
A
TL

-T
IL

EC
A

L-
PR

O
C

-2
01

1-
00

1
15

Fe
br

ua
ry

20
11

Web System for Data Quality Assessment of Tile
Calorimeter During the ATLAS Operation

C. Maidantchik1, F. Ferreira 1, F. Grael1, A. Sivolella2 & L. Balabram2

on Behalf of ATLAS TILE Calorimeter Community
1COPPE, Federal University of Rio de Janeiro (UFRJ), Brazil
2 Escola Politécnica, Federal University of Rio de Janeiro (UFRJ), Brazil

E-mail: Tile.Commissioning@cern.ch

Abstract. TileCal is the barrel hadronic calorimeter of the ATLAS experiment and has about
10 000 electronic channels. Supervising the detector behavior is a very important task to ensure
proper operation. Collaborators perform analysis over reconstructed data of calibration runs in
order to give detailed considerations about failures and to assert the equipment status.

Since the commissioning period, our group has developed seven web systems that guide
the collaborators through the data quality assessment task. Each system covers a part of the
job, providing information on the latest runs, displaying status from the automatic monitoring
framework, giving details about power supplies operation, presenting the generated plots and
storing the validation outcomes, assisting to write logbook entries, creating and submitting the
bad channels list to the conditions database and publishing the equipment performance history.

Calibration runs are more often during the ATLAS operation. This represents a substantial
increase amount of data, hence a challenge for the systems. An optimized data model was
designed to reduce the number of needed queries. The web systems were reassembled in a
unique system to provide an integrated view of the validating process. The server load was
minimized by using asynchronous requests from the browser.

1. Introduction
ATLAS [1] is one of the particle physics experiments at the Large Hadron Collider at CERN, designed
to measure proton-proton and heavy ions collisions1. ATLAS is composed by several detectors with
particular features.

Tile Calorimeter [2] (TileCal) is the central section of the hadronic calorimeter. It is a sampling
calorimeter using iron as absorber and scintillating tiles as active medium, that is readout by wavelength
shifting fibers and photomultiplier’s [3]. TileCal is composed of four sections divided in two Long
Barrels (central section) and two Extended Barrels. Each barrel is divided azimuthally into 64 wedges,
so-called modules. A module contains a number of cells where each cell has two PMTs. Hence, there
are roughly 10 000 readout channels in the calorimeter.

The number of electronic channels and the complexity of the experiment demand the continuous
monitoring of the acquired data’s quality. Collaborators perform analyzes over reconstructed data of
calibration runs in order to give detailed considerations about failures and to assert the equipment status.

1 In 2010, the proton-proton collisions reached 7 TeV center of mass energy.



For achieving this goal, hundreds of plots and histograms are analyzed, the output from Data Quality
Monitoring (DQM) Framework is considered and complete reports are composed. Findings are presented
at the weekly meetings and discussed among the TileCal community . Then, the data quality responsible
provides the list of problematic channels that should not be considered for the future physics analysis.

During the commissioning period, seven web systems were developed that guide the collaborators
through the laborious data quality assessment task. The event rate during the ATLAS operation increased
amount of data produced. Over ninety million plots are stored in the databases, affecting the performance
of the systems. Thus, an optimized data model was designed to reduce the number of needed queries.
The web systems were reassembled in a unique system to provide an integrated view of the validating
process.

Hence, a unique web system was created. It presents a set of views, each one representing a different
aspect of the duty. For example, one view displays information about the latest runs and whether
they were reconstructed. Other one shows the available plots and histograms and allows the user to
register comments. The system will be presented by detailing its architecture(Section 2) , its data model
(Section 3) and the technologies that were used for its implementation (Section 5). The different views
of the system are exposited in the Section 4.

2. Software Architecture
The developed system is based on the Model-View-Control (MVC) software architecture and uses
a javascript framework for rendering the user interface and performing requests to the server
asynchronously. It uses a python based back-end for responding these requests.

The MVC pattern isolates the application logic from the user interface, allowing them to be developed,
tested and maintained separately. The model represents the system’s data structure and how the
application will access it. It manages the behavior from the requests of the end user. The view renders
the models making it suitable for the user’s interaction. The user’s actions are processed and requests
are sent to the model whenever it’s necessary. The controller is the set of scripts that activates the model
according to the requests from the client. Figure 1 describes how the different layers communicate among
themselves.

Model

View Controller

Figure 1. Model-View-Controller Architecture

The proper functioning of the system depends on how the data is modeled. Therefore, after the
beginning of the ATLAS operation, the redesign of the database schema was done very carefully. It was
intended, among other things, to minimize the server load and to reduce the number of records. This
improved data model is described in the next section.

