a certain time T�
it crosses � again� say in point �y�� The map that associates �y� to �y� is called
Poincare�return map� The situation is illustrated in Figure ��

From the picture it is clear that �x� is a �xed point of the map and the
stability of the periodic orbit is re�ected in the stability of this �xed point�
Furthermore� the characteristics of this �xed point �elliptic or hyperbolic�
can be used to characterize the periodic orbit�

Further issues of interest of a qualitative theory of dynamical systems are

�the possible intersections of the corresponding invariant manifolds of di�erent hyper�

bolic �xed points are called heteroclinic points

��









and the angle �� changes according to �see �����

���n� � ���n� �� � �� � T ��	�

where T is just the revolution time in ��
direction from one intersection of
the plane to the next� namely

T �
��

��
� ���

Thus� for an integrable system one obtains the so
called twist
mapping

�
I��n� � I��n� ��

���n� � ���n � �� � �� � ��I��n���
����

The term � � ��
��

is called the winding number and is the ratio of the two
frequencies of the system� In general � will depend on the actions� If � is
irrational� the ���n� form a dense circle while if � is rational the ���n� close
after a �nite sequence of revolutions �periodic orbit or resonance��Thus� there
are invariant curves �circles� under the mapping which belong to rational and
irrational winding numbers� What happens now if a perturbation is switched
on� i�e� if

�
I��n� � I��n � �� � � � f�I��n�����n� ���

���n� � ���n� �� � �� � ��I��n�� � � � g�I��n�����n � ��� �
����

In particular� can one still �nd invariant curves� The KAM
theorem says
that this is indeed the case if the following conditions are ful�lled

� perturbation must be weak

� � � ��
��

must be su�ciently irrational� i�e� j� � p

q
j � k���

q��� with p� q

integers� � � � and k���� � for �� �

together with some requirements of di�erentiability and periodicity for f and
g� For further details see for example �	�
� ���
� Under these assumptions
most of the unperturbed tori survive the perturbation although in slightly
distorted form�

The rational and some nearby tori� however� are destroyed� only a nite
number of xed points of the rational tori survive � half of them are stable

	�











Remark�

High resolution �D�colour graphics can be a very helpful tool for visu�
alizing the dynamics of nonlinear four�dimensional mappings ���� ����� Toy
models like

�x	n
 ��  R � �x	n� 
 �f 	�x	n�� 	���

with

�x	n� 

�
BBB�

x	n�
px	n�
z	n�
pz	n�

�
CCCA 	���

and

R	�� �� 

�
BBB�

cos	�� sin	�� � �
� sin	�� cos	�� � �

� � cos	�� sin	��
� � � sin	�� cos	��

�
CCCA 	���

and

��������
�������

�f	�x	n�� 

�
BBBB�

�
�f

�x
	x	n
 ��� z	n 
 ���

�
�f

�z
	x	n
 ��� z	n 
 ���

�
CCCCA

	f  f	x� z��

	���

can help to get a better understanding of the break�up mechanismof invariant
tori and the role periodic orbits play in this process ���������� 		n
�� periodic
orbits are de�ned by� �x	n
 ��  T 	�x	n��  �x	�� where T is some nonlinear
	symplectic� map��

In the last chapter we have seen that the single particle dynamics of a
proton in a storage ring can be modelled by nonintegrable Hamiltonians�
The qualitative theory we have brie�y sketched predicts a very rich and
complicated phase space structure � regular and chaotic regions are intricately
mixed in phase space�

��



When applying these concepts to accelerators one is immediately faced
with questions such as�
What is the relevance of chaos for the practical performance of a storage ring�

How do KAM tori break up as the strength of the nonlinearity increases� Can

we somehow estimate the size of the chaotic regions in phase space� What

is the character of the particle motion in this region� Can it be described by

di�usion�like models� Is it possible to calculate escape rates of the particle if

it is in such a chaotic region of phase space�

A quantitative analysis of these and other questions makes extensive use
of perturbation theory and numerical simulations of the system�

��� Perturbation theory

The main goal of perturbation theory is to study systems of the form

d

dt
�x�t� � �f��x� t� � ��g��x� t� ��	�

where the solution of

d

dt
�x�t� � �f��x� t�

is known �unperturbed problem� and where ��g��x� t� is a small perturbation�
For example
 one could be interested in a Taylor expanded system such as

d

dt
�x�t� � A � �x�t� � �v��x� ����

with �x � �x�� ����xn�
T 
 A an n x n matrix and �v � �v�� ���� vn�

T with

vi��x� �
X

n�����nn

ai�n�����nn � xn�
�

� � � xnn
n � ����

The linear system is easily solved� However
 what can be said about the
perturbed �nonlinear� dynamics

Perturbation theory usually consists of formal manipulations such as co�
ordinate transformations to a set of new variables� In the ideal case this
transformation makes the system exactly solvable
 for example
 if the trans�
formed equation is linear in the new variables� However this is rarely the case�
What one can hope for
 in general
 is that the transformed system is some�
how easier to handle �in a way to be speci�ed�� These formal manipulations
lead �as we will see� to subtle mathematical problems such as

��



� divergence of series and

� estimates of time scales over which the perturbative methods give valid
results�

In the following discussion we will only mention these problems and we
will illustrate some of the formal steps and basic results for weakly perturbed
Hamiltonian systems� The treatment is far from being mathematically rig�
orous� Readers interested in a careful mathematical analysis of the validity
of perturbation theory should consult� for example� ����� ��	� or ��
��

Before we enter into detail we will brie�y repeat some facts from the linear
theory of particle motion in storage rings �linear theory of synchro�betatron
oscillations see ���� ���� and Appendix B��

In simple cases� as for example pure x� or z�motion without any coupling�
the system is described by Floquet oscillators of the form

H�q� p� s� �


�
� p� �



�
� g��s� � q

� ����

with p � px� pz � q � x� z and g��s� � g��s� L� periodic function of circum�
ference L�

It is well known that these Floquet type systems can be solved exactly�
Using the optical functions ��s����s� and ��s� de�ned by the following set
of di�erential equations

d

ds
��s� � ���s� � ��s� � g��s� ����

d

ds
��s� � �� � ��s� ���

d

ds
��s� � � � ��s� � g��s�� ����

one can �nd a canonical transformation to action angle variables I and �
such that the Hamiltonian in equation ���� is transformed into ����� ����

�H��� I� �
�� �Q

L
� I ����

with

��



Q �
�

��
�

Z L

�

ds�

��s��
����

�Q is the so�called tune of the machine� and

I �
q�

���s�
� f� 	 �

��s� � p

q
	 ��s���g ����

�I is called Courant�Snyder invariant see 
�����
In realistic cases there is always some coupling between the dierent de�

grees of freedom and the situation is more complicated� In these cases ma�
chine physicists rely on the one�turn matrix M relating some initial state
phase space vector �y�sin� to the �nal state vector �y�sfin� after one complete
revolution around the ring

�y�sfin � sin 	 L� � M�sin 	 L� sin� � �y�sin�� ����

In general �y is six�dimensional and consists of the phase space coordinates
x� z� �� px� pz� p� � The linear one�turn map M�sin 	 L� sin� contains all the
information about the system� For example the stability of the particle mo�
tion depends on the eigenvalue spectrum of the �symplectic� matrix M 
���
� stability is only guaranteed if the eigenvalues lie on the complex unit circle
�see also Figure ����

What happens now if we perturb such a linear system with some nonlinear
terms� How can we extend the linear analysis to the nonlinear case�

In simple models we can start with a perturbed Hamiltonian

H�q� p� s� � H��q� p� s� 	 	 � H��q� p� s� � ����

Using the action angle variables of the unperturbed system one can apply
conventional Hamiltonian perturbation theory 
���� 
���� 
���� 
���� which we
will sketch in a moment� The advantages of such an approach are that �in
low order of perturbation theory� one easily gets simple analytical expres�
sions for interesting machine parameters of the perturbed system in terms of
the unperturbed quantities� The price one has to pay� however� is an over�
simpli�cation of the problem� Realistic machines with all their nonlinearities

��





���������� Here we will illustrate the Poincar�e	von Zeipel method� Assume
our Hamiltonian is of the form

H
�q� �p� � H�
�q� �p�  � � H�
�q� �p� 
���

where the vectors for the coordinates and momenta �q and �p may have arbi	
trary dimension 
 � in the storage ring case�

�q �

�
BBBBBB�

q�
�

�

�

qn

�
CCCCCCA
� �p �

�
BBBBBB�

p�
�

�

�

pn

�
CCCCCCA
� 
���

Introducing the action angle variable vectors �I and �� of the unperturbed
system H�

�I �

�
BBBBBB�

I�
�

�

�

In

�
CCCCCCA
� �� �

�
BBBBBB�

��

�

�

�

�n

�
CCCCCCA


���

the Hamiltonian 
��� can be rewritten in the form

H
�I� ��� � H�
�I�  � � H�
�I� ���� 
���

The problem would be trivial� if we could �nd a transformation to new
variables �J � 
J����Jn�T and �� � 
������n�T such that the transformed Hamil	
tonian depends only on the new action variables J����Jn alone� Since most
Hamiltonian systems are nonintegrable ��������� this cannot be done exactly�
What one can achieve is to push the nonlinear perturbation to higher and
higher orders in � i�e� after a sequence of N canonical transformations

H
�I� ��� � H�
�I�  � � H�
�I� ���

��



is transformed into a form given by �

����
���

�H� �J �N�� ���N�� � �H�� �J
�N�� � �N��

�RN���
�N�� �J �N��

�H�� �J �N�� �
PN

i�� �
i
� H

�i�
� � �J �N��

H
���
� � �J �N�� � H�� �J

�N��

����

where

�J �N� �

�
BBBBBB�

J
�N�
�

�

�

�

J �N�
n

�
CCCCCCA
� ���N� �

�
BBBBBB�

�
�N�
�

�

�

�

��N�
n

�
CCCCCCA

��	�

are the new variables after N transformations
 Neglecting the remainder
�N�� �RN �which is of order �N�� i
e
 one order higher than the �rst part in
equation ����� the system is then trivially solvable


For example in �rst order of perturbation theory this is achieved by a
canonical transformation �depending on the old coordinates �� and the new

momenta �J�

F����� �J� � �� � �J � � � S����� �J� ���

where S����� �J� is given by

S����� �J� � �
�

i
�
X
�n ���

H���n� �J�

�� � �n
� exp�i�n � ���� ����

�� designates the frequency vector

��� �J� �
�H�� �J�

� �J
����

�For Hamiltonian systems one can do even better� As shown by Kolmogorov and
Arnold ���� one can push the phase dependence after N transformations not only to terms

of order �
N�� but even to terms of order �

�
N

�superconvergence�

	�



and H���n� �J� is de�ned by the Fourier expansion of H����� �J�

H����� �J� �
X

�n

H���n� �J� � exp�i�n � ���� ����

However	 there is a serious problem concerning the convergence of our per

turbative approach� even if we exclude the nonlinear resonances �n � �� � � in
equation ��� the in�nite sum always contains ni�s such that the denominator
in equation ��� can become arbitrarily small �small divisor problem� mak

ing this whole enterprise very doubtful� Generally these expansions diverge�
Nevertheless the hope is that these expansions can be useful as asymptotic
series and that the new invariants �J�� ���Jn� calculated in this way approx

imate in some sense our original system� However	 for �nite perturbations	
there is no proof for the accuracy	 if any	 of such an approximation� So some
care is always needed when one applies perturbation theories of this kind� A
careful analysis of the convergence properties of ��� leads immediately to
the heart of the KAM theory and requires sophisticated mathematical tools	
which are far beyond the scope of this survey �����

