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Abstract

A search is made for massive long-lived highly ionising particles with the ATLAS experiment at the Large Hadron Collider, using
3.1 pb−1 of pp collision data taken at

√
s = 7 TeV. The signature of energy loss in the ATLAS inner detector and electromagnetic

calorimeter is used. No such particles are found and limits on the production cross section for electric charges 6e ≤ |q| ≤ 17e and
masses 200 GeV≤ m≤ 1000 GeV are set in the range 1− 12 pb for different hypotheses on the production mechanism.
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1. Introduction

The observation of a massive long-lived highly ionising par-
ticle (HIP) possessing a large electric charge|q| ≫ e, wheree
is the elementary charge, would represent striking evidence for
physics beyond the Standard Model. Examples of putative par-
ticles which can give rise to HIP signatures includeQ-balls [1],
stable micro black-hole remnants [2], magnetic monopoles [3]
and dyons [4]. Searches for HIPs are made in cosmic rays [5]
and at colliders [3]; recent collider searches were performed
at LEP [6–8] and the Tevatron [9–12]. Cross sections and
event topologies associated with HIP production cannot be re-
liably predicted due to the fact that the coupling between a HIP
and the photon is so strong that perturbative calculations are
not possible. Therefore, search results at colliders are usually
quoted as cross section limits in a range of charge and mass for
given kinematics [3]. Also, for the same reason, limits obtained
at different collision energies or for different types of collisions
cannot be directly compared; rather, they are complementary.

HIP searches are part of a program of searches at the CERN
Large Hadron Collider (LHC) which explore the multi-TeV en-
ergy regime. Further motivation is provided by the gauge hi-
erarchy problem, to which proposed solutions typically postu-
late the existence of hitherto unobserved particles with TeV-
scale masses. HIPs at the LHC can be sought at the dedicated
MoEDAL plastic-track experiment [13] or, as in this work, via
their active detection at a multipurpose detector.

Due to their assumed large mass (hundreds of GeV), HIPs
are characterised by their non-relativistic speed. The expected
large amounts of energy loss per unit length (dE/dx) through
ionisation (no bremsstrahlung) are mainly due to the high par-
ticle charge, but also due to the low speed. The ATLAS detec-
tor is well suited to detect HIPs. A HIP with sufficient kinetic
energy would leave a track in the inner detector tracking sys-
tem of ATLAS and lose its energy on its way to and through
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the electromagnetic calorimeter, giving rise to an electron-like
signature. The presence of a HIP can be inferred from mea-
surements of the proportion of high-ionisation hits in the inner
detector. In addition, the lateral extent of the energy deposition
in the calorimeter is a sensitive discriminant between HIPsand
Standard Model particles.

The ranges of HIP charge, mass and lifetime for which unam-
biguous conclusions can be drawn are determined by the chosen
trigger and event selections. The choice of an electromagnetic
trigger limits the phase space to HIPs which stop in the elec-
tromagnetic calorimeter of ATLAS. The search is optimised
for data collected at relatively low instantaneous luminosities
(up to 1031 cm−2s−1), for which a low (10 GeV) trigger trans-
verse energy threshold is available. In the barrel region ofthe
calorimeter, this gives access to energy depositions correspond-
ing to HIPs with electric charges down to 6e. Standard electron
reconstruction algorithms are used, which implies that tracks
which bend like electrically charged particles are sought.Par-
ticles with magnetic charge, or electric charge above 17e, are
not addressed here due to the bending along the beam axis in
the case of a monopole, and due to effects from delta electrons
and electron recombination in the active detector at the corre-
sponding values of energy loss (dE/dx > 2 · 103 MeV/cm). For
such types of HIPs, more detailed studies are needed to assess
and minimise the impact of these effects on the selection effi-
ciency. The 1000 GeV upper bound in mass sensitivity is deter-
mined by trigger timing constraints, as a significantly heavier
HIP (with charge 17eor lower) would be delayed by more than
12 ns with respect toβ = 1 when it stops in the electromagnetic
calorimeter (this corresponds toβ < 0.3), and would thus risk
being triggered in the next proton bunch crossing. The search
is sensitive to HIP lifetimes larger than 100 ns since a particle
which decays much earlier in the calorimeter (even after stop-
ping) would spoil the signature of a narrow energy deposition.
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2. The ATLAS Detector

