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ABSTRACT

A path-integral formalism for the Reggeon
field theory valid in all transverse dimensions
is developed. In this formalism the strong cou-
pling phase transition can be discussed through
the introduction of an external source. It is
then argued that the strong coupling transition
occurs even in zero transverse dimensions but in-
volves all higher-order couplings. The expanding
disc and the analogous tunnelling effect in zero
transverse dimensions are seen to be associated
with a different weak coupling critical point.
The conclusion is that the strong coupling cri-
tical ©Pomeron is the only known theoretically
consistent (s and +t channel unitary) descrip-
tion of rising total cross-sections.

The super-critical phase is shown to in-
volve Reggeizing vector particles with associated
singular Pomeron interactions and it is suggested
that it be identified with the high-energy beha-
viour of a spontaneously broken non-Abelian gauge
theory., Since the vector particles become mass-
less and decouple from the Pomeron at the critical
point it is conjectured that the critical Pomeron
and hence rising total cross-sections are a di-
rect consequence of local gauge invariance and
the confinement of gluons.
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Reggeon Field Theory )

(RFT) is best described both as summing Reggeon
graphs derived from some underlying (field?) theory and as based on analyticity
and unitarity, that is on multiparticle dispersion relations“) leading to Reggeon
unitarityu’s). Since unitarity in the physical world of four space-time dimen-
sions is a very difficult property to achieve in any context, I am quite sure it
should not be lightly neglected at high energy. In fact I shall argue that in
order to obtain a complete understanding of the strong-coupling phase transition
and consequent super-critical phase in RFT, unitarity is absolutely essential.

In practice, this means that in looking for a formal sum of the Pomeron diagrams

ol X X )

in which the bare Pomeron intercept o, is greater than the critical value Oy We
must be very careful not to violate t-channel unitarity in the form of Reggeon
unitarity.

It is well known that when o, < a,. the total cross-section falls with energy
(by definition) and that when 0, = Ggyc we obtain the beautiful critical Pomeron6’7).
The critical Pomeron not only produces factorizing rising total cross-sections but

also gives detailed, calculable (with no parameters) scaling laws for all diffrac-

tive processes, i.e.

‘ n )
o (D sf:m[‘nﬂ , 5‘.% ;:”Elns] F(t1ns]”) , ete. )

I shall argue below that when 0, > 0 unitarity again requires

o (s > © (3)
S = oo

which has the very important consequence that the critical Pomeron is the only
known theoretically consistent description of rising total cross—sections (in

the absence of massless vector particles). If this is the case then rising cross-
sections are a very special phenomenon and their experimental observation is
clearly telling us something. The question is therefore what property of the

underlying strong interaction theory places the Pomeron at the critical point?

The super-critical RFT phase can be distinguished from the sub-critical
phase by the following properties. The theory has a perturbation expansion in

which

a) there is a bare Pomeron pole with intercept Ay (= 1 - &0) > 0 (this is of

course, no different from the sub-critical phase).



b) There are singular (as functions of momentum transfer) Pomeron interactions
proportional to Eo. The singularities include those that would be produced
if the Pomeron coupled through a fixed-pole associated with a two-vector
state (and also through singularities associated with many-particle states

whose mass goes to zero with Ag).

c) There is a degenerate set of odd signature Reggeons producing vector par-
ticles with their mass and pair-wise coupling to the Pomeron also propor-
tional to A,.

Since Reggeizing vector particles are directly associated with spontaneously

1)

broken gauge theories® we are immediately tempted to identify the RFT super-
critical phase with the high-energy behaviour of such a theory. Clearly the

above structure contains many (and perhaps all) of the essential features that

we would expect to see if this identification can be made with the Pomeron genera-

ted as a bound state of two Reggeized vector particles.

The critical limit appears as a limit in which the vector particles ("gluons")
stmultaneously become massless and decouple from the Pomeron. Equating the de-
coupling with confinement we are led to the conjecture that the critical Pomeron
and (hence) rising total cross-sections are a direct consequence of the simul-
taneous occurrence of local gauge invariance and the confinement of gluons.

This conjecture can be given further support by starting directly from the

510512,13)

high-energy behaviour of a spontaneously broken theory9 A preliminary

study indicates (although we will not elaborate this point here) that the RFT
derived from such a theorylu) has a structure which coincides with that of our
super-critical theory if the large transverse momentum of the Reggeized gluons is
cut-off and the small momentum behaviour of the gluon potential generating the
Pomeron is also cut off. If these cut-off's can be removed after the massless
limit is taken, due to the combination of asymptotic freedom and confinement,

then it seems that our conjecture will be verified.