Before we discuss perturbative methods for discrete time systems �maps�	
we will brie�y illustrate how single isolated resonances can be treated� In
this case the dynamics can often be reduced to the well known pendulum
Hamiltonian� The computational steps are very carefully described in ����
and ����� We will illustrate these steps here with a simple model	 namely a
non
autonomous	 one
 degree of freedom system with explicit periodic time
dependence� An extension to n degrees of freedom is rather straightforward
and the details can be found in the above mentioned references ����	 �����

Starting point is a Hamiltonian of the form �periodically driven system
with period ��

H�I� �� t� � H��I� � � �
X

n�m

Vn�m�I� � exp�in� � im�� ����

with � � �t� The �rst step is

� �xing the nonlinear resonance of interest

for example	

l��Ir�� k� � � ����

��



with ��I� � �H�

�I
� k� l �xed integers and Ir the resonant action de�ned by

����	 The next step is

� transformation to a resonant coordinate system and shift of the ori

gin of the action variable I with the help of the following canonical
transformation

F���� J� t� � �l� � k�� � J � � � Ir� ���

The corresponding transformation equations read

� �
�F�

�J
� l� � k� ����

I �
�F�

��
� lJ � Ir ����

�F�

�t
� �k�J� ����

In the new variables J� � the Hamiltonian ���� takes the form

H��� J� t� � H��lJ � Ir��

��
X

m�n

Vn�m�lJ � Ir� � exp�i
�

l
�n� � �nk �ml����� k�J� ����

For the next step we assume that � � �t is a fast variable compared to the
�by de�nition� slowly varying resonance variable � so that we can

� average over �	

This gives

H�J� �� � H��J� � �
X

p

Vp�l��p�k�J� exp�ip��� k�J� ����

We assume that V��� � � V�l�k � Vl��k and we absorb a factor � in the
Fourier coe�cients Vp�l��p�k	 Keeping only the lowest order Fourier harmonics
we �nally

��





As mentioned already in the introduction� an accelerator acts as a nonlin�
ear device and an initial state phase space vector �y�sin� is nonlinearly related
to the �nal state �y�sfin� by a symplectic map or phase �ow

�y�sfin� �M��y�sin�� � �	
�

Let us assume this map can be Taylor expanded up to some order N with
respect to �y�sin�

yi�sfin� �
X

j

Aij � yj�sin� �
X

jk

Bijk � yj�sin� � yk�sin� � ���� ���

with the transfer matrix or aberration coe�cients Aij� Bijk etc� Because of
the symplectic condition ofM �Hamiltonian dynamics� these coe�cients are
strongly interrelated� and a truncation of the Taylor series usually results
in a violation of symplecticity� Dragt and Finn �	� have shown that Lie
algebraic techniques can be very convenient and e�cient for parametrizing
and handling maps like ��� �see also �	���� The factorization theorem ����
for example states that M can be expressed as a product of Lie transforms

M � e�f�� � � � e�fk� � � ����

where � fi � denotes a Lie operator related to a homogeneous polynomial of
degree i in the variables yj�sin� and � f � acts on the space of phase space
functions g via the Poisson bracket operation of classical mechanics ����

� f � g � ff� gg � ����

Example

The map e�
a

�
x�� gives the known expression for a sextupole in thin lens

�kick� approximation ����� ��
��

�
x�sfin�
px�sfin�

�
�

�
x�sin�

px�sin� � a � x��sin�

�
����

because

�



�
e�

a

�
x��sin�� x�sin� � x�sin�

e�
a

�
x��sin�� px�sin� � px�sin� � a � x��sin�

����

In principle one could now try to construct the one�turn map for a non�
linear accelerator using these Lie algebraic tools� However	 beyond an order
N � 
 in the Taylor expansion	 this becomes incredibly tedious and compli�
cated� So we will discuss a more e�cient way of obtaining Taylor expanded
maps for one turn later�

The advantage of using maps in the form ���� is formal and lies in the
Lie algebraic tools that are available for treating these systems� There is an
elegant extension of the normal form theory to such cases ���� The problem
is �roughly stated� that given a mapM one has to determine a map A such
that

N � A �M � A�� ����

is as simple as possible� Simple means that the action of the map is simple�
We can easily illustrate this fact with the following map which describes the
action of a single multipole in kick approximation ���	�
�

�
x�n� ��
px�n� ��

�
�

�
cos��� �Q� sin��� �Q�
� sin��� �Q� cos��� �Q�

�
�

�
x�n�

px�n� � � � xp�n�

�
����

In complex notation z � x� ipx equation ���� can be rewritten as

z�n� �� � exp��i � �� �Q� � fz�n� �
i�

�p
� �z�n� � z��n��pg ����

where z� designates the complex conjugate of z�
Finding the map A implies that one transforms to a new set of variables

z �� � ����

such that in the new variables equation ���� takes the following form

��n � �� � expf�i����n� � ���n��g ��n� � terms � ��� ����

��







�� speci�cation of the storage ring model by a Hamiltonian H

�� numerical integration of the corresponding equations of motion for one
complete revolution using symplectic integrators

�� extraction of the Taylor expanded form of the one�turn map �see equa�
tion ���		 from this calculation


� use of this map for long�time tracking � and for a perturbative analy�
sis �to get physical quantities of interest such as invariants� perturbed
frequencies and tunes of the synchro�betatron oscillations� nonlinear
resonance widths etc�	�

Step � is elegantly solved by using the powerful automatic di�erentiation
package �often called di�erential algebra approach	 developed by M� Berz
���� ��� ���� ���� ���� Figure �� shows a �ow chart for this approach�

Besides the symplectic problems with the Taylor expanded maps there
are also some other problems related to tracking namely the unavoidable
rounding errors of the computers and the limited CPU time� The round�
ing errors depend on the number system used by the compiler and they can
also destroy the symplectic structure of the nonlinear mappings� Thus these
rounding errors can simulate non�physical damping �anti�damping	 e�ects
���� In order to estimate the order of magnitude of these e�ects� one can
switch to a higher precision structure in the computer hardware or software
and observe the di�erences� Another way is to compare the di�erences be�
tween forward tracking of the particles and backward tracking ����

The limited CPU time could be improved by developing special track�
ing processors ���� ���� Special processors have been successfully used in
celestial mechanics for studies of the long�time stability of the solar system
�
��

Besides these technical problems there are also some physical problems
related to the evaluation and interpretation of the tracking data� For exam�
ple� fast instabilities with an exponential increase of amplitudes beyond a
certain boundary �dynamic aperture	 can easily be detected� whereas slow�
di�usion�like processes which are very important for an understanding of the
long�time dynamics are much more di�cult to detect�

�for long�term tracking suitable symplecti�cation algorithms are required ����� �	
�











linear and chaotic i�e� sensitively dependent on the initial conditions� A
quantitative measure for the onset of large scale chaos can be derived from
Chirikov�s resonance overlap criterion�One estimates the resonance widths
�see equation ����� and resonance distances and the criterion roughly states
that no KAM tori survive in the region where resonance overlap occurs which
leads to a completely chaotic particle motion in this area of phase space� The
formal steps for applying this criterion are carefully described in �	
� � ���
and ���� Direct application to the standard map �		� for example yields a
critical nonlinearity parameter of V � 	���� which is in qualitative agreement
with numerical simulations �see Figure 
���

The problem of beam�beam interaction in storage rings is an example
where this method has been applied extensively by Tennyson et� al� �����
����� �����

An interesting and important question is� how does the particle motion
look in this extended chaotic region of phase space� Can it be described by
a di�usion�like process and can probabilistic concepts be used successfully
in this context �
���� �
�
�� A microscopic and mathematically rigorous
derivation of particle di�usion for non�integrable Hamiltonian systems is a
very complicated problem �see also �
�	�� and cannot be presented in this
review� What we can do here is to illustrate some of the ideas and techniques
on a phenomenological level by considering several toy models �which are
nevertheless relevant in some aspects of accelerator dynamics�� At �rst we
choose the following simple model �	��� �	
�� ����

H���� ��� J�� J�� t� �

�



	
� �J�

�
� J�

�
� � � � �cos�� � 
� � �
 � � � sin�� � � � cos t�� ����

which in extended phase space �J�� J�� p� ��� ��� x � t� can be written as

K�J�� J�� p� ��� ��� x� �

�



	
� �J�

�
� J�

�
� � p� � � �cos�� � 
�� � � � � sin�� � � � � cos x�

�
� � �

	
�sin��� � ��� � sin��� � ��� � cos��� � x� � cos��� � x��� ��
�

K represents now an autonomous system in six�dimensional phase space�

��



The primary resonances of the system ���� and the corresponding resonance
widths are given by

�����
����

d

dt
�� � J� � �� width � p

�
d

dt
�� � J� � �� width � p

� � �
d

dt
��� � ��� � J� � J� � �� width � p

� � �
d

dt
��� � x� � J� � � � �� width � p

� � ��
����

For small �� � the energy surface is approximated by

K��J�� J�� p� �
�

�
�J�

�
� J�

�
� � p ����

and the resonance zones are given approximately by the intersection of the
resonance surfaces ���� with the unperturbed energy surface ����� see Figures
��� �	


If � � � � �� J� � � is the dominant resonance �guiding resonance�
 The
motion �transport� diusion� along the guiding resonance and the resonances
which intersect it is called Arnold diusion� see Figures ��� �	


For � � � the Hamiltonian in equation ���� is integrable �nonlinear pen�
dulum� and a constant of the motion
 For � �� � the Hamiltonian is non�
integrable and the separatrix of the J� � � resonance will be replaced by a
chaotic layer
 In this nonintegrable case we expect some diusive variation
of the energy �
 One can calculate this variation approximately ����� �����
����


Using

�H�J�� J�� ��� ��� t� �

�
Z
�

��

dt
dH

dt
�

Z
�

��

� � � sin t � �� � cos���dt ��	�

�The dynamics described by ���� can be considered as stochastic pumping ���	
 We
treat ���� as a system of two two degree of freedom Hamiltonians K��J�� J�� ��� ��� and
K��J�� p� ��� x�
 Solving the dynamics of the �rst system gives a chaotic layer around the
J� � � resonance with a quasirandom evolution of the corresponding phase ��� which
when put in system � causes a di�usionlike motion of p


	�





which has been discussed extensively by Chirikov et al� in ����� ������ It con	
sists of a phase modulated oscillator 
I�� ��� which is coupled to a second sys	
tem 
I�� ���� This model describes another instability mechanism in Hamil	
tonian systems� Because of the 
slow� modulation a set of closely spaced
resonances can form which 	 depending on the chosen set of parameters	 may
overlap and form a broad chaotic region in phase space� As in the previous
model the resulting stochastic �	motion can couple to system � and can cause
stochastic oscillations and diusion	like motion� Chirikov et al� describe this
kind of dynamics as follows� The modulational di�usion can be regarded as
representative of a larger class of dynamical instabilities� sometimes referred
to as thick layer di�usion� This terminology is intended to characterize mo�
tion along the broad stochastic domains generated by the overlap of several
resonances closely situated in the system phase space� A thick layer di�u�
sion di�ers from Arnold di�usion both in structure and in the size of the
stochastic components involved� Indeed� Arnold di�usion takes place within
the narrow stochastic domains �thin layers� which unavoidably appear in the
vicinity of separatrices of nonlinear resonances under the e�ect of arbitrary
perturbation� Since thin layers exist for any perturbation strength� so does
Arnold di�usion� In contrast� a thick layer can exist only in some suitable
parameter range� so that the same condition will determine the onset of the
associated di�usion����

The above mentioned model plays an important role in modelling modu	
lation eects in accelerators� It has been used to describe the in�uence of the
harmonic content of the power supply ripple of the magnets in a storage ring
���� ������ ������ ������ ������ In ��� for example� the in�uence of tune	 modula	
tion on the proton dynamics in nonlinear storage rings has been investigated�
The emittance growth has been studied� and analytical estimates have been
given for the drift and diusion coe�cients in HERA� It was demonstrated
how various �eld nonlinearities in combination with tune modulation eects
can drastically reduce the dynamic aperture of an accelerator� The analytical
estimates for the local particle diusion during luminosity operation are in
very good agreement with the observed emittance growth in HERA see ����

A good understanding of these diusion	like phenomena in a storage ring
is essential for the operation and performance of experiments such as HERA	
B ������ HERA	B is an experiment to study CP violation in the B
eauty�	
system using an internal target at the HERA proton beam� A controled
population of the proton beam halo would be highly desirable from the de	

��



tector designer�s point of view ������
Furthermore� these theoretical considerations have led to compensation

schemes for dangerous harmonics of the power supply ripples� Details of
these investigations and ideas can be found in ������ ���	��

As mentioned already� an outstanding problem of accelerator physics is
the long time stability of particle motion under the in
uence of various non�
linearities such as magnetic multipoles� rf �elds and beam�beam forces�

In perturbation theory one usually approximates a nonintegrable system
by an integrable solvable� system� Whether this approximation really re�

ects the �reality� of the nonintegrable case has to be checked very carefully
especially because integrable systems have no chaotic regions in phase space
and because the dominant instability mechanisms are related to chaotic dif�
fusion or transport ������ For two�dimensional systems chaotic transport is
in general only possible by breaking KAM tori but see also �������For higher�
dimensional systems the chaotic layers can form a connected web along which
di�usion like motion is always possible�

For weakly perturbed integrable Hamiltonian systems stability for in�
�nitely long time scales is guaranteed for initial conditions which are dis�
tributed on existing KAM�tori� These tori� however� form a complicated
Cantor�like set in phase space� What one would like to have is a stability
theory not necessarily for in�nitely long times but for an open set of initial
conditions compatible with the injection conditions for the particle motion
in a storage ring�� Nekhoroshev ����� has developed such a theory which
deals directly with the variation of the action variables during the perturbed
motion

H�I� ��� � H��I� � �H��I� ���

and which does not refer to the existence of invariant tori� Provided the
Hamiltonian ful�lls certain conditions he could prove that the action variables
change only little over an exponentially long time scale� namely ������ ����

j �It�� �I�� j� �b

for times

� � t �
�

�
� exp

�

�a
��

��









stochastic forces and noise� In this case the equations of motion� which
describe the dynamics� take the form

d

dt
�x�t� � �f ��x� t� ���t�� ��	�

or in the discrete time �mapping� case

�x�n
 �� � �f��x�n�� ���n�� ����

where ���t� or ���n� designates some explicit stochastic vector process with
known statistical properties� Our aim will be to study the temporal evolution
of �x�t� or �x�n� under the inuence of these explicit stochastic forces� We will
call this kind of �probabilistic� dynamics stochastic dynamics in contrast to
the �deterministic� chaotic dynamics investigated in the �rst part of this
review� Questions we want to answer in the following are�

Given the statistical properties of the random forces� what are the statis�

tical properties of �x�t� or �x�n�� How can we treat these systems mathemat�

ically� And how can we calculate� for example� average values � xi�t� � or

correlations � xi�t� xj�t�� ��

This part of the review is organized as follows� At �rst we will summarize
some basic results of probability theory and the theory of stochastic processes�
Then we will concentrate on stochastic di�erential equations and their use in
accelerator physics problems� In the case that the uctuating random forces
are modelled by Gaussian white noise processes �which is quite often a very
good approximation� we will illustrate the mathematical subtleties related
to these processes�

Examples of stochastic di�erential equations are

�� Langevin equation approach to Brownian motion

d

dt
v � �� � v 
 ��t� ����

with v particle velocity� � friction coe�cient and ��t� uctuating ran�
dom force

��





�� � � A

�� for every Aj � A� �Aj � A

�� for Aj� j � �� �� ��� with Aj � A

��

j��

Aj � A

�where �A denotes the complement of A with respect to �	 and a probability
measure Pr de
ned over A�

Pr � A �� �� ���

P r is a measure for the frequency of the occurance of an event in A and
it satis
es the following axioms�

�� Pr��	 � 

�� Pr��	 � �

�� Pr�Ai �Aj	 � Pr�Ai	 � Pr�Aj	 for Ai �Aj � �

� � is the empty set and designates the impossible event whereas � is the
certain event	�

The aim of probability theory is not the calculation of the probability
measure of the underlying sample space �� but it is concerned with the
calculation of new probabilities from given ones ������ A rigorous treatment
needs sophisticated measure theoretic concepts and is beyond the scope of
this review� We will restrict ourselves to some basic facts and results which
will be needed later� Detailed presentations of probability theory can be
found in the references ������ ������ ������ ������ ������ ����� ������ ������ In
the following summary we will closely follow the book of Horsthemke and
Lefever ������

����� Random variables �r�v��

The 
rst notion we need is that of a random variable �r�v�	 X � A random
variable is a function from the sample space � to R i�e� X � � �� R with
the property that

A � f�jX ��	 � xg � A ���	

��



for all x � R� or equivalently

A � X���B� � f�jX ��� � Bg � A �����

where B � B and where B denotes the Borel 	eld over R �the sigma algebra
of Borel sets formed by all open and closed intervals of R�
 ����� means that
X is a measurable function and because of this property we can also de	ne
a probability measure �distribution law of the r
v
� on �R�B� via

PX �B�
def
� PrfX���B�g�

Although� in general� one should always distinguish carefully between the
random variable X and x� i
e
 the value X takes on R� we shall use in the
following the canonical representation of X where we identify the �general�
probability space ���A� P r� with �R� B� PX �
 Furthermore� we will only
consider continuous r
v
 which can be characterized by probability density
functions pX �x�dx which are related to PX �B� via

PX �B� �
Z
B

pX �x�dx�

Roughly stated pX �x�dx gives the probability of 	nding the value X be�
tween x and x dx i
e


pX �x�dx � PX �x � X � x dx��

Given this probability density one can de	ne expectation value� moments
and mean square deviation or variance of a r
v
�

�
 expectation value of a random variable X

EfXg �� X �� mX
def
�

Z
�

��

xpX �x�dx� �����

�
 moment of order r

EfX rg �� X r �
def
�

Z
�

��

xrpX �x�dx� �����

��



�� mean square deviation or variance

Ef��X ��g � Ef�X� � X ���g � �� def
�

def
�

Z
�

��

�x�mX �
�pX �x�dx �����

As an example we consider the Gaussian distribution	 which because of
the central limit theorem �see the references�	 plays an important role in
statistics� This distribution is de
ned by �see also Figure ���

pX �x� � ����������� � expf�
�x�m��

���
g� �����

In this case equations �����	 ����� and ����� yield

EfXg � m �����

Ef��X ��g � �� �����

Ef��X �rg �

�
�� for r � � odd

�r � ���� � �r� r even
�����

where we have used the following de
nition �r � ���� � � � � � � � ���� � �r � ���
A Gaussian variable is thus completely speci
ed by its 
rst two moments�
Extending these considerations to the multivariable or random vector case

�X�� ���Xn� requires the notion of joint probability densities i�e�

pX����Xn�x�� ���xn�dx����dxn �

� PX����Xn�x� � X� � x� � dx�� ���� xn � Xn � xn � dxn�� �����

Moments	 cross correlations	 covariance matrix etc can then be de
ned�
For example in the two�dimensional case 	X � �X �Y�T mixed moments are
de
ned by

EfX r � Ypg �
Z
�

��

Z
�

��

xr � yppXY �x� y�dxdy� �����

Another important de
nition we will need is the conditional density func�
tion pXY �xjy�� Conditional probability p�AjB� means the probability that

��







In a similar way as for random variables we can de�ne moments and
correlation functions� For example

EfXt�
Xt�

g �� x�t��x�t�� ��

�
Z
�

��

Z
�

��

x�x�p�x�� t��x�� t��dx�dx� ���	�

is called the two
time correlation function of the stochastic process Xt� Higher
order correlations are obtained analogously

EfXt�
���Xtng �� x�t�����x�tn� ��

�
Z
�

��

���

Z
�

��

x����xn � p�x�� t�� ����xn� tn�dx����dxn �����

One way of characterizing a stochastic process is by looking at its history
or memory� The completely independent process is de�ned by

p�x�� t�� ����xn� tn� �
nY

i��

p�xi� ti� �����

i�e� only the one
time distribution density is needed to classify and determine
this process�

The next simplest case is the so
called Markov process� It is de�ned by

p�xn� tnjxn��� tn��� ���x�� t�� � p�xn� tnjxn��� tn��� ����

with
t� � t� � ��� � tn� ����

Equation ���� implies that if the present state is known� any additional
information on the past history is totally irrelevant for predicting the �prob

abilistic� future evolution�

Markov processes are completely speci�ed by the transition probability
density p�xn� tnjxn��� tn��� and the one
time probability density p�x� t�� Be

cause of ���� and ����� we have

p�xn� tn� ����x�� t�� �

� p�xn� tnjxn��� tn��� � ��� � p�x�� t�jx�� t�� � p�x�� t��� ���

�



The transition probability densities ful�ll the following nonlinear func�
tional relation �Chapman�Kolmogorov equation�

p�x�� t�jx�� t�� �

�
Z
�

��

p�x�� t�jx�� t�� � p�x�� t�jx�� t��dx�� ���	�

Examples of stochastic processes are�

�
 Gaussian stochastic processes Xt

Xt is speci�ed by

���������������
��������������

p�x� t�
p�x�� t��x�� t��

�

�

�

p�x�� t�� ����xn� tn�
�

�

If all the m�th order distributions are Gaussian i
e


p�x�� t�� ����xm� tm� �

� �����m�� � �det������ � expf�
�

�
��x� �m�T � ��� � ��x� �m�g

with �mT � �mX �t��� ����mX�tm�� and � � �ij � Ef�Xti�mX �ti���Xtj�
mX �tj��g Xt is called a Gaussian stochastic process


�
 The Wiener process Wt which plays an important role in probability
theory and which is de�ned by�

p�wn� tn� ����w�� t�� �
n��Y
i��

p�wi��� ti��jwi� ti� � p�w�� t�� �

�
n��Y
i��

����ti�� � ti��
���� � expf�

�wi�� � wi��

��ti�� � ti�
g � p�w�� t��������

�	





�� Gaussian white noise process Zt� It is a completely random process
with

p�z�� t�� ���� zn� tn� �
nY

i��

p�zi� �����

i�e� independent values at every instant of time� It has

EfZtg � � ���	�

and the two
time correlation function is given by

EfZtZsg � ��t� s� � �����

Since Zt is Gaussian all odd correlations vanish automatically �see
equation ������ and the even correlations are given by ����

EfZt�
� ��� � Zt�n

g �
X

Pi

��ti� � ti�� � ��� � ��ti�n�� � ti�n� �����

where the sum is taken over �	n����	n n�� permutations� Gaussian
white noise is a mathematical idealization and does not occur in nature�
It plays a similar role in the theory of stochastic processes as the Dirac
�
function in functional analysis� One can show� that in a generalized
sense ���� Gaussian white noise is the derivative of the Wiener process�

The last concept we need is that of a Markovian di�usion process� This
is a Markov process with continuous sample paths� Di�usion processes play
an important role in physics and in the context of stochastic di�erential
equations with Gaussian white noise� as we will see in the next section� The
temporal evolution of these di�usion processes is described by the so
called
Fokker
Planck equation� This is a linear partial di�erential equation for the
transition density p�x� tjx�� t�� or the one
time density p�x� t��

����� Stochastic di�erential equations �s�d�e��

As mentioned already stochastic di�erential equations are the natural exten

sion of deterministic systems� if one wants to include noise e�ects

d

dt
�x�t� � �f��x� t� ���t�� �

��



Often ���t� is modelled by a Gaussian white noise process� This approximation
is well justi�ed if the �uctuating forces show only short�time correlations
compared to other typical time�scales of the system� Introducing Gaussian
white noise in dynamical systems is related to some mathematical problems
which we want to illustrate now� In order to keep the notation as simple
as possible we will restrict ourselves for the moment to scalar equations of
motion �multiplicative stochastic processes �� of the form

d

dt
Xt � f�Xt� 	 g�Xt� � Zt �
���

where Zt designates Gaussian white noise and where we have switched to
the notation introduced above in order to make clear that we are treating
stochastic processes�

Before we start our investigation let us repeat what Horsthemke and
Lefever have written in this context

The transition to Gaussian white noise sounds rather harmless but it is

actually at this point that dangerous territory is entered� which contains hid�

den pitfalls and traps to ensnare the unwary theoretician ��� if one succeeds in

avoiding the various traps� either by luck� intuition or whatever� one captures

a treasure which might be bane or boon� the white noise

We have mentioned already that the realizations of the Wiener process are
continuous but nowhere di�erentiable� and the same holds also� for example�
for the Ornstein�Uhlenbeck process which is de�ned by

d

dt
Vt � ��Vt 	 Zt� �
���

Thus �
��� and �
��� are no di�erential equations in the ordinary sense since
d

dt
does not exist in the usual sense� and we have to ask how to interpret

stochastic di�erential equations with Gaussian white noise� The mathemat�
ical problems are related to the irregular behaviour of white noise� We will
not go through all the mathematical details� we only want to illustrate the
subtleties� so that readers who are confronted with this problem are reminded
of being careful when using stochastic di�erential equations with white noise�
Excellent presentations of this problem can be found in �
�����
����

�the external noise is coupled in a multiplicative manner to Xt the statistical properties

of which are sought

��



After these remarks we try to give a sense to the stochastic di�erential
equation by rewriting it as an integral equation

Xt � X� �
Z

t

�

f�Xs�ds�
Z

t

�

g�Xs�Zsds

which is equivalent to �

Xt � X� �
Z

t

�

f�Xs�ds �
Z

t

�

g�Xs�dWs� ���	�

As before Ws denotes the Wiener process
 The second integral on the
right hand side of equation ���	� � a kind of a stochastic Stieltjes integral
� is the main reason for the mathematical problems
 Let us quote again
Horsthemke and Lefever �

The problem is though a sense can be given to this integral and thus to

the stochastic di�erential equation in spite of the extremely irregular nature

of the white noise� there is no unique way to de�ne it� precisely because white

noise is so irregular� This has nothing to do with the di�erent de�nitions

of ordinary integrals by Riemann and Lebesgue� After all for the class of

functions for which the Riemann integral as well as the Lebesgue integral can

be de�ned� both integrals yield the same answer� The di�erence between the

de�nitions for the above stochastic integral� connected with the names of Ito

and Stratonovich � is much deeper� they give di�erent results�

This diculty can be illustrated as follows�
Consider a stochastic integral of the form

St �
Z

t

t�

WsdWs� �����

If ����� would be Riemann integrable the result would be

St �
�

�
�W�

t
�W

�

t�
�� �����

�a careful analysis which requires the concept of generalized stochastic processes shows
that Gaussian white noise is the derivative of the Wiener process only in a generalized
sense� For more details the reader should consult �����

�	



As in the Riemann case we try to evaluate ����� by a limit of approximating
sums of the form

Sn �
nX

i��

W
�
�n�
i

� �W
t
�n�
i

�W
t
�n�
i��

� ���	�

with a partition of the interval 
t�� t�

t� � t
�n�
� � t

�n�
� � t

�n�
� � ��� � t

�n�
n�� � t

�n�
n

� t

and

�
�n�
i
� 
t�n�

i��� t
�n�
i

�

or

�
�n�
i � ��� ��t

�n�
i�� � �t

�n�
i

with 	 � � � �
Using the stochastic calculus �the proper calculus to treat stochastic pro�

cesses as mentioned above� one can show that the limit of Sn for n � �

depends on the evaluation points �
�n�
i or � 
����� 
����

lim
n��

Sn �
�

�
�W�

t
�W�

t�
� � ���

�

�
��t� t�� � �����

Thus� the stochastic integral is no ordinary Riemann integral However�
an unambiguous de�nition of the integral can be given � and thus a consis�
tent calculus is possible � if � �n�

i
is �xed once and forever Two choices are

convenient

� � � 	� Ito de�nition

� � � �
�� Stratonovich de�nition

Thus� a stochastic di�erential equation has always to be supplemented by
a kind of interpretation rule for the stochastic integral In both cases men�
tioned above one can show� that the solutions of the corresponding equations

��



exist and are Markovian di�usion processes � provided f and g ful�ll certain
smoothness conditions ����	
 In the Ito case

�I� dXt  f�Xt� t�dt� g�Xt� t�dWt �����

the corresponding Fokker�Planck equation for the transition probability den�
sity p�x� tjx�� t�� reads

�

�t
p�x� tjx�� t�� 

 �
�

�x
�f�x� t� � p�x� tjx�� t��	 �

�

�
�
��

�x�
�g��x� t� � p�x� tjx�� t��	 �����

whereas in the Stratonovich case

�S� dXt  f�Xt� t�dt� g�Xt� t�dWt �����

the Fokker�Planck equation is given by

�

�t
p�x� tjx�� t�� 

 �
�

�x
�f�x� t� � p�x� tjx�� t��	 �

�

�
�
�

�x
�g�x� t� �

�

�x
�g�x� t�p�x� tjx�� t���	

or equivalently by

�

�t
p�x� tjx�� t�� 

 �
�

�x
��f�x� t� �

�

�

�g�x� t�

�x
� g�x� t�	 � p�x� tjx�� t��� �

�
�

�
�
��

�x�
�g��x� t� � p�x� tjx�� t��	 � �����

Equations ����� and ����� have to be supplemented with the initial con�
dition

��



p�x� tjx�� t��t�t�
� ��x� x��

and suitable boundary conditions for x�
The Ito calculus is mathematically more general but leads to unusual

rules such as

Z
t

t�

WsdWs �
�

�
�W�

t
�W�

t�
��

�

�
�t� t��

and some care is needed when one transforms from one process Xt to Rt �
h�Xt�� For further details and a discussion of the relationship between Ito
and Stratonovich approach �which preserves the �normal� rules of calculus�
the reader is referred to the references�

Remarks�

�� The one	time probability density p�x� t� of a Markovian di
usion pro	
cess Xt also satis�es the Fokker	Planck equation ���� or ������

�� In the case of purely additive noise where g does not depend on Xt there
is no di
erence between the Ito and Stratonovich approach� so both
stochastic di
erential equations de�ne the same Markovian di
usion
process�

� Since Gaussian white noise is a mathematical idealization and can only
approximately model real stochastic processes in nature� there is always
the question how to interpret equation ���� in practical problems� In
most physical cases one will rely on the Stratonovich interpretation as
is suggested by a theorem due to Wong and Zakai ���� which roughly
states �

if we start with a phenomenological equation containing realistic noise
W

�n�
t of the form

d

dt
Xt � f�Xt� � g�Xt� �

d

dt
W

�n�
t �����

��



where all the integrals can be interpreted in the usual �e�g� Riemann�
sense and if we pass to the white noise limit

W
�n�
t
��Wt �����

so that a stochastic di�erential equation of the form

d

dt
Xt 	 f�Xt� 
 g�Xt� �

d

dt
Wt �����

is obtained �remember that Gaussian white noise is the derivative of
the Wiener process Zt �

d

dt
Wt� the latter has to be interpreted as a

Stratonovich equation�

�� The above considerations can be extended to the multivariable case
where Xt� f�Xt� and Wt have to be replaced by vector quantities and
where g�Xt� has to be replaced by a matrix� Now�the stochastic di	er

ential equation takes the form

d �Xt � �f� �Xt� t�dt� g� �Xt� t�d �Wt � �����

The Ito interpretation leads to a Fokker
Planck equation for the tran

sition density p��x� tj�x�� t�� of the form

�

�t
p��x� tj�x�� t�� �

� �
X

i

�

�xi

fi��x� t� � p��x� tj�x�� t��� �

�
�

�
�
X

i�j

�

�xi

�
�

�xj

fg��x� t�gT ��x� t�gij � p��x� tj�x�� t��� �����

whereas the Stratonovich interpretation gives

��



�

�t
p��x� tj�x�� t�� �

� �
X

i

�

�xi

�fi��x� t� � p��x� tj�x�� t��� �

�
�

�
�
X

ijk

�

�xi

fgik��x� t�
�

�xj

�gjk��x� t� � p��x� tj�x�� t���g � ��	��

Examples

�
 Wiener process

dXt � dWt ��	��

with the corresponding Fokker�Planck �di�usion� equation �f � � g �
��

�

�t
p�x� tjx�� t�� �

�

�
�
��

�x�
� p�x� tjx�� t�� ��	��

�
 The Ornstein Uhlenbeck process �see also equation �����

dVt � ��Vtdt� � � dWt ��	��

leads to the following Fokker�Planck equation �f � ��� g � ��

�

�t
p�v� tjv�� t�� �

�
�

�v
�� � v � p�v� tjv�� t��� �

�

�
��

��

�v�
� p�v� tjv�� t�� � ��		�

��



�� Stochastically driven harmonic oscillator as an example of a multivari�
able system�

�
dX�t

dX�t

�
�

�
� �
�� �

�
�

�
X�t

dt

X�t
dt

�
�

�
�

dWt

�
	�
��

In this case one obtains as Fokker�Planck equation

�

�t
p	x�� x�� tjx��� x��� t�� �

� �
�

�x�
x� � p	x�� x�� tjx��� x��� t��� �

�

�x�
x� � p	x�� x�� tjx��� x��� t��� �

�
�

�
�

��

�x��
p	x�� x�� tjx��� x��� t�� � 	�
��

The Fokker�Planck equation can be used to derive di�erential equations
for the moments very quickly� We will illustrate this for the second order
moments of the harmonic oscillator 	�
���

d

dt
� x�

�
	t� ��

d

dt

Z
�

��

x�
�
p	x�� x�� t�dx�dx� �

Z
�

��

x�
�

�

�t
p	x�� x�� t�dx�dx�

Using the explicit form of the Fokker�Planck equation on the right hand side
we obtain after partial integration

d

dt
� x�

�
	t� �� � � x�	t� x�	t� � � 	�
��

Repeating this procedure for � x�	t� x�	t� � and � x�
�
	t� � one gets a closed

system of equations for the second order moments � namely

d

dt
� x�

�
	t� �� � � x�	t� x�	t� � 	�
��

d

dt
� x�	t� x�	t� ��� x�

�
	t� � � � x�

�
	t� � 	����

��



d

dt
� x�

�
�t� �� � � � � x��t� x��t� � � �����

Note that the average of the total energy of the harmonic oscillator varies
linearly with t under the in�uence of Gaussian white noise

d

dt
� E�t� ��

d

dt

�

�
�� x�

�
�t� � � � x�

�
�t� �� �

�

�
�

The fact that the system of equations is closed is typical for linear systems like
the harmonic oscillator	 In general this scheme delivers an in
nite hierarchy
of higher order moments� which has to be truncated at a certain step in order
to get a solution of the problem	