The ATLAS detector [14] is a multipurpose particle physics
apparatus with a forward-backward symmetric cylindrical ge-
ometry and near 4π coverage in solid angle [15]. A thin super-
conducting solenoid magnet surrounding the inner part of the
ATLAS detector produces a field of approximately 2 T along
the beam axis.

Inner detector (ID) tracking is performed by silicon-based
detectors and an outer tracker using straw tubes with particle
identification capabilities based on transition radiation(Tran-
sition Radiation Tracker, TRT). The TRT is divided into bar-
rel (covering the pseudorapidity range|η| < 1.0) and endcap
(0.8 < |η| < 2.0) components. A track gives a typical number
of straw hits of 36. At the front-end electronics of the TRT, dis-
criminators are used to compare the signal against low and high
thresholds. While the TRT has two hit threshold levels, thereis
no upper limit to the amount of ionisation in a straw which will
lead to a signal [16], guaranteeing that highly ionising parti-
cles would not escape detection in the TRT. Rather, they would
produce a large number of high-threshold (HT) hits along their
trajectories. The amount of ionisation in a straw tube needed for
a TRT HT hit is roughly equivalent to three times that expected
from a minimum ionising particle.

Liquid-argon sampling electromagnetic (EM) calorimeters,
which comprise accordion-shaped electrodes and lead ab-
sorbers, surround the ID. The EM calorimeter barrel (|η| <
1.475) is used in this search. It is segmented transversely and
divided in three layers in depth, denoted first, second, and third
layer, respectively. In front of the accordion calorimetera thin
presampler layer is used to correct for fluctuations of energy
loss. The typical cell granularity (∆η × ∆φ) of the EM barrel
is 0.003× 0.1 in the first layer and 0.025× 0.025 in the second
layer. The signal expected for a HIP in the considered charge
range lies in a region in time and energy where the electronicre-
sponse in EM calorimeter cells is well understood and does not
saturate. The robustness of the EM calorimeter energy recon-
struction has been studied in detail and pulse shape predictions
are consistent with the measured signals [17].

3. Simulated Event Samples

Signal events are generated with the Pythia Monte Carlo
(MC) event generator [18] according to the fermion pair pro-
duction process:p + p → f + f̄ + X. Ref. [19] is used for
the parton distributions of the proton. A Drell-Yan-like produc-
tion mechanism, modified to take into account the mass of the
HIP [20], is used to model the kinematic properties of the HIPs.
Generatedη distributions, as well as kinetic energy (Ekin) spec-
tra in the central region (|η| < 1.35), are shown in Figure 1 for
the three mass points considered in this search.

An ATLAS detector simulation [21] based on Geant-4 [22]
is used, where the particle interactions include secondaryion-
isation by delta electrons in addition to the standard ionisa-
tion process based on the Bethe-Bloch formula. A correction
for electron-ion recombination effects in the EM calorimeter
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Figure 1: Distributions of pseudorapidityη (top) and kinetic energyEkin (bot-
tom) at origin for heavy fermions produced with the Drell-Yan process. The
latter is given with a requirement of|η| < 1.35. The distributions for the three
different masses are normalised to the same number of entries.

(Birks’ correction) is applied, with typical visible energy frac-
tions between 0.2 and 0.5 for the signal particles considered.
Effects of delays are simulated, except for the ability to trigger
slow-moving particles within the proton bunch crossing time,
which is considered separately as a systematic uncertainty(see
Section 6). Samples of approximately 20000 events are pro-
duced for HIPs with masses of 200, 500 and 1000 GeV. For
each mass point, HIPs with charges 6e, 10e and 17e are simu-
lated.