Before discussing these exciting possibilities further I must unfortunately
point out that at present my view of the RFT phase transition is far from being
universally accepted by all workers in the field. The alternative point of

15-17)

view that

2
T [Vns] ol, > e 4)

implies that the experimental observation of rising cross-sections is of little
fundamental significance. However, I believe that the behaviour (4) is not con-

sistent with unitarity and moreover, is not a solution of RFT in the neighbourhood



-3 -

of the strong coupling critical point. I will therefore try to explain my results
on the RFT phase transition and why I think my point of view is singled out as

correct by unitarity before enlarging further on the above conjecture.

It will be helpful to develop a general understanding of the problem by con-
sidering first a simple world where there is no impact parameter dimensions

(D = 0) and all amplitudes depend on rapidity only.
(reT],
In this case the bare Pomeron states are the harmonic oscillator Fock space

| > = f‘%@ld? , [a,aﬂ:I , aloy =0 (5)

)

We consider first the theory with just a triple Pomeron coupling (ry). The RFT
perturbation expansion of the one Pomeron Green's function is formally obtained

from
<O|ae,—Hu)a+)O> ubzra()foli*"g (6)

with

H(ata) = A,aa + (e at(afra)a A= 1-%

Now unfortunately H is a somewhat unusual Hamiltonian. Firstly

+ . (8)
= Tq'ﬁ H = H is npnon-hermitian
and even worse
HH" = H+H = H is xen-nermal %
Consequently H cannot be diagonalized and it is not clear a priori that e_Hy can

be given any rigorous definition. In fact we shall see that the fact that H is
not a nice hermitian operator defining to everyone's satisfaction an obvious

Hy

space of eigenstates on which e 7 should be defined, is the source of all the

arguments and confusion surrounding this problem.

I shall define e_Hy directly in the Fock space by the following (non-rigorous)
path-integral formalismla). A path-integral formalism is particularly suitable (and
probabaly even essential) for discussing the strong-coupling phase-transition
when D # O because of the applicability of the Wilson renormalization group

transformation. We write
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which gives

N-l *

_ * _ 4 z -

(,{N (zl—z’ 5) i S T Ol_f_r_z_é_?n exp Y Z 2o " G BN B N
. R=y AT )

roo —Zz, 272 ~E[A(zz, ) HESD) (15)

where y = Ne. We can then write formally

[\l

Jivn L’N (’E;Z,b9>

N>

U(22,4)

Y _ &
gd‘@d Y exp z‘i('i YN+ 2 q/@)) - S;A‘o (—‘;_ ¥ %‘; v

FR Y+ i B (Ere)w) |

W

(16)

This formalism has the difficulty that exp - E[H(z?,zi_l)] is not in general

" bounded in (15) so that a priori even UN may not exist. (This problem is not
simply due to the non-hermiticity of H). Of course (15) can always be evaluated
using (13) rather than (14). The real problem is to pfove the exiétence of the
limit N >« in a form which relates directly to the form (16) on which we make
our manipulations. Prbbably the most direct way fo do this would be to introduce
a cut-off lzi' < N/y = €, Vi, although this has not been pprsued in detail. If
in the limit N » o, as is ex-

i+l 18)
of the RFT

pected (and is necessary if the Gaussian integration derivation

the integral is dominated by the region z, vz

perturbation expansion from (16) is to be justified) then the Cardy-Sugar contour

19)

deformation can be used to ensure that the convergence of (16) due to the Ty

term holds for all values of Ay. This is what we shall assume from now on.
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The difficulties with (16) that we shall worry about will be of a different
nature. We wish to discuss the possibility of making changes of variables, that
are analogous to vacuum shifts, in (16). However, since the Pomeron fields @
and } are, respectively, pure creation and destruction operators we cannot use a
formalism analogous to that used in relativistic field theory in which a change
of vacuum is associated with the simultaneous creation of particles and anti-
particles. There are no "anti-Pomerons" in RFT. We have Pomeron creation and
destruction with the Pomeron number not conserved but there is no vacuum produc-
tion or absorption. This situation is unique to RFT and will require a unique

formalism.