For linear systems one can also calculate the moments or correlations
directly	 Consider for example the following case

d

dt
�x�t� � A � �x�t� � ���t� �����

where ���t� is a random force �not necessarily Gaussian white noise�	 The
formal solution of this equation is

�x�t� � M�t� �� � �x��� �
Z

t

�

M �t� t�� � ���t��dt� ����

where M�t� t�� is a solution of the matrix equation �Greens function�

d

dt
M �t� t�� � A M�t� t��� �����

The correlation function � xi�t� xj��t� � is then given by

� xi�t� xj��t� ��
X
k�l

Z t

�

Z �t

�

Mi�k�t� t��Mj�l��t� t�� � �k�t���l�t�� � dt�dt� �����

where the correlation function of the external noise is known	 For exam�
ple� applying this scheme to the harmonic oscillator under the in�uence of
Gaussian white noise one gets immediately

� x�
�
�t� ��

�

�
t�

�

�
sin��t�� �����

��



This way of calculating correlations and moments will be used later when we
investigate the linear beam emittance matrix of an electron storage ring�

Finally� we want to make some remarks concerning non�Gaussian white
noise� As mentioned already Gaussian white noise is an idealization and does
not occur in nature� The question is how to treat systems under the in�uence
of colored noise such as� for example� the Ornstein�Uhlenbeck noise Vt� In
this case one can use the following scheme� which we illustrate for a simple
scalar equation of the form

d

dt
Xt � f�Xt� t� 	 g�Xt� t� � Vt� �
���

The Ornstein�Uhlenbeck process Vt is dened by

d

dt
Vt � ��Vt 	 �Z�t

with Z�t
Gaussian white noise� Introducing the vector notation �Yt � �Xt�Vt�T

and �Zt � �Z�t
�Z�t

�T one gets with suitably dened quantities �f and g

d

dt
�Yt � �f� �Yt� t� 	 g� �Yt� t� � �Zt �
���

i�e� a vector stochastic di�erential equation of the form �
���� The solution
of this equation exists and is a vector Markovian di�usion process � pro�
vided �f and g fulll certain smoothness conditions� The disadvantage is that
the corresponding Fokker�Planck equation includes an additional variable� v�
namely p�x� v� tjx�� v�� t�� and thus requires the solution of a partial di�eren�
tial equation of higher dimension� The same trick can also be used for more
complicated systems�

Summarizing� we can say that stochastic di�erential equations are the
natural extension of deterministic systems if one wants to study the in�u�
ence of noise� Often these noise processes are approximated by Gaussian
white noise� a mathematical idealization� which has to be treated with great
care� However� the mathematical subtleties related to stochastic di�erential
equations with white noise are outweighed by the results which are available
for these Markovian di�usion processes namely the Fokker�Planck equation
�
����

��



In this �admittedly� very sketchy summary of mathematical results we
could not consider advanced topics such as martingales and their great im�
portance for Markov processes� Furthermore� we completely skipped the
qualitative �stability� theory of stochastic di�erential equations� Detailed
presentations of these topics can be found�for example� in �	
��� �	
�� �	
���

In the next chapter we will illustrate some applications of stochastic pro�
cesses in accelerator physics �electron and proton storage rings�� Stochastic
processes are used for modelling various noise e�ects� Since a realistic mod�
elling of these noise phenomena is in general a very complicated problem and
requires a detailed experimental and statistical analysis� we will often restrict
our investigations to simple toy models� which show what is in principle pos�
sible in these systems�

��� Stochastic dynamics problems in accelerator physics

����� Electron storage rings

Radiative phenomena play an important role in electron storage rings� As
mentioned already these devices are used extensively as synchrotron radiation
sources� Because of the interesting physical properties �time structure and
polarization� this kind of radiation is an ideal tool for solid state spectroscopy�
for atomic and molecular spectroscopy� for x�ray structural analysis and it
can be used for many other �also non�physical e�g� medical� applications
�	
���

Instead of studying these properties and applications further we will now
investigate the in�uence of the radiation on the beam dynamics� This is a
rather subtle point �	
��� �	
��� On the one hand there is strong classical
radiation damping due to the radiation losses �	���� �	�	� �	���� �	���� and on
the other hand� due to the quantum�like emission of the synchrotron light and
due to the recoil the electrons experience during the emission process� there
is a steady excitation of the particle motion which causes a trajectory broad�
ening like in Brownian motion� Systems which show such quantum e�ects on
a macroscale are often called �macro�atoms� in the Russian literature �	
���
�	
��� Although an exact treatment requires a quantum mechanical calcula�
tion �	�
�� in accelerator physics one often uses a semiclassical approach� In
this approach the classical Lorentz�Dirac equation of the electron is supple�
mented by some explicit noise which simulates the quantum�like emission of

�



the radiation ������ ������ ������ ������ ���	�� ���
�� ������ ������ ������ Using
such a semiclassical theory the electron dynamics including radiative e�ects�
is governed by the following system of equations ���
�� ������ ����� perturbed
Hamiltonian�

d

ds
x � �

�H

�px
�

d

ds
px � ��H

�x
� P s�

cE�

�H
�px

d

ds
z � �

�H
�pz

�
d

ds
pz � ��H

�z
� P s�

cE�

�H
�pz

����

d

ds
� � �

�H
�p�

�
d
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p� � ��H

��
� P s�

cE�

��� �H
�p�

�

with H the Hamiltonian of the coupled synchro�betatron motion see ����
and

P s� � E�

�
� � p� �

� �c�b
� �

p
c�jbj �� �s�� �	��

�bx� z� s� �
e

E�

�Bx� z� s� �	��

E� design energy of storage ring�

c� �
�rep��

�m�c��
� c� �

��re�hp��
��
p
�m�c��

�	��

and the white noise process

� �s��s�� �� 	s� s��� � �s� �� � �	��

p� � E�

c
and re �

e�

m�c
� �� Using the equations for the magnetic �elds of the

di�erent kinds of lenses the particle motion under the in�uence of radiation
is then completely speci�ed� and in shorthand notation one obtains

d

ds
�ys� � �f�y� s� � T �y� s� � 	�cs� �	��

with �yT � x� z� �� px� pz� p� �� 	�cs� designates a Gaussian white noise vector
process�

		



Interesting physical questions are �
What are the average �uctuations of the particle around the closed orbit

�beam emittances�� What is the particle distribution p��y� s� i�e� what is the
probability for �nding the particle between �y and �y � d�y at location s � ��

Is there a stationary �or equilibrium� solution of this density i�e� what is
lim

s�� p��y� s� � What is the particle lifetime in the �nite vacuum chambers
of the accelerator �time to hit the border� �

These questions have been extensively studied in the linear case ���	
�
����
� ����
� ���
� ����


d

ds
�y�s� � �A�s� � �A�s�� � �y�s� � �c�s� � ��c�s� �����

A designates the Hamiltonian part of the motion �six�dimensional coupled
synchro�betatron oscillations� ���
� �A�s� describes the radiation damping
� ��c is the �uctuating part of the radiative force and �c denotes some ad�
ditional �eld errors of the system� In this case one obtains compact and
easily programmable expressions for the important beam parameters �beam
emittances� ����
� ���
� An outline of the calculations and a summary of the
results can be found in Appendix C� Furthermore� the corresponding Fokker�
Planck equation for the probability distribution can be solved exactly ����
�
����
� ����
�

An investigation of the nonlinear system is much more complicated and
is an active area of research� Nonlinear systems such as an octupole�dipole
wiggler or the beam�beam interaction in electron storage rings have been
analyzed by various authors ����
� ����
� ���	
� ����
� ����
� ���
� Let us con�
sider the latter case in more detail� The main problem is to understand the
motion of a test particle under the in�uence of the nonlinear electromagnetic
�elds of the counter rotating beam ����
 �see Figure ���

This so�called weak�strong model of the beam�beam interaction is mathe�
matically described by the following set of equations ����
 �perturbed Hamil�
tonian system� �

��the probability density can be interpreted as density distribution of a system of non�

interacting particles

��







How does the distribution function p�x� z� px� pz � s� of a stochastic system
like ����� evolve with s or time�

Since brute force numerical simulations are very CPU intensive and re�
quire the tracking of thousands of particles� it would be desirable to have a
faster algorithm based directly on p�x� z� px� pz� s� and

p�x� z� px� pz� s� �
Z
p�x� z� px� pz� sjx

�� z�� p�

x� p
�

z� s�� p�x
�� z�� p�

x� p
�

z� s��dx
�dz�dp�

xdp
�

z

where p�x�� z�� p�

x� p
�

z� s�� designates the initial distribution at s�� However�
the stochastic di�erential equations ��	
� contain singular terms like the ��
functions which describe the localized beam�beam kicks� Therefore� there
is no guarantee that the solution of these equations is a di�usion process
and that the transition density of this process can be derived from a Fokker�
Planck equation� Instead of smoothing the kicks however� one can use directly
the discrete stochastic map which can be derived from ��	
�� The suitable
quantity is then the transition density for �nding the system between �y and
�y � d�y in phase space at time step n if it was at �y� at time step m� namely
p��y� nj�y��m�� One could now try to derive an equation for this transition
density in analogy to the Fokker�Planck equation in the time continuous
case� However� in the following we will sketch a di�erent method for calcu�
lating the temporal evolution of the density function which is based on an
idea of Gerasimov and which gives much faster results than direct numerical
simulations �see also �	
���

We will illustrate this approach with a simple two�dimensional model of
the beam�beam interaction� The details are described in �		� and in a PhD
thesis of Pauluhn �	���

The considered model is given by �see also �����

�
x�n� ��
px�n� ��

�
�

�
cos���Q� � � sin���Q�

� �

�
� sin���Q� cos���Q�

�
�

�
x�n�
�px�n�

�
��	��

Where �px�n� is de�ned by

�px�n� � px�n� � �xpx�n� � u�x�n�� � dx�� �����

� is now a random variable� Q is the tune of the storage ring� � is the
beta�function at the interaction point and u�x�n�� is given by

��



u�x�n�� � �

���B�B
�

� x�n� �
�� exp��x��n�

���
�

x��n�
���

�����

with �B�B beam�beam strength parameter ��	�
�
The main steps of this algorithm are�

�� discretization of the two�dimensional phase space

� use of the microscopic dynamics �see equation ��	��� to calculate the
transition rates Aij between the discretized bins of the phase space

�� use of this �stochastic� transition matrixAij as macroscopic propagator
for the time evolution of an initial particle distribution