A data-driven method is used in this work to estimate back-
grounds surviving the final selections (see Section 4.2). How-
ever, in order to demonstrate that the distributions of the rele-
vant observables are understood, a sample of simulated back-
ground events is used. The background sample, generated with
Pythia [18] and labeled “Standard Model”, consists mostly of
QCD events in which the hard subprocess is a strong 2-to-2
process with a matrix element transverse momentum cut-off of
15 GeV, but also includes contributions from heavy quark and
vector boson production. A true transverse energy larger than
17 GeV in a typical first level trigger tower is also required.
This sample contains 4· 107 events and corresponds roughly to
an integrated luminosity of 0.8 pb−1.
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4. Trigger and Event Selection

The collected data sample corresponds to an integrated lu-
minosity of 3.1 ± 0.3 pb−1, using a first level trigger based on
energy deposits in the calorimeters. At the first level of thetrig-
ger, so-called trigger towers with dimension∆η×∆φ = 0.1×0.1
are defined. In each trigger tower the cells of the electromag-
netic or hadronic calorimeter are summed. EM clusters with
fixed size∆η × ∆φ = 0.2 × 0.2 are sought and are retained
if the total transverse energy (ET) in an adjacent pair of their
four trigger towers is above 5 GeV. Further electron-like higher
level trigger requirements are imposed on the candidate, includ-
ing ET > 10 GeV, a matching to a track in the ID and a veto
on hadronic leakage [23]. The efficiency of this trigger for the
data under consideration is measured to be (94.0 ± 1.5)% for
electrons withET > 15 GeV and is well described by the sim-
ulation. The simulation predicts that a highly charged particle
which stops in the EM barrel would be triggered with a similar
efficiency or higher.

Offline electron candidates have cluster sizes of∆η × ∆φ =
0.075× 0.175 in the EM barrel, with a matched track in a win-
dow of ∆η × ∆φ = 0.05 × 0.1 amongst reconstructed tracks
with transverse momentum larger than 0.5 GeV. Identification
requirements corresponding to “medium” electrons [24], im-
plying track and shower shape quality cuts, are applied to the
candidates. These cuts filter out backgrounds but have a negli-
gible impact on the signal, for which the cluster width is much
narrower than for typical electrons.

Further offline selections on the cluster transverse energy
(ET > 15 GeV) and pseudorapidity (|η| < 1.35) are im-
posed. TheET selection guarantees that the trigger efficiency
is higher than 94% for the objects under study. The restric-
tion of |η| < 1.35 excludes the transition region between the
EM calorimeter barrel and endcap, reducing the probabilityfor
backgrounds to fake a narrow energy deposition.

4.1. Selection Cuts

A loose selection based on TRT and EM calorimeter infor-
mation is also imposed on the candidates to ensure that the qual-
ity of the track and cluster associated to the electron-likeobject
is good enough to ensure the robustness of the HIP selection
variables, and to provide a data sample with which to estimate
the background rate. Only candidates with more than 10 TRT
hits are retained. Furthermore, for the EM cluster associated
with the candidate, the energy from the three most energetic
cells in each of the first and second layers is summed and re-
quired to be greater than 2 and 4 GeV, respectively. Following
these selections, 137503 candidates remain in the data.

Two sets of observables are used in the final selection. The
ID-based observable is the fraction,fHT , of TRT hits on the
track which pass the high threshold. The calorimeter-baseddis-
criminants are the fractions of energies outside of the three most
energetic cells associated to a selected EM cluster, in the first
and second EM calorimeter layers:w1 andw2.

The fHT distribution for loosely selected candidates is shown
in Figure 2. The data extend up tofHT = 0.8. The prediction
of the signal simulation for a HIP of mass 500 GeV and charge

10e is also shown. It peaks atfHT ∼ 1 and has a small tail
extending into the Standard Model region.
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Figure 2: Distribution of the fraction of TRT high-threshold hits for candidates
satisfying the loose selection. Data (dots) are compared with area-normalised
signal (|q| = 10e andm = 500 GeV, dashed line) and Standard Model back-
ground (shaded area) simulations. The dotted line shows the selection cut value.