3. Data Model
The web system uses a relational database for data persistence. The model presents two major entities
– run and module – which are associated by a many-to-many relationship. One run has the following
attributes: date, type, id number and the number of events. For guaranteeing the normalization, the entity
run type was created since they are limited. The module is represented by the name of the barrel where
it is located and by its drawer number, e.g., LBA25. The Figure 2 shows the relations.



Figure 2. Data model after the beginning of ATLAS operation.

After the run reconstruction, hundreds of plots and histograms are created and stored into public
directories in a local server at CERN. The graphics’ location are stored in the database. Also, the DQM
Framework [2] generates flags for several different test in a channel level. For each module, a summary
flag is set according to the channels’ tests.

The data quality validator attributes status for each module in a run according to its performance after
analyzing the graphics and understanding the DQM flag. There is five possible values for this variable:
“OK”, “Bad”, “Some Problems”, “Not Analyzed” and “Not to be Analyzed”. The shifter is also able to
provide detailed comments if needed. The shifters’ names and their CERN ids are stored.

Thus, the new data schema represents the entities from the data validation task. The software’s model
pattern uses this schema and takes care how the attribute values are filled and how the system responds
for different requests. The next section presents the different views where the user perform actions.
These actions will be processed by the view engine and, if necessary, requests will be sent to the model.

4. Web System Views
This system aims to be a guideline for the data validator during the offline shift. Each view deals with
different stages of the task. This way, the only thing needed to complete the validation job is to go
through the different screens for a given run. First, the shifter checks whether there is a new run and,
moreover, whether it has been reconstructed. The system presents the latest three hundred runs in a
tabular format, as it can be seen in the Figure 3.

The table presents the most relevant details about the run: the run type, the run date and the number
of events. Under the Plots column, a hyperlink is made available whenever the respective run is
reconstructed. That’s the way validators know when the plots and histograms are done. Also, through
this link they can access the plots and perform their analysis, as it will be explained later in this section.

The systems shows an overview for each analyzed runs by calculating the proportion of good and
bad modules according to the statuses foreseen in the software model. It also displays the name of the
responsible of the analysis. It is important to notice that a run can have more than one validator. This
way, the whole collaboration is able to follow the DQ team finds about the TileCal equipments.

It’s also possible to follow the operation of the detector over the time, through another perspective.
The user can access a timeline display by clicking on the link available in the top page of the first screen.
A search interface is presented where is possible to select the models, the run type and the time period
of interest.

After performing the search, the system displays the performance of the modules throughout the
consecutive runs for the chosen time period. The statuses given by the validator are displayed according
the following color code: OK is green, Bad is red, Some Problems is yellow, Not to Be Analyzed is black
and the Not Analyzed is white. Runs with detailed comments are marked by a “pencil” icon. The Figure 4
shows the Timeline view.

Back to the view shown in the Figure 3, by clicking in the icon under the Plot column, it is possible
to access the view where a run can be analyze. This view presents all modules for a given run, as it can



Figure 3. List of the latest runs. The run details, like date, number of events and date are shown.

Figure 4. Timeline View.

be seen in the Figure 5.
Data is organized in a tabular format with nine columns: Run Number, Module, Run Date, Run

Type, Plots, Detailed Comments, Status Comment, DQM Status, Shifter Name. The first five columns
shows data that are automatically filled into the database, while the other ones present data from previous
analysis. The user can toggle any column that is not needed. The columns Status Comment and DQM
Status display icons with the same color code presented in the Timeline view. The icons under the Status
Comment column are a bigger than the DQM Status one, because they must be considered more relevant
for the collaboration.

This view is integrated to the Timeline one. It is possible to check the Status and DQM statuses of
the last five runs with the same type, e.g. Pedestal, for a single module by pressing the “+”.



It is also possible to filter rows by the module’s name by writing in the top-left part of the page. For
example, if the user writes “LB”, just the rows corresponding to the long barrel modules. If an “A” is
added to the query, just modules in the A side will appear. The number of rows in the same page can be
set as well.

Figure 5. View for analyzing a given run. Screen for an anonymous user.

The user must log the system in for being able to actually perform analysis. CERN Nice’s user name
and password are enough for it. The log-in form is reached by clicking the button “Start Analysis” button
in the top-right corner of the page. After being authenticated, a new set of functions is made available.
Figure 6 shows the analysis view for an authenticated user.

Figure 6. View for analyzing a given run. Screen for an authenticated user.

Two major differences comparing to the previous screen: the top toolbar and the “pencil” icon for the
cells under the “Detailed Comment” and the “Status Comments” columns. This symbol shows that the



user can add/edit information for those specific fields. The Shifter’s name is automatically filled after the
end of the run analysis. For adding/editing a “Detailed Comment”, it is just needed to click over the cell
and a hidden text-area field appears. For selecting/changing the status comment value is just needed one
click over the small icons.