Figure �� shows how an initially constant and homogeneous distribution
evolves with time �after ����� ����� ������ ����� turns respectively�� These
results are in excellent agreement with direct numerical simulations ��	�
�

Spin dynamics in electron storage rings constitutes another interesting
application of stochastic di�erential equations in beam dynamics ��	�
� ����
�
In this case the orbital equations of motion ��	��

d

ds
�y�s� � �f��y� s� � T ��y� s� � ��c�s�

have to be supplemented by the spin equation of motion� the so�called TBMT
equation �Thomas� Bargman� Michel� Telegdi see for example ���
�

d

ds
�S � ����y�� �S �����

where the �eld �� depends on the orbital degrees of freedom� We will come
back to this point later�

��





ground motion is given by

d

ds
�y�s� � A�s� �y�s� � �A�s� �y�s� � ��b�s� �����

where

d

ds
�y�s� � A�s� �y�s�

describes the unperturbed linear synchro	betatron motion and where ��b�s�
and �A�s� specify the random dipole errors and focusing errors due to the
stochastic ground motion
 This model can be solved easily by the methods
we have introduced earlier
 However� it is very di�cult to determine the
explicit statistical properties of these errors ����


The in�uence of rf noise on the beam dynamics in storage rings is another
example which has been investigated by several authors ����� ����� �����
����� ����
In the smooth approximation �oscillator model� ���� where one
averages ��s�D�s� and V �s� over the circumference L of the storage ring one
obtains the following Hamiltonian �see equation �����
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� �V� and ��� denote the amplitude and phase noise �for example Gaussian
white noise� of a cavity� The corresponding stochastic di�erential equations
now read

�
d

ds
�� � �� � �p�

d

ds
�p� �

e

E�

� � �V� � � �V�� � sin�
��k

L
� �� � � e��V�

E�

�
��k

L
� ��� � cos���k

L
� �� � �

��	
�

Using the action�angle variables of the unperturbed �integrable� system
�without noise� and averaging the corresponding Fokker�Planck equation over
the angle variables one obtains a very good approximation of the problem
��	�� ��	��� ��	��� An alternative to this perturbative approach would be
a numerical integration of the exact Fokker�Planck equation or a direct nu�
merical treatment of the stochastic di�erential equations ��	
�� Numerical
methods to solve stochastic di�erential equations are described in detail in
��	
�� ��		�� The main steps of such a numerical treatment are

� Taylor expansion of the approximate solution in the step width h

� modelling of the noise process

� simulating a su�cient number of realizations for averaging

�see also ������� These numerical tools have been used to calculate the bunch
lengthening in electron storage rings due to rf noise in ��
	�� ��	���

Until now we have considered stochastically perturbed integrable Hamil�
tonian systems such as ��	�� �linear system� or such as ��	
� �nonlinear
pendulum�� However� most Hamiltonian models one encounters in accelera�
tor physics are non�integrable� and the corresponding phase space dynamics
shows a very rich structure � invariant KAM tori� nonlinear resonance is�
lands� and extended chaotic regions� Such models are needed for investigat�
ing the in�uence of localized beam�beam kicks� localized cavities and other
nonlinearities� Various tools have been developed to study the in�uence of
random tune modulations or random terms in the beam�beam interaction of
an accelerator ���	�� ������ ������ ����� ������

The general problem consists in solving equations of the form

H���� �I� s� � H���I� � ��H����� �I� s� � �W ���� �I� s� � ���s�� ��		�

	�



where the stochastic excitation ���s� is de�ned by the following stochastic

di�erential equation including white noise ���s�

d

ds
���s� � D ���s� � F ���s� ��	
�

and where D�F designate known matrices specifying the external noise� A
complete solution of ��		� is still missing and a lot of open questions remain�
especially� if one is interested in the resonant case and the weak noise limit�
The development of approximation schemes for such systems is an important
task and at the same time one also needs suitable numerical tools for checking
these approximations� Among these numerical methods quick and powerful
solvers of the FokkerPlanck equation can be extremely helpful�

In the last two sections we have given a list of stochastic problems in
the beam dynamics of accelerators� We have considered electron machines
�dissipative systems� and proton machines �Hamiltonian systems�� Tools
like stochastic di�erential equations and the corresponding FokkerPlanck
equation have been introduced and it has been shown how these concepts
can be applied to practical problems� We have sketched a kind of �hybrid�
method for discrete dissipative maps� which is based on analytical tools from
the theory of Markov chains combined with a numerical evaluation of the
stochastic matrices� In the Hamiltonian case we have mentioned some open
questions� In this case it would be highly desirable to extend concepts �such
as the oneturn map� which have been developed in the deterministic case to
the stochastic case� For related problems see also ��
��� ��
�� and ��
���

Since in stochastic problems one is often only interested in the moments
of a dynamical quantity �average values� average �uctuations� it is also inter
esting to develop shemes �maps� directly for these moments� This approach
has been advanced by K�Hirata� see for example ��
��� Altogether� stochastic
beam dynamics is an active and important area of research� Only few results
are available�

	�



� Spin dynamics in storage rings

In the previous sections we have only considered the orbital dynamics of
charged particles under the in�uence of external electromagnetic �elds and
radiation �elds� However� particles like the electron or proton have also
an internal degree of freedom� the spin� Controled use of this additional
degree of freedom allows� for example� the measurement of the spin dependent
structure functions of the proton and neutron �see HERMES experiment at
HERA ��	
� � and thus allows the extraction of more detailed information
from the experiments� Therefore� from the physical point of view it is highly
desirable to have high energy polarized particle beams ��		�� In general� this
requires

� sources for polarized particles

� acceleration of these particles and

� preservation of the polarization degree over a period of several hours
�luminosity run time��

In this short section we will discuss some of the problems and topics
which are related to the single particle dynamics in storage rings� Instead of
giving an exhaustive review of this �eld we will only illustrate the basic ideas
and results� Much more information can be found in the proceedings of the
various SPIN conferences �see� for example� ����� or in the review article
����� Furthermore� we will mainly concentrate on electron storage rings�

We have shown how radiation phenomena in�uence the orbital dynamics
in this case� and we have sketched the semiclassical theory� where the quan�
tum e�ects are simulated by explicit stochastic elements in the equations of
motion� Furthermore we have seen how the equilibrium beam sizes arise from
a balance between radiation damping and quantum excitations�

Radiative phenomena also strongly in�uence the spin dynamics in elec�
tron storage rings� In these machines there is a natural polarization mecha�
nism due to spin��ip synchrotron radiation� The kinetics for this process can
be modelled by a simple rate equation� Consider a system of n� spins and a
reference direction speci�ed by a homogeneous and constant magnetic �eld�
The polarization degree along this direction is given by

P �
n� � n

�

n�
��	��


�



where n� designates the number of particles which are aligned parallel to the
external magnetic �eld� and where n

�

designates the number of spins which
are aligned anti�parallel to this �eld� Due to spin��ip radiative processes n�
and n

�

will change in time and one obtains

d

dt
P � �w

�� � w��	� �w
�� 
 w��	 P � ����	

w��� w�� are the spin��ip probabilities from parallel to anti�parallel and
from anti�parallel to parallel alignment� respectively� The solution of this
rate equation is

P �t	 � Peq�� � e
�

t

�p 	 ���	

with

Peq �
w
�� � w��

w
�� 
 w��

����	

and

�p � �w
�� 
 w��	 � ����	

The �ip probabilities have been calculated for the �rst time by Sokolov and
Ternov using the Dirac equation for an electron in a constant and homoge�
neous magnetic �eld �for a summary of these results see ������ ���	 and
with these results one obtains

Peq � ����� ����	

and

�

�p
�

�
p
�e����h

�m�
�c

�R�
� ����	

R is the radius of the particle trajectory in the homogeneous magnetic �eld�
Thus� as a consequence of the spin��ip radiation electrons become polarized
anti�parallel to the direction of the bending �eld �transverse polarization	�
For example� at HERA the polarization time is about �� min� at � GeV�

In a real storage ring the situation is much more complicated due to the
weakly inhomogeneous and nonlinear �elds of the various beam line elements

��



such as dipoles� quadrupoles� rf��elds� space charge �elds of the counter ro�
tating beam and multipoles� The derivation of a kinetic equation for the
polarization of an ensemble of ultrarelativistic charged particles with spin in
these realistic �elds of an accelerator is a very complicated problem ���	
�
����
� ����
� ���
� ����
� ����
 � Such a general kinetic description should not
only include the radiative polarization mechanism but also all depolarizing
in�uences� A treatment of this topic is beyond the scope of this review� In
this work we restrict ourselves to the question� What are the mechanisms

that can cause considerable depolarization of an initially polarized beam� �
As in the orbital theory we use a semiclassical theory which is based on

the Thomas�Bargman�Michel�Telegdi �TBMT� equation� This equation is
the relativistic covariant generalization of the Lamor equation and describes
the classical spin �polarization� motion of a relativistic particle under the
in�uence of electromagnetic �elds� A derivation of this equation can be
found in ��	
� ����
 and ����
� Using the arclength s as independent variable
one obtains �see also Appendix D�

d

ds
�S�s� � ����y�s�� � �S�s� �����

where ����y�s�� depends on the orbital degrees of freedom� ����� describes
the coupled spin�orbit motion in an accelerator and is the starting point
for depolarization investigations� The main depolarizing mechanism in a
real storage ring with closed orbit ��eld� errors� with a coupling between
the di�erent oscillation modes and with various nonlinearities is due to the
stochastic emission of synchrotron light in the orbital part of the motion�
The recoil the electron experiences during the emission process induces an
orbital motion of the particle and on this stochastically induced trajectory
the particle spin sees perturbing �elds which lead to a tilt away from the
original polarization direction and thus to a depolarization� The situation
we encounter is similar to the problem of Brownian motion on the unit sphere�
or to the derivation of the Bloch equations ��	�
�

Extending the six�dimensional orbit analysis to eight dimensions by adding
the two independent spin degrees of freedom we can calculate spin di�usion
e�ects in storage rings ����
� ����
� ����
� The magnitude of this di�usion
e�ect is described by a depolarization time �d� which depends strongly on
machine imperfections as mentioned above� Especially strong depolarization
is expected� when the so�called spin tune a� ful�lls the following resonance

��



condition

a� � n�Qx�z�� �����

with � Lorentz factor� a anomalous magnetic moment of the electron� n
integer number and Qx�z�� horizontal betatron tune� vertical betatron tune
and synchrotron tune respectively	 The main steps of the theory are outlined
in Appendix D	

The kinetic equation derived from this simpli
ed model then reads

d

dt
P �

�

�p
�Peq � P � �

�

�d
P

with the stationary polarization degree

P
�

�
Peq

� � �p

�d

�

The simple model calculations sketched above have been very helpful for
an understanding of the depolarization mechanisms in storage rings such
as PETRA� DORIS and HERA ���� ����� ���� and they form the basis
of various optimization and spin matching schemes ���� ���� ����� �����
����	 The main idea of these schemes is to decouple the spin motion as much
as possible from the orbit dynamics which is induced by the photon emission	
Polarized beams have been investigated in many other electron storage rings
too	 In HERA these polarized beams are now used and handled routinely
����	 HERA is especially interesting because with the help of spin rotators
one can obtain longitudinally polarized electron beams at the interaction
point	 A measurement of the polarization in HERA is shown in Figure ��
���	