The distributions ofw1 andw2 also provide good discrimina-
tion between signal and background, as shown in Figure 3. For
a signal, energy is deposited only in the few cells along the par-
ticle trajectory (as opposed to backgrounds which induce show-
ers in the EM calorimeter) and the distributions peak around
zero for both variables. The shapes of the measured distribu-
tions are well described by the background simulation.

Finally, the following HIP selection is made:fHT > 0.65,
w1 < 0.20 andw2 < 0.15. For signal particles, these cuts re-
ject only candidates in the tails of the distributions, and vary-
ing them has a minor impact on the efficiency; this feature is
common to all considered charge and mass points. The cut val-
ues were chosen to yield a very small (≪ 1 event) expected
background (see Section 4.2) while retaining a high (∼ 96%)
efficiency for the signal. No candidates in data or in simulated
Standard Model events pass this selection.

4.2. Data-driven Background Estimation
A data-driven method is used to quantify the expected back-

ground yield after the HIP selection. Potential backgrounds
consist mainly of electrons. For Standard Model candidates,
the ID and calorimeter observables are correlated in a way that
further suppresses the backgrounds (see Figure 4). The back-
ground estimation assumes thatfHT is uncorrelated withw1 and
w2 and is thus conservative.

The yield of particle candidates passing the loose selection
Nloose = 137503 can be divided into the following:N0, N1,
NfHT , andNw, which represent the number of candidates which
satisfy both of the selections, neither of the selections, only the
fHT selection, and only thew1 andw2 selections taken together,
respectively. Even in the presence of a signal,N1, NfHT and
Nw would be dominantly composed of background events. The
probability of a background candidate passing the TRT require-
ment is thenPfHT =

NfHT
(N1+NfHT ) and the probability to pass the

3



1w
0 0.2 0.4 0.6 0.8 1

N
um

be
r 

of
 c

an
di

da
te

s

-110

1

10

210

310

410

510 -1data 3.1 pb
Standard Model MC
Signal, |q|=10e,
m=500 GeV

=7 TeVs
ATLAS

2w
0 0.2 0.4 0.6 0.8 1

N
um

be
r 

of
 c

an
di

da
te

s

-110

1

10

210

310

410

510 -1data 3.1 pb
Standard Model MC
Signal, |q|=10e,
m=500 GeV

=7 TeVs
ATLAS

Figure 3: Distributions ofw1 andw2 following the loose selection. Data (dots)
are compared with area-normalised signal (|q| = 10eandm= 500 GeV, dashed
lines) and Standard Model background (shaded area) simulations. Negative
values are caused by pedestal fluctuations. Dotted lines show the selection cut
values.

calorimeter requirements isPw =
Nw

(N1+Nw) , leading to an ex-
pectation of the number of background candidates entering the
signal region: Nbg = NloosePfHT Pw. The data sample yields
N0 = 0, N1 = 137342,NfHT = 18 andNw = 143, leading
to PfHT = (1.3 ± 0.3) · 10−4 andPw = (1.0 ± 0.1) · 10−3. The
expected number of background candidates surviving the selec-
tion, and thereby the expected number of background events,is
thusNbg = 0.019± 0.005. The quoted uncertainty is statistical.

5. Signal Selection Efficiency

5.1. Efficiencies in Acceptance Kinematic Regions

The probability to retain a signal event can be factorised in
two parts: acceptance (probability for a HIP in a region where
the detector is sensitive) and efficiency (probability for this HIP
to pass the selection cuts). The acceptance is defined here as
the probability that at least one signal particle will be in the
range|η| < 1.35 and stop in the second or third layer of the EM
calorimeter. If this condition is satisfied, the simulationpre-
dicts a high probability to trigger on, reconstruct and select the
event. This corresponds to the dark region in Figure 5, which
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Figure 4: Contours ofw2 versus fHT distributions following loose selection,
showing the density of entries on a log scale. Data and signalMonte Carlo
(|q| = 10e andm = 500 GeV) are shown, and no candidates in the data appear
near the signal region. The correlation factor betweenw2 and fHT in the data is
positive (coefficient 0.15); the same trend is also true for the correlation between
w1 and fHT (coefficient 0.18).