First we note that we can rewrite U in the form

-HV'Z"'a‘ g l:a*" =
U (39,050 = <ole (ool jan Al jos ~H (a1 |

a17)
and that provided U > O when y -  we can generalize this to
— . s B V)Ba -H(4r9) tyar - H (b -,
u(6'6'9;-%.> = ‘\M <Z‘e Y ‘-)c e 31 DC e [%l ) \Z> (18)
Yy +o00
Y, -0

which formally can be written as the path integral
- e — &> — _— - ‘
CAGAy exp(-Sdo & U B G st F(Er DY +1a @ S (n-0) xB Y S ()| (19)

defined on the whole rapidity axis. The problem now is to interpret the freedom
to vary z and z in (18) in terms of the freedom to change the boundary conditions
and hence to make field shifts in (19). Note that in defining U by (18) we have
implied that ¢ is diagonalized at y = Y, [w(Yl) = z] and ¥ is diagonalized at

y =Y, [w(Yz) = E]. Therefore we can expect a shift in Y to be well defined in
the neighbourhood of y = Y; but not near y = Y, and vice versa for @. That is

a shift (&Y,89) will be well defined in the limit (18) if

S(P(%):O/ U = + 00 , S&Ca)):o/ Yy = - e (20)

An alternative way to describe this point is to note that if the operators
@ and | are to retain their creation, destruction property after the shift then
¥ should be shifted by a field containing positive energies only and vice versa
for Y. That is we write
L) 400

§¢ - L careiE) L Symge (de O 21)

e —tob



or

_ fad _ —» _ "OO’ -E '
g(P = —1'7; dE e Ec)alisc L) , 9> Sl-fs'—,l{— gdf:c %J.‘sc“:@f)/ y->-c0 (22)
o
> .

.where f has no singularities in the right half-plane and f has no singularities

in the left half-plane.

We shall consider the perturbation expansion in the E-plane only and shall
write all the RFT graphs as integrals over the real E-axis by closing contours
using ‘Cauchy's theorem. 1In this case the form (22) can be used for 8y and SY

and translation invariance in rapidity can be restored by writing
S¢ > S (v-5,), S¢ = S¢(v-9,) (23)

_ and averaging over pure imaginary y, and §0. [In fact the most elegant way to set
;up this formalism is to write the RFT path-integral in E-space from the start,
with the integration over functions of the form (22) . This is also necessary to
discuss properly the Wilson renormalization group transformation which we shall -
come to shortly. However, we shall not discuss this here but in a forthcoming

publication.] We write therefore

U(3,5,9,-0) = gd({:d(ﬁ exp [-_2;13 2 50 (&, @] (24)
40 -
- Sahaoat 5o SdGawexp [ - S4s X5 (@ase, ¢+50)]

(25)

-Coo

oo
- - o0
§ d,dd, SdGdy exp [- STy & (FrsF, wase) |
)
" where Eég is defined by comparing (19) with (24).

We claim now that the shift formalism implied by (22), (23) and (25) is what
we require. It enables us to make rapidity-dependent shifts independently in Y
and  which preserve the creation and destruction operator character of these
operators. This formalism replaces the constant field shift formalism used in a

relativistic (or any Lagrangian) formalism to discuss a change of vacuum.

It can be checked that (24) and (25) are indeed equal in perturbation theory

by considering a simple shift of the form

S@w) = z 6(-v) §¢ =2 6(v) (26)



This shift introduces new vertices (with obvious y-dependence) into the usual RFT
graphs [note that the averaging over y, and y, is well-defined in the Fourier

transform of (26)]. The vertices are

2 . - . =2
\~A01+ifo'£ < ~ (Y, 2 R ,/¥~A°'z+'—{a% , etec. @n
2

which generate new Feymnman diagrams for the Pomeron propagator, for example

only some of which are non-zero after the y, and y, integrations. However, the
non-zero diagrams cancel among themselves order by order in z and z and so the

original perturbation expansion is recovered.

Having defined the freedom of "

choice of the vacuum" in (19) we can now dis-
cuss the addition of an external source term to H (analogous to the addition of a
linear source term to A" -- a device well-known to be useful for the study of the
phase-transition in this theory). Again the creation and destruction operator
character of U and ¢ is preserved only if we add a source of the form (22). For

simplicity we choose the form (26) and consider
- 2 — — .
UG, 5,0,-9,,5) = GdFae exp[- Sdo 25 (G 9) S ) riseE)¥]  (29)

We then make a shift of the form (26) to cancel the source term in (29), that is

we choose

Z-z:=-0, + YA +r2rs (30)

ALY,
The integration over yo, and y, eliminates those diagrams which are sensitive to

the lack of translational invariance of the source. The remaining diagrams can

be summarized by the following new RFT rules:

‘i) there is a shifted bare propagator

-1
’\M—ﬂ’*"' = e 4 ~R— f eN— oy m - - T [E-E;b’ﬁa—')ﬂg‘k (31)
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ii) There are new Pomeron production vertices

VA =~ + L r (32)

(33)

where

< _ oA+ \BL 2 y S(E) (34)
2

‘and the circles are the usual RFT Green's functions (with just a triple Pomeron
interaction and the new bare propagator) evaluated in old-fashioned perturbation

theory with the time-ordering implied by the diagrams.