Before we mention the situation in proton storage rings we make two
remarks�

�	 from the TBMT equation one can derive simple toy models	 For ex�
ample in ���� �� we investigated a two�dimensional spin vector
�constrained to a plane� under the in�uence of a random perpendicu�
lar stochastic 
eld x�t� �di�usion on the circle see Figure ��� with the
stochastic di�erential equations derived from the Hamiltonian

H��� S� � S x�t� �����

��







The question how the polarization of an ensemble of spins behaves in
time in this case is a complicated problem � especially if one includes the
full nonlinear orbit dynamics �chaos and nonlinear resonances� � and this
question will not be discussed further here� More details about these topics
and about the extension of the Hamiltonian description of the orbit motion
to the coupled spin�orbit dynamics� the corresponding one�turn maps� and
about suitable perturbative and numerical tools can be found� for example�
in ���	
� ����
� ����
 and ���


��



� Summary and conclusions

The main aim of this review was to illustrate the problems of the linear and
nonlinear beam dynamics in storage rings and to introduce various concepts
and tools to study these systems� Although a lot of facts are known and pow�
erful techniques � especially in the Hamiltonian case � have been developed�
designing new accelerators �like the LHC� remains a challenging problem of
nonlinear dynamics� The design of such a machine requires a lot of numeri�
cal simulations� the knowledge of the basic facts of the qualitative theory of
dynamical systems and perturbative investigations� Besides these theoreti�
cal issues� future accelerator developments will always rely on the experience
with existing machines and on special nonlinear dynamics experiments per�
formed with these machines�
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A Derivation of the Hamiltonian for the Cou�

pled Synchro� Betatron Motion

In this appendix we will sketch the derivation of the Hamiltonian of the
coupled synchro�betatron motion �����

Starting point is the following relativistic Lagrangian for a charged par�
ticle under the in�uence of an electromagnetic 	eld speci	ed by the vector�
potential �A
�r� t� and the scalar potential �
�r� t�

L � �m�c
�

vuut
� �

�r
�

c�
�

e

c

 �r �A�� e��

We introduce the curvilinear coordinate system depicted in Figure � via

�r � �r�
s� � ��r
s�

where �r�
s� speci	es the position on the design trajectory 
which we assume
to ly in a plane� so that there is no torsion� and where s designates the
arclength along this trajectory from a certain origin� ��r
s� is de	ned by

��r
s� � x �ex � z �ez

with

d

ds
�ex � �
s��e�

and

d

ds
�ez � �

where � designates the curvature of the design trajectory and where �ex� �ez� �e�
are orthogonal unit vectors related to this design orbit� Using this coordinate
system one obtains

�r � �e
�
s
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x
� z �e

z

and in the new coordinates x� z� s the Lagrangian then becomes
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� zA

z
� 
� � �x� sA

�
�� e�� 
����

��



The Hamiltonian is given by

H � px �x� pz �z � ps �s� L ����	

with the canonical momenta

px �
�L

� �x
�

m� �x

�
 �
��r
�

c�
	
�

�

�
e

c
Ax ����	

pz �
�L

� �z
�

m� �z

�
 �
��r
�

c�
	
�

�

�
e

c
Az ����	

ps �
�L

� �s
�

m� �s

�
�
��r
�

c�
	
�

�

�
 � �x	� �
e

c
�
 � �x	A� � ���	

Introducing these momenta into the Hamiltonian ����	 one obtains

H�x� z� s� px� pz� ps� t	 �

� c�m�

�
c� � �px �

e

c
Ax	

� � �pz �
e

c
Az	

� � �
ps

�
 � �x	
�

e

c
A�	

��
�

�

�e� ����	

with the corresponding equations of motion

d

dt
x � �

�H

�px
�

d

dt
px � �

�H

�x

d

dt
z � �

�H

�pz
�

d

dt
pz � �

�H

�z

d

dt
s � �

�H

�ps
�

d

dt
ps � �

�H

�s

As the next step we introduce the arclength s along the design trajectory as
independent variable ������ This can be achieved by using the fact that the
Hamilton equations of motion can be derived from a variational principle

�

Z
t�

t�

� �xpx � �zpz � �sps �H�x� z� s� px� pz� ps� t		dt � � ����	

��



and that with dt � dt

ds
ds one gets

�

Z
s�

s�

�x�px � z�pz � t���H� � ps�ds � � �����

where we have put ���� � d

ds
	 Comparing ���
� and ����� we see that we can

interprete � ps�x� z� t� px� pz ��H� s� as the new Hamilton�function with s as
independent variable �for a more careful analysis see �����	 This Hamilton
function which we designate by K is given by

K�x� z� t� px� pz��H� s� � �ps�x� z� t� px� pz��H� s� �

� ��� � �x�
�H� e���

c�
�m�

�
c� � �px �

e

c
Ax�

�
� �pz �

e

c
Az�

��
�

� �

��� � �x�
e

c
A� �����

and the corresponding equations of motion with s as independent variable
read

d

ds
x � �

�K

�px
�

d

ds
px � �

�K

�x

d

ds
z � �

�K

�pz
�

d

ds
pz � �

�K

�z
�����

d

ds
t � �

�K

���H�
�

d

ds
��H� � �

�K

�t

Choosing a gauge such that � � � and introducing the variables �c t and �p�
with �p� � E�E�

E�

one obtains the following equations of motion

d

ds
x � �

� �K

� �px
�

d

ds
�px � �

� �K

�x

d

ds
z � �

� �K

� �pz
�

d

ds
�pz � �

� �K

�z
�����

d

ds
��ct� � �

� �K

� �p�
�

d

ds
�p� � �

� �K

���ct�

with �px � c

E�

px� �pz �
c

E�

pz and �K � c

E�

K

�K�x� z��ct� �px� �pz� �p� � s� �


�



� ��� � �x���� � �p
�
�� � �

m�c
�

E�

�� � � �p
x
�

e

E�

A
x
�� � � �p

z
�

e

E�

A
z
���

�

�
�

��� � �x�
e

E�

A� 	 � �
���

In the next step we introduce the di�erence variable � � s � ct�s� via the
generating function F� depending on the old momenta and new coordinates

F��x� z� �� �px� �pz� �p� � s� � � �pxx� �pzz � �p�� � s �p� � s �
���

with the transformation equations x � x� z � z� px � �px� pz � �pz and

��ct� � �
�F�

� �p
�

� � � s

p� � �
�F�

��
� �p� �

Neglecting the term �m�c
�

E�

�� which is very small for ultrarelativistic particles
one �nally obtains ����

��



B Floquet oscillators

In this appendix we will summarize some results for Floquet oscillators of
the form ���� ���	
 We will consider the general case

H��q� p� s� �
�


F �s�p� �R�s�qp �

�


G�s�q� ����

where F �s�� R�s�� G�s� are periodic functions of s i
e F �s�L� � F �s�� R�s�
L� � R�s�� G�s � L� � G�s�
 The equations of motion can be written as

d

ds

�
q�s�
p�s�

�
�

�
R�s� F �s�
�G�s� �R�s�

��
q�s�
p�s�

�
����

or in shorthand notation

d

ds
�y�s� � A�s��y�s� � ����

The general solution of ����� ���� is given by

�y�s� � M�s� s���y�s�� ����

where M�s� s�� satis�es

d

ds
M�s� s�� � A�s�M�s� s��� ���

M�s� s�� is a symplectic matrix i
e


MT �s� s��SM�s� s�� � S

with the symplectic unity

S �

�
� �
�� �

�
���

Proof� Introducing

B�s� � MT �s� s�� S M�s� s��

��



with B�s�� � S one obtains

d

ds
B�s� � �

d

ds
MT �s� s��� S M�s� s�� �MT �s� s��S�

d

ds
M �s� s��� �����

or with �����

d

ds
B�s� � MT �s� s�� 	A

TS � SA
 M�s� s�� � � � �����

Thus B�s� � const � B�s�� � S �qed�  Following 	��
 the one�turn matrix
M�s� L� s� can be parametrized by

M�s� L� s� � cos� � � sin� J�s� �����

with

J�s� �

�
��s� ��s�
���s� ���s�

�
� �����

Since det�M� � � we have

� � � �� � � � �����

From the condition

M�s� L� s� � M�s� L� s� � L� M �s� � L� s�� M�s�� s� �����

we also have �tr � trace of a matrix�

cos ��s� �
�

�
trM �s� L� s� �

�

�
trM �s� � L� s�� � cos��s�� �����

ie � � const From ����� and ����� we get

J�s� � M�s� s�� J�s�� M
���s� s�� �����

which can be used to prove that J�s� is periodic

J�s� � L� � M�s� � L� s�� J�s�� M
���s� � L� s�� � J�s�� � �����

���



The �optical� functions ��s�� ��s�� ��s� satisfy the following equations of mo�
tion

d

ds
��s� � ���s�F �s� � ��s�G�s� ���	�

d

ds
��s� � ����s�R�s�� ��s�F �s�� �����

d

ds
��s� � ����s�G�s� � ��s�R�s�� �����

where we have used

d

ds
J�s� � lim

�s��

	


s
�J�s�
s�� J�s�� �

� lim
�s��

	


s
�M�s�
s� s� J�s� M���s�
s� s�� J�s�� �

� lim
�s��

	


s
��	 � 
sA�s�� J�s� �	�
sA�s��� J�s��

� A�s� J�s�� J�s� A�s�� ����

Using these optical functions and the following generating function for a
canonical transformation �q� p�� �I� ��

F��q� �� � �
q�

��
�tan��� ��� � �� �����

one obtains

q�s� �
q
���s�I cos���s� � ��� �����

and

p�s� � �

s
�I

��s�
�sin���s� � ��� � ��s� cos���s� � ���� �����

where I is given by

I �
	

�
�� q� � � p� � �� pq�� �����

	�	



The transformed Hamiltonian �H� now reads

�H��I� �� �
F �s�

��s�
I �����

and the corresponding equations of motion are given by

d

ds
��s� �

� �H�

�I
�

F �s�

��s�
��	
�

and

d

ds
I � �

� �H�

��
� 
 � ��	��

Thus I is a constant of the motion� The Hamiltonian ����� can be simplied
further by using a second canonical transformation �I� ��� �J� �� generated
by

F���� J� � J �
��Q

L
s�

Z
s

�
d�s

F ��s�

���s�
� � � J ��	��

where Q is dened by

Q �
�

��

Z L

�
d�s

F ��s�

���s�
� ��	��

The transformed Hamiltonian now reads

��H� �
��Q

L
J ��		�

and the solutions of the corresponding equations of motion are

J � I � const � ��s� � ��s�� �
��Q

L
�s� s�� � ��	��

Using �� � 
� �� �
�

�
and I � �

�
in ����� and ����� one obtains two indepen�

dent solutions 	u��s� and 	u��s�

	u��s� �

�
�

q
��s�
� cos��s�

�

q
�

���s��sin��s� � 
�s� cos ��s��

�
A ��	��

�
�



�u��s� �

�
�

q
��s�
� sin ��s�q

�
���s��cos��s�� ��s� sin ��s��

�
A �����

The general solution is then

�u�s� � c� �u��s� 	 c� �u��s� � ���
�

Given these solution vectors it is possible to determine �� From

��u��s	 L�� �u��s	 L�� � M �s	 L� s� ��u��s�� �u��s�� �����

we get

M �s	 L� s� �  cos���s	 L�� ��s�� 	 J�s� sin���s	 L�� ��s�� �����

and thus

� � ��s	 L�� ��s� � ����

Using

��s	 L�� ��s� �
Z s�L

s
d�s
F ��s�

���s�
� ��Q �����

� see ������ we can �nally write

� � ��Q � �����

For further developments it is also useful to introduce the solution vectors �vI
and �v