Plots and histograms are available at the select boxes under the “Plot” header. By selecting one plot
a new view is shown. This view shows the selected plot in its real size and the other available plots as a
tiny icon, so the user can choose any graphic without change from this screen. It is also possible to open
all plots at a once as some users prefer. The Figure 7 shows this view in details.

Figure 7. View for displaying plots.

The top toolbar presents four functionalities, each one represented by a different button. The first one
summarizes all the shifter’s notes and post them to the last view of the process, shown in the Figure 8.

Figure 8. View where all the information about a run is summarized.



This view is responsible by concatenate all the information about the analyzed run for creating an
entry in the collaboration’s official electronic log (e-log). All the well behaved modules are ignored in
this step, because only problems are interesting at this point. Also, the same overview displayed in the
run list in the first view is submitted. The validator has to write down the finals comments about the
whole fun. By submitting this information, the data quality validation is done for a run.

The second button in the top toolbar links to web system that displays data from the Tile Detector
Control System (DCS) [4]. This system is responsible for providing enough information for the
monitoring of the detector’s power supplies behavior. For this specific case, the mean and standard
deviation values for voltages and currents during the time period of the given run. The interface present
a graphic representation of the barrels. Each module is divided in two, one for the mean and the other
for the standard deviation analysis. Colors are given according to the result of comparing these statistics
to the nominal values. Figure 9 shows the described system. This integration is important because many
problems during the data acquisition may be correlated to power supplies’ misbehavior.

Figure 9. DCS Web System

The last two buttons are related to actions that the users commonly do. Frequently they give the same
status for a whole run, for convenience, i.e., before starting an analysis, is common to attribute the green
status for all modules since this will be, or at least it is expected to be, the most common diagnosis. In
most cases, the user wants to hidden the modules that the DQM tool flagged as good. The DQM tool
logic is pessimist, this means, any tiny problem, even the ones that do not prejudice the data acquisition,
is noticed. In word words, if DQM says that a particular module is fine, it probably is.

5. Used Technologies
All views are based on dynamic HTML (DHTML), this is, combining HTML, Javascript and CSS
elements [5].

Requests to the server and their response are made using messages in XML format. This
communication was made in an asynchronous way, this means, not every request from the client results
in a call for the server. Also, the client’s interface doesn’t hang waiting for the server’s response. The
AJAX method was used for handling this communication [6] and the JQuery implementation was the
chosen one for developing the AJAX engine [7]. By doing this, the server load was hardly decreased and
users got results in faster way. Multiple actions can be made at the same time and the server is protected
from an overload of requests.



System’s back-end (comprehends the controller and models patterns) is implemented mainly in
Python program language. The system store its data into the official ORACLE database server.

6. Conclusion
During the ATLAS commissioning period several prototypes were purposed for supporting the offline
analysis job. These prototypes became a set of web systems extensible used by the whole collaboration.
The amount of data at that point allowed the use of a unofficial database without an accurate model.

It was necessary to redesign the system for dealing with the large amount of data produced during
the ATLAS operation. The commissioning experience was very important for purpose the creation of an
unique system for the whole data analysis process. A system capable of guiding the validator through
the laborious job.

This way, a web system, using MVC software architecture, was developed. This system provides
information on the latest runs, displays status from the automatic monitoring framework, presents
the generated plots and stores the validation outcomes, assists to write logbook entries, creating and
submitting the bad channels list to the conditions database and publishes the equipment performance
history.

The System is accessible for the entire collaboration and runs under the Scientific Linux 5
environment in the AFS CERN’s node.

7. Bibliography
[1] ATLAS Collaboration. ATLAS: Technical Proposal for a General-Purpose pp Experiment at the Large Hadron Collider at

CERN. Technical report, CERN, 1994. CERN/LHCC 94–43.
[2] J M Abdallah, U Blumenschein, T Davidek, A Dotti, L Fiorini, C Maidantchik, C S Sanchez, and A Solodkov. Atlas tile

calorimeter data quality assessment with commissioning data. Journal of Physics: Conference Series, 119(3):032001,
2008.

[3] Anderson, K., Berglund, S., Blanchot, G., et all. Front-end electronics for the atlas tile calorimeter. Technical report,
CERN, 1998.

[4] C Maidantchik, F Ferreira, F Grael, and Atlas Tile Calorimeter Community. Tiledcs web system. Journal of Physics:
Conference Series, 219(2):022029, 2010.

[5] Jason Cranford Teague. DHTML and CSS for the World Wide Web. Peachpit Pres, 2001.
[6] James Garret. Ajax: A new approach to web applications. article Adaptive Path

http://adaptivepath.com/ideas/essays/archives/000385.php, 2005.
[7] Bear Bibeault and Yehuda Katz. Jquery in action. Manning Publications Co., Greenwich, CT, USA, 2008.