‘We now observe that this new perturbation expansion is well defined for all
real values of Ag, including Ay + -o. Therefore, we have a definition of [RFT]O
B for all values of Ay by taking the limit s - 0 at fixed Ay. However, it is clear

from (31) and (34) thaf this definition of [RFT]O is continuous but non-analytic
Cat Ag = 0. Only for s # 0, is this form of the theory the analytic continuation

in Ao.

mgpr s # 0, the singularity structure in the A,-plane is as shown in Fig. 1.
Our aefinition of [RFT]O is to analytically continue between the two complex
branch points at Ay = *i¥2rys. To obtain the s = 0 analytic continuation as a
ﬁiiﬁifvin'which sy+‘0 we should analytically continue around the two branch points
in the same direction so that their phases add rather than subtract, as shown in

Fig. 2. We shall compare these two analytic continuations again after discussing

P . . . . 20
an alternative formulation of [RFT]O due to Ciafaloni, Le Bellac and Rossi (CLR) ).
The CLR formalism

Those authors first make a similarity transformation and define
L
~ -1 _ (2 2
H=F HF F=(2dor [-4 (=22 | (35)

. writing

Az 4) F& H (= 4) Fe
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H defines a hermitian operator when restricted to the half-axis z = -iq, q > O.
CLR then define

= (37)

O A A AR I

(38)

where ¢n and En are eigenfunctions and eigenvalues of H in the space of L? func-
tions on the half-axis. The {F¢n} are clearly eigenfunctions of H. The general

asymptotic behaviour for an eigenfunction Y(z) of H is either

e
Y= ~ L e""i'% T Te ] (39)
250 <

or

(_(/(?3 ~ Con;""anf

2D

(40)

it is straightforward to show that normalizability of Y in the Fock space requires

that the behaviour (39) be absent along the direction

N, lwm=z <O (41)

Therefore normalizability in the Fock space is equivalent to normalizability in

21)

coincide for Ay > 0.) CLR

the L2 space for Ay > 0. (In fact Ciafaloni has recently shown
Hy

that our path-
integral formulation and the definition (38) of e
also adopted (38) as a definition of e_Hy for Ay < 0, since they were able to
prove that this definition Zs the analytic continuation in Ay. From our previous
discussion it is clear that for Ay < O therefore, the CLR formalism is equivalent
to the alternative analytic continuation (when s # 0) that we discussed and so

does not coincide with our formulation of [RFT]O.

We emphasize at this point that while the CLR formulation gives a smooth
continuation in A, which can be made completely rigorous, this is done at a cost.
The cost is the loss of a Fock space formulation of the Hamiltonian for large y.
The states appearing in the spectral representation (38) are non-normalizable in
the bare Pomeron Fock space for Ay < 0. Our formalism is based on the requirement
that in the E-plane (which describes the large y limit) we can describe the
Hamiltonian in terms of bare Fock space creation and destruction operators. Clearly

the new Pomeron vertices appearing in (32) and (33) imply that we can formulate a
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new RFT Hamiltonian for Ay < O which involves an infinite number of Fock-space
interactions all of which are expressed as power series in (rg/Ay). This formalism
enables us to prove the Reggeon unitarity of our theory for [RFT]O in the super-
critical phase as we shall discuss shortly. Since the CLR formalism is based on
the L2 space and not the Fock space for Ay, < 0, all contact with bare Pomeron
states, i.e. Regge pole states, and hence Reggeon unitarity, is lost when the im-

pact parameter dimensions are added.

Finally we note the spectrum of singularities in the E-plane of the two defi-
nitions shown in Fig. 3. The striking points of these spectra are clearly the
discontinuity at Ay = 0 (which in a sense exists even in the CLR formalism because
of the normalizability problem) and the degeneracy ("tunnelling effect") in the
CLR approach which appears as Ag > —». The tunnelling effect has also been

22,23)
found

ments that (4) holds in [RFT]Z. It is argued that the phase-transition in [RFT]O

in other previous formulations of [RFT]O and is the basis of all argu-

is effectively at Ay = —» and therefore can be studied for D # 0 by keeping the
vacuum and the nearly degenerate state from the D = O theory and building a spin-
model on an impact parameter latticels’le). However, we shall argue that the
analogue of the strong coupling phase—transition for D # 0 occurs in the D = 0

theory not at Ay = - but at Ay = 0. This brings us to ...