�I

�vI�s� � �u��s�� i�u��s� �
q

���s�
e�i��s�

�
��s�

����s� 	 i�

�
�����

�v
�I�s� � �u��s� 	 i�u��s� � �v�I �s� �����

which are eigenvectors of the one turn matrix M �s	 L� s�

M�s	 L� s� �vI�s� � 	I�vI�s� �����

��



M�s� L� s� �v
�I�s� � �

�I�v�I�s� �����

with the eigenvalues

�I � e�i ��Q �����

�
�I � e�i ��Q ���	�

and the 
normalization
 conditions

�v�I �s� S �vI�s� � �i �����

�v�
�I�s� S �v

�I�s� � �i � ����

� �a� is de�ned by ��a��T and � means complex conjugation�� Furthermore�
Floquet theory applies and we have

�vI�s� � ��vI�s�e
�i��Q s

L � �v
�I�s� � ��v

�I�s�e
�i��Q s

L �����

with

��vI�s� L� � ��vI�s� � ��v
�I�s� L� � ��v

�I �s� � �����

These relations will be useful in many calculations� Stability of the particle
motion is only guaranteed if

Q� � � R � �����

��



C Linear beam emittance matrix for electron

storage rings

In this appendix we will outline the calculation of the beam emittance matrix
of an electron storage ring in the linear approximation i�e we seek a solution
of �����

d

ds
�y�s� � �A�s� 	 �A�s���y�s� 	 �c�s� 	 ��c�s� �

In the following we take �y�s� in the form

�yT �s� � �x� px� z� pz� �� p�� �

The 
uctuating part in the linear approximation is given by

��cT �s� � ��� �� �� �� �� �c�s��

with the correlation function

� �c�s� �c�s�� �� j	��s�j ��re

�

�
�h

�
p
�m�c

��s� s�� � ����

�For a complete list of all the other matrix elements of the di�erent beam
line elements the reader is refered to ����� ����� ������ �������

Due to the interplay between radiation damping and quantum excitation
we expect some equilibrium 
uctuations around a periodic closed orbit� We
separate the general solution of ����� into two parts

� closed orbit part �y��s� and

� 
uctuation part around �y��s� which we designate by ��y�s��

The closed orbit part satis�es

d

ds
�y��s� � �A�s� 	 �A�s���y��s� 	 �c�s� ����

and the 
uctuation part ful�lls

d

ds
��y�s� � �A�s� 	 �A�s����y�s� 	 ��c�s� � ����

���



For ��y�s� we make the following ansatz � variation of constants �

��y�s� �
X

k�I�II�III

�Ak�s��vk�s� �A
�k�s��v�k�s�� �	
��

where the �vk�s�� �v�k�s� form a system of linear independent solutions of the
unperturbed system ��A�s� � �� ��c�s� � ��� These solutions can be obtained
as eigenvectors of the one turn matrix M �s� L� s�

M�s� L� s� �vk�s� � �k�vk�s� � ���	�

It can be shown that the eigenvalues �k are independent of s that

�k ��k � 


and that the eigenvectors ful�ll the condition �see also Appendix B�

�v�k �s�S�vk�s� � �v�
�k�s�S�v�k�s� �� �

�v�� �s�S�v��s� � � otherwise�

For a more detailed investigation of the eigenvalue spectrum of the general
six�dimensional transfer maps of a linear accelerator see the references men�
tioned above and Figure 
�

Then� the functions Ak�s� are determined by

d

ds
Ak�s� � �iAk�s�

��

L
�Qk � iv�k��s��c�s� ����

where

�Qk �



��

Z s��L

s�

d�s�v�k ��s�S�A��s��vk��s� ��
�

is just the �complex� Q�shift of the k�th oscillation mode caused by the
perturbation �A�

Using these equations one obtains the stationary �periodic� second order
moments of a linear electron storage ring in the form

� �ym�s��yn�s� �
st� �

X
k�I�II�III

� jAkj
� �st Re�vkm�s�v

�
kn�s�� ����


��



with

� jAkj
� �st�

�

��k

Z
s��L

s�

d�s ���s� jvk���s�j
� ���	�

and the 
damping
 constant

�k �
i

�

Z
s��L

s�

d�s �v�
k
��s� �S �A��s� � �AT ��s� S �vk��s� for k � I� II� III ������

��s� is the prefactor of the ��function in equation ����� �
In the limit of a simple uncoupled storage ring these general results reduce

to the well known expressions in ���� and in other textbooks on accelerator
physics�

���



D Spin di�usion in electron storage rings

In this appendix we will outline the calculation of the depolarization time �d�
We will only list the main steps� the details of the calculation can be found
in ������

Starting point of our investigation is the TBMT equation

d

dt
�S	t
 � ��TBMT �

�S	t


with

��TBMT � �

e

m��c
�	�  �a
 �B �

a��

�  �

�

c�
	 ��r �B
 � ��r � 	a� 

�

�  �

 ��r �

��

c
� �

	 a anomalous magnetic moment and � � E

m�c
�

� Using the accelerator coor�

dinate system and the independent variable s this equation can be rewritten
in the form �����

d

ds
�S	s
 � �	�y	s

 �S	s
 �

If one restricts the investigation to the linear synchro�betatron motion� �	�y	s


is linear in the orbital coordinates ������ and in analogy to the orbit dynamics
one separates �	�y	s

 into two parts � a part depending only on the periodic
closed orbit �y�	s
 and a part depending on the �uctuating amplitude ��y	s


�	�y	s

 � ����	�y�	s

  �	��y	s

 � 	���


The TBMT equation then reads

d

ds
�S	s
 � 	����	�y�	s

  �	��y	s


 �S	s
 � 	���


At �rst one solves the spin motion on the closed orbit �y�	s


d

ds
�S�	s
 � ����	�y�	s

 �S�	s
 � 	���


The general solution of equation 	���
 is a precession around a periodic axis�
For the orthogonal one�turn 	rotation
 matrix N 	s�  L� s�
 one obtains

N 	s�  L� s�
 �r�	s�
 � ���r�	s�
 	 � �� �� � � 	���


���



The eigenvalues �� are independent of the chosen position s� and are given
by

�� � � �����

�� � ei��� ��	
�

�� � e�i��� ��	��

�� real� and the corresponding eigenvectors �r��s�� can be used to construct

a righthanded orthogonal coordinate system �n��s��� �m��s����l��s�� ����� via

�r��s�� � �n��s�� ��	��

�r��s�� � �m��s��  i�l��s�� ��	��

�r��s�� � �m��s��� i�l��s�� ��	��

�n��s�� � �m��s����l��s�� � ��	��

Because of

�n��s� � N�s� s�� �n��s��

�m��s� � N�s� s�� �m��s��

�l��s� � N�s� s�� �l��s��

one can construct an orthogonal coordinate system at an arbitrary location
s� Since �n��s�� �m��s���l��s� do not form a periodic system

�m��s�  L�  i�l��s�  L� � N�s�  L� s�� ��m��s��  i�l��s���

� ei��� ��m��s��  i�l��s���

�
�



�� �m��s�� � i�l��s�� �����

we introduce�
�m�s�
�l�s�

�
�

�
cos���s�� ��s��	 sin���s�� ��s��	
� sin���s�� ��s��	 cos���s�� ��s��	

��
�m��s�
�l��s�

�
���
�

This system is periodic if the following condition is ful�lled

��s� � L�� ��s�� � ��� � �����

The vectors �n��s�� �m�s���l�s� satisfy

�n��s� � �m�s���l�s�

d

ds
�m�s� � ������y��s�� �m�s� � ���s��l�s� ����

d

ds
�l�s� � ������y��s�� �l�s�� ���s��m�s� ����

d

ds
�n��s� � ������y��s�� � ����

����s� � d

ds
��s��� Using this coordinate system we make the following ansatz

for the solution of ��
��

�S�s� �
q
� � ���s�� ���s��n��s� � ��s��m�s� � ��s��l�s� ����

and in the linear approximation where one neglects terms which are nonlinear
in �� �� �yi�s� one obtains

d

ds
��s� � �	���y�s�� �n��s�� � �m�s� � ��s����s� ����

d

ds
��s� � �	���y�s�� �n��s�� ��l�s�� ��s����s� � ����

���



Introducing the two�dimensional vector

���s� �

�
��s�
��s�

�
�����

���	� and ���
� can be combined into a single equation

d

ds
���s� � G��s���y�s� �D��s����s� ����

where G
�
describes the spin�orbit coupling ����� and where D

�
is de�ned by

D
�
�s� �

�
� ���s�

����s� �

�
�����

In the next step we introduce the eight�dimensional spin�orbit vector

�u�s� �

�
��y�s�
���s�

�
�����

and the TBMT equation �nally reads

d

ds
�u�s� � � �A�s� � � �A�s���u�s� � ���c�s� �����

with the following de�nitions

�A�s� �

�
A�s� �
G

�
�s� D

�
�s�

�
�	���

� �A�s� �

�
�A�s� �
� �

�
�	���

���c�s� �

�
B� ��c�s�

�
�

�
CA �	���

A�s�� �A�s�� ��c�s� describe the orbit dynamics see Appendix C� The solution
of ����� is now in complete analogy to the calculation of the linear beam
emittance matrix �see Appendix C�

�u�s� �
X

k�I�II�III�IV

�Ak�s��qk�s� �A�k�s��q�k�s�� � �	�	�

���



The �qk�s� form a system of linear independent solutions of the unperturbed

system � �A � �� ���c � � and can be obtained as eigenvectors of the eight�
dimensinal transfer matrix

M
���

�s� L� s� �

�
M�s� l� s� ����
G�s� l� s� D�s� L� s�

�
�	�
�

namely �see ���� for more details�

M����s� L� s��qk�s� � �k�qk�s� �

For k � I� II� III the �qk�s� consist of the orbital vectors �vk�s� of Appendix
C and a spin part �wk�s� with the eigenvalues �k of Appendix C �eigenvalues
of the transfer map of the coupled synchro�betatron oscillations��

�qk�s� �

�
�vk�s�
�wk�s�

�
�	���

�wk�s� � ��D�s� L� s�� �k��
��G�s� L� s��vk�s� �	���

�k � e�i��Qk �

The fourth eigenvector �qIV �s� has only spin components

�qIV �s� �

�
���

�wIV �s�

�
�	���

�IV � e�i���

�wIV �s� �
�
p
�

�
�
�i

�
e�i��s� � �	���

�the vectors �q�k�s� are obtained by taking the complex conjugate of �	��� and
�	����� Using these results one can derive stochastic di�erential equations
for Ak�s�� k � I� II� III� IV � These equations together with equation �	�	�
allow the calculation of various moments of the coupled spin�orbit motion

���



such as the beam emittance matrix �see Appendix C� and the depolarization
time �d which is related to � jAIV �s�j

� � via �����

�
��

d 	
c

L
�� jAIV �s� 
 �N 
 ��L�j� � � � jAIV �s� 
NL�j� �� � �����

After a lengthy calculation one obtains

�
��

d 	
c

L

Z s��L

s�

d�s���s���Im
X

k�I�II�III

�v�k���s�wk���s���
� 
 �Im

X
k�I�II�III

�v�k���s�wk���s���
�� �

This expression was also obtained by A�Chao with a di�erent method ������

���
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