|q| m [GeV] Emin
kin Emin

kin Emax
kin

(η = 0) (|η| = 1.35) (η = 0)
6e 200 40 50 50
6e 500 50 70 70
6e 1000 60 130 80
10e 200 50 80 90
10e 500 80 110 130
10e 1000 110 150 180
17e 200 100 150 190
17e 500 150 190 260
17e 1000 190 240 350

Table 1: Kinetic energies (in GeV) defining the acceptance kinematic ranges
for HIPs with the masses and electric charges considered in this search. The
three columns correspond to the lower left, lower right, and upper left corners
of parallelograms in the(|η|,Ekin) plane.

shows the predicted selection efficiency mapped as a function
of the initial HIP pseudorapidity and kinetic energy, in thecase
of |q| = 10e andm = 500 GeV. Such acceptance kinematic re-
gions can be parametrised with three values defining three cor-
ners of a parallelogram. These parameters are summarised in
Table 1. For HIPs produced inside such regions, the candidate
selection efficiency is flat within 10% and takes values between
0.5 and 0.9 depending on the charge and mass (see Table 2). For
|q| = 17e, the main source of inefficiency is the requirement on
the number of TRT HT hits, which contributes up to 20% signal
loss. This is largely due to the presence of track segments from
delta electrons, which have a non-negligible probability to be
chosen by the standard electron track matching algorithm. For
low charges, inefficiencies are dominated by the clusterET cut,
typically accounting for∼ 6% loss. Other contributions, like
trigger, electron reconstruction, and electron identification, can
each cause 1− 6% additional inefficiency.
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m [GeV] |q| = 6e |q| = 10e |q| = 17e
200 0.822± 0.026 0.820± 0.015 0.484± 0.012
500 0.868± 0.021 0.856± 0.014 0.617± 0.011
1000 0.558± 0.019 0.858± 0.012 0.700± 0.012

Table 2: Expected fractions of HIP candidates passing the final selection, as-
suming they are produced inside the acceptance regions defined by the values
in Table 1. Uncertainties due to MC statistics are quoted; other systematic un-
certainties are discussed in Section 6.
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Figure 5: Probability to pass all selection criteria as a function of pseudorapidity
and kinetic energy at origin, for a HIP with charge 10eand mass 500 GeV. The
dark region corresponds to the kinetic range where the particle stops in or near
the second layer of the EM calorimeter barrel and is parametrised with three
energy values (dashed parallelogram, see Table 1).

5.2. Efficiencies for Drell-Yan Kinematics

The estimated fractions of signal events where at least one
candidate passes the final selection, assuming they are produced
with Drell-Yan kinematics, are shown in Table 3 for the values
of charge and mass considered in this search. The dominant
source of loss (70− 85% loss) is from the kinematic accep-
tance, i.e., the production of HIPs with|η| > 1.35, as well as
their stopping before they reach the second layer of the EM
calorimeter, or after they reach the first layer of the hadronic
calorimeter. The relative contributions from these various types
of acceptance loss depend on mass and charge, as well as the
kinematics of the assumed production model. The Drell-Yan
production model implies that the fraction of HIPs producedin
the acceptance region of pseudorapidity|η| < 1.35 is larger with
increasing mass (see Figure 1). Also, with the assumed energy
spectra (bottom plot in Figure 1), the acceptance is highestfor
intermediate charges (|q| = 10e), since HIPs with low charges
tend to punch through the EM calorimeter and HIPs with high
charges tend to stop before reaching it.

6. Systematic Uncertainties

The major sources of systematic uncertainties affecting the
efficiency estimation are summarised below. These mainly