The phase-transition in [RFT]D

We consider now the most general problem in which there are D impact para-
meter dimensions (in the physical world D = 2) and all possible Pomeron interac-

tions. That is we consider

Up (4,25, 5702, % %) = S‘l bt exe __gj% Sa iam (€9 “o
; 1|2/
where
;(Z SL T TV DY (D - N T
IQ'L Dlﬁ

RPN Ny ()
D o (43)
Fi0,5(6-9) 8 (1) ¥ ig G(v-9) S (x-%2)

Eq. (42) can be regarded as the most general solution of the Reggeon unitarity
equations for the Pomeron. To begin a discussion of the phase-transition we
should define a Wilson renormalization group transformation on (42) which enables

us .to eliminate the "irrelevant" variables in (43). The usual procedure would be

to emphasize the very large impact parameter by writing
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7
- < |%=) <N 44
W)= HEHFHe . Wm0 A<l 4o
W, =0 N <1x|
and similarly for ¥ and then integrating over Y, in (42) leading to new parameters
A, rh, Ai', etc. Dimensional analysis alone shows that in general in the limit
A >

) ~ (-2 >
/ / = b 3
~ ~ A g ”~ /\ /~ D——) .- "
T O A € ) Rl (O R

where n is the total number of § or y fields which Ai couples.

There are two related problems here. Firstly all couplings, except Ay are
driven to zero in the limit A’ + ® by this transformation. To see at least the
triple Pomeron interaction enhanced as we would like we must also interprete out

the low-rapidity fields in (42). This leads to

/ / ’ 2;'2 5 Ch-i)g% -2 e
A,'“' &>A° -, ~ (‘/L <, /\“ ~ <_/l_) d/"' L\. . (46)
N N " W)

For D > 2 taking A’ v », will now remove all but the triple Pomeron coupling.
Also there will be a phase-transition at any special set of initial values of the
parameters for which the scaling of A, is avoided and replaced by A = 0. This
is the usual argument for considering only the triple Pomeron coupling near the
phase-transition. Note now that it does not work for D = 0, all couplings have

the same scaling behaviour in this case.

The second problem with this formalism which now arises is that it is diffi~
cult to be sure that the Lagrangian obtained after the renormalization group
transformation has the same form as the initial Lagrangian (43) when the rapidity
is involved (there may be U2, y? terms for example). This problem can be solved
by first Fourier transforming the whole formalism to (E,k) space and replacing
(44) by a separation of small and large (E,k) fields. 1In order to obtain (46) it
is essential to integrate out both large k and large E fields. To do this in a
well-defined way, which preserves the general form of the Lagrangian, we need the
formulation of the path-integral in terms of fields of the form (22) referred to
earlier. For our present purposes we shall simply assume that the (E,k) renorma-

lization group transformation can be defined.

For D # 0 then, we can study the phase-transition by studying the triple
Pomeron theory with the af term in (43) added to (7) and with Ay ~ 0. We now
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note that the formalism (21)-(34) can be applied immediately to the theory with

D # 0, with the momentum transfer dependence of the theory playing a secondary

role.

If a source s is added to the theory, the phase-transition disappears for

real Ao. The singularity structure of the theory is again that shown in Fig. 1.

The  phase-transition is in effect now at the branch-points A, = *i/2rys and the

raddition of the impact parameter dimension to the theory simply means that these

singularities are more complicated than in the D = 0 theory because there is scaling

behaviour.  If we define the theory by analytic continuation in A, with s # 0, as

we did for [RFT]O, taking s = 0 afterwards, then we have the following properties

of the theory:

[ Ps

1

Heo

i)

The theory is given by the perturbation expan31on (31)-(33) with momentum

transfer dependence added to all propagators, for Ag > —o the Pomeron inter-—

cept v
‘The theofy satisfies Reggeon unitarity, since this property is satisfied
‘pefturbatively -- note that this property holds for s # 0 also. The analytic
continuation preserves unitarity. This is the main justification for the

continuation procedure,

The theory satisfies the same scaling behaviour when Ap>0_, as when Ay > O .

This follows from the renormalization group analysis of Abarbanel, Bronzan,

24
Schwimmer and Sugar ) (ABSS) .

(It should be clear that we are simply carrying through the initial programme

of ABSS to study the phase-transition in close analogy with the usual analysis of

the phase-transition in A¢ , this is by the addition of an external source ("exter-

nal magnetic field" in the language of the Ising model) to the theory. We have

shown that this programme can be carried through with consistent (and strong!)

results provided that the process of adding the source is properly defined.

This then is our view of the phase-transition. We shall discuss the new

.phase further shortly. Let us discuss now how the alternative view (4) is arrived

at. The main point is that the phase-transition is seen as occurring at A, = —»

when D = 0. The near degeneracy in the CLR version of the D = O theory becomes a
’ - . . . . 15,16 .

~degeneracy when the impact parameter dimension is added ’ ). The behaviour (4)

is associated with an "expanding disc" in impact parameter space inside of which

there is a transition from the old vacuum to the new degenerate state. The new

phase is therefore pictured as involving two degenerate but communicating vacua.

~We have already remarked that this analysis loses all contact with Reggeon uni-

tarity. Essentially this happens once the CLR continuation through Ay = 0 is made

in D

= 0. For us Ap = 0 is much closer to the phase-transition point when D = 0

and there is only a triple Pomeron coupllng. This becomes clearer if we discuss

the’ addltlon of hlgher couplings to the D = O theory.
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First we recall that from (46) there is no justification for ignoring higher
couplings when D = 0. But can there be a phase-transition in one dimension of
rapidity? The answer is yes. Because the theory is non-relativistic there are
no infra-red problems preventing the definition of a "massless" theory as in a
relativistic theory such as A¢*. Further, if we compare the sum—ruleszs) giving
the bare intercept or mass of the strong-coupling critical theory we note a signi-
ficant difference for RFT and A"

RFT
L‘p-
- [, -
SA° - ——,—o ga"ﬂ- [2 (?() ] , sz) ~ X ‘7 (47)
CX;>ﬂ 0 - —Deo
A L
_¢_ ) ) 2?_’ oo ,.ﬂ

sl = (o) (dx (20 1] zey ~ X7

(48)

where z(x) is a renormalization constant in both cases and x is a dimensionless
renormalization point with x v ® being the "infra-red" or low-momentum region. .

The point we wish to make is that in A¢" the critical exponent n is positive while
in RFT it is negative. Therefore as D - 1, n increases in A¢"* and the phase~
transition disappears (mj -+ «) due to an Znfra-red divergence of (48). 'In (47).
there can be no infra-red divergence with n < 0 and so the strong-coupling critical
theory which is insensitive to the ultra-violet behaviour of the theory should have
a smooth continuation to D = 0, we simply have to include higher-order couplings
because of (46).

Suppose we add a four-Pomeron coupling of the form
V=2 4 2 _ -2 2 7 ‘
gHt(=2/\q.‘P‘~V + f\~_‘/’(‘#+‘#>‘-}/ (49)

to (7). If we carry through the analog of the manipulatibns (29)-(34) and set

= 0 we obtain the new bare intercept (for A, < 0)
~ ‘ 4
A, = ,(-éf,+x>x X = ("f:-ll- }\2“, AD (50)
20,
a two-Pomeron source term [analogous to (34)]

YS A + 2()\;4, /\ )[—u(,-!—x (51)

2)\.,




- 14 -

and a new triple Pomeron coupling

i |
o —_— (52)
. xtf
We now observe that
. N ~<
S Ny
2~ (53)

B, B,2-0 XN

o

and consequently if Ai > a2 is is meaningless to treat s perturbatively with re-

.spect to Ay in this limit. We conclude that our formalism does not apply unless
A2 Xi, when, not surprisingly, the Fock space normalizability problem again occurs
when Ay = 0.

1,22)

2
In contrast the CLR formalism is improved if Ai = 0 and Xi # 0. 1In this

case the analytic continuation in A, stays within the Fock space for Ay < 0 and the

near degeneracy at Ay = -» becomes an exact degeneracy at the "magic value"
2
A =-%o
om -———l ' (54)
2N,

Etine spin model can be set up at this point for D # 0 with complete consistency.
Further Bronzan and Sugar17) have solved the D = 1 theory exactly at this point
_and showed that the expanding disc does indeed occur. Bronzanzs) has also shown
_that this magic-value persists when lf # 0 although direct contact with the spin-

model .is lost as‘kf increases. When Af = Ai the magic value is

Bow = " 4o (N) (55)
Ik Ny

which implies x v 0 in (50)-(52). Note that this implies that 50 ~ 0 and ¥y Vv 0.

This shows that the magic value corresponds to a second critical point of the theory
. . 2, . .

as Ay is varied. The spectrum of our theory when Kt = Ay 1s shown in Fig. 4.

Since To v 0 we conclude that the magic value critical point is essentially the

>2)

weak coupling critical point1 when D # 0. Beyond the magic value it is impos-
sible to define a real bare Pomeron propagator from our formalism. The effective
potential defining Zo, s, etc., has two complex stationary points. We conclude

’ﬁhat we cannot find a Fock space formalism (leading to a Reggeon unitary solution

when D # 0) beyond the magic value.

Our formalism also applies for any higher-order interactions of the form

SH=¢ [ f(e+©): Ty (56)
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where :: indicates normal ordering. In such a case there will always be a Fock
space normalization problem (or equivalently a divergence problem in the path-
integral) when Ay = O and our formalism will define a non-analytic solution at this
point. That the renormalized Pomeron intercept should reach one at this point pro-
vides a single constraint on the infinity of couplings appearing in f. When this

is satisfied we believe we have the true strong-coupling critical Pomeron for D = 0.
That we should have to consider interactions of the form (54) when D = 0 is clear
when we consider the behaviour of the higher-order couplings near the strong coup-
ling critical point when D # 0. The relevant couplings are those defined after

the renormalization group transformation. These are dominated by the triple Pomeron
interaction at small (but not zero) E and k and it is not difficult to see that they

will indeed have the form (56).

In general the "magic-value" critical point will be associated with the first
stationary point of the classical Hamiltonian beyond A, = 0. It will involve two
zeros of the Hamiltonian meeting and becoming complex conjugate with the (shifted)
triple Pomeron coupling (in our formalism) vanishing. In contrast the strong coup-
ling critical point involves one zero crossing the fixed zeros at ¥, ¥ = O with no
vanishing of the triple Pomeron coupling. These two distinct kinds of critical
point should describe two distinct phase transitions with the behaviour at the

2)

o . i . 1
critical points describing the old "strong" and "weak" coupling Pomerons *°’, re-

spectively.

There are in fact many reasons to believe that the phase-transition associated
with the expanding disc involves a weak-coupling Pomeron. (Note that there may
still be scaling properties at the critical point since the triple Pomeron vertex
will not be strictly analytic when D # O as envisaged in the original weak coupling
solution). The tunnelling effect when D = O involves the isolation of the one
Pomeron state indicating a suppression of the two and higher Pomeron states by
suppression of the triple Pomeron vertex. The expanding disc is very similar to
that obtained by simple eikonalization and in fact it seems likely (to me at least)
that the limit as ry >~ O of the complete expanding disc s-matrix is the eikonal.
The eikonalization of the weak-coupling Pomeron is, of course, hardly surprising

since this involves an essentially isolated pole passing through unit intercept.

We anticipate finally that Fig. 4 carries over to D = 2 as in Fig. 5, with
the saturation of the Froissart bound (4) occurring beyond the second critical
point. Our formalism defines a Reggeon unitary solution up to the second weak
coupling point if we stay within the class of higher-order couplings given by (56).
We believe that a solution satisfying t-channel unitarity cannot be found beyond
this point. The weak-coupling Pomeron has, of course, run into many difficulties

2)

with s-channel unitarity which have still to be completely consistently overcome
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We argue therefore that the strong coupling critical Pomeron is the only known com-

pletely consistent theoretical description of rising total cross-sections.

The second phase and cut RFT

The striking property of the new phase, as defined by the perturbation ex-
pansion (31)-(33) with a;gz added to the bare propagator, is that the new Pomeron
interaction vertices have a non-trivial momentum dependence. For example the ex-

changed propagator shown gives a pole in vertices of the form

EEE: S 1 (57)
oL Ry +10,)

where Ei is the transverse momentum carried by one or more produced Pomerons. This
illustrates that the singularities occur for negative Ei, or positive ti = —gi and
- so they do not occur in the high-energy scattering region but approach it as

|Ag| > 0. 1In fact it is clear from the generation of those singularities by zero
energy sources that it is as if there were negative energy states ("anti-Pomerons")
in the theory which do not appear as intermediate states but appear 6ﬁly inside
transition vertices. This situation is precisely what would occur if there were
vector particles in the underlying theory with a mass of the order of magﬁitude of
(lel/aé)%. ‘There will be many j-plane singularities in such a theory (associated
with all possible combinations of Reggeons and many-particle phase-space singulari-
ties) which appear on the physical sheet of the j-plane for positive t aﬁd which
for negative t are on the unphysical sheets of Reggeon cuts and lie in the right-
half j-plane (that is have negative energy). Such singularities would be expected
ktorproduce singularities of the Pomeron interaction vertices of the same nature as
- those appearing in our super-critical RFT. The simplest example is the Gribov-
‘Pomeranchﬁk_fixed pole at j = 1. When coupling a single Pomeron this would produce
juét a singularity of the form (57). It seems pointless to try to exactly identify
such effects without first studying in more detail the form of the RFT derived
from thé underlying vector theory. Also all particles that become massless as -

[Aol -+ Ob(including.Higgsscalars and fermions, for example) will give extra singular
momentum dependence to Pomeron interaction vertices and also to the trajectory
function. Thus further complicating the problem. However; since it can further
be shdwn that the singularities of our vertex funétions do not produce any physical
sheet singdlérities, but only produce new singularities on the unphysical sheets
of the multi-Pomeron cuts, it seems that they do have all of the right properties
to be produced by vector (and other) particles becoming massless as [Ag] > 0.
Further evidence that our super-critical RFT does indeed contain vector particles

is obtained as follows.
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We have emphasized that our super—critical solution satisfies t-channel uni-
tarity in the form of Reggeon unitarity but we have not discussed the s—channel
unitarity of the theory. Clearly a Pomeron pole with intercept below one will
not produce any blatant conflict with unitarity. But we can examine the detailed
satisfaction of unitarity (at least the inclusive sum rules) by considering the

27528) . . . 29)
cut RFT . This is equivalent to the AGK cutting rules

which have a very
general basis (probably they can be derived directly from analyticity and unitarity).

In this theory we have three Reggeon fields w+, v, wc with the Lagrangian

8o 2, (60 4+ R (7 0+ £, (0, 0) +cen &, (Tor WY

% @ (g )Y 2 ‘Z(VZ*%>%?‘§;“0 (Cpw+BER)

B o . _ _ (58)
F (Y Y R - e (R v R0 )

The Green's functions (@ch), <@+,w+>, (@_,w_) giverespectiveiy the cut amplitude,
the amplitude above the cut and the amplitude below the cut. Inclusive cross-

sections are given by, for example, in the central region
che + 7 <
c A~ + - -

The inclusive sum rules are satisfied by this formalism. The equality of (@c,wc),
(W, ¥,)> (¥_¥_) can be traced back to a permutation symmetry of (58) which is evi-
dent after a field transformation given by Cardy and Suryani27). The above super-
icritical formalism can be applied directly to Qc and a solution involving a pertur-
bation expansion analogous to (31)-(33) can be found. It is much more complicated
since all three fields have to be shifted. The permutation symmetry is not broken

but transitions such as (@cw+) appear, given for example by graphs such as

—

c = +

and new amplitudes have to be defined by a diagonalization which does break the
permutation symmetry. The new cut and physical amplitudes are defined uniquely by
the requirement that they are equal for all Ay, and continuously equal to their
subcritical equivalents at the critical point. Examining the Reggeon unitarity
content of these amplitudes at the one loop level we find that <n addition to the
negative two-Pomeron cut contribution corresponding to the triple Pomeron vertex
(32) there is a positive two-Reggeon cut term involving singular vertices corres-

ponding to a degenerate set (at least two) of odd-signature Reggeons coupling to
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the Pomeron (the momentum dependence of the vertices essentially gives the correct

signature factors).

The complete structure of the super-critical cut RFT has still to be determined
but we can already draw the conclusion that requiring s-channel unitarity (in the
form of the inclusive sum rules) in the super-critical phase requires odd-signature
Reggeons to accompany the singular Pomeron vertices required by t-channel unitarity.

We have thus arrived at the complete structure described in the introduction.

In conclusion it is clear that at the very least making direct contact between
the high-energy behaviour of Yang-Mills theories (spontaneously broken) and super-
critical RFT would be very helpful in understanding the complex structure of both
formalisms. As we have said our preliminary study of the problem encourages us to
believe very strongly that we really are studying the same phenomenon from differ-
ent points of view. It is very important in this context that the high-energy
behaviour of the Yang-Mills theories can be studied directly from multiparticle
dispersion relations. The Reggeization of the vector mesons in these theories
essentially means that all of the multiparticle angular momentum theory including
Reggeon unitarity (and hence RFT) based on the multiparticle dispersion relations")
must be applicable in the neighbourhood of J =1, t = 0 and so must be applicable
to the Pomeron. Once super-critical RFT is seen to include odd-signature Reggeons
and it is observed that spontaneously broken non-Abelian gauge theories are simply
Reggeizing vector mesons satisfying perturbative unitarity the connection of the

two formalisms seems inevitable.

Finally we make the obvious comment that the establishment of our conjecture
would imply that rising total cross-sections can be added to Bjorken scaling as
experimental evidence for an unbroken non-Abelian gauge theory of the strong in-
teractions. [A connection between the two phenomena has been suggested previously

0)

by Gribov’ , but on the basis of (apparently) very different arguments.] We also

note that while it has been previously argued that a Pomeron constructed from con-
fined gluons is a very good phenomenological candidate giving approximately con-

31,32)

stant total cross-sections , we believe our conjecture gives for the first

time a possible profound explanation of why the Pomeron intercept is exactly one.
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Figure captions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Singularity structure in the A, plane.

Alternative analytic continuation.

Spectra of [RFT]O with just a triple Pomeron coupling.

Spectrum of our [RFT]O when a four Pomeron coupling is present.

Spectrum of our [RFT]D when a four Pomeron coupling is present.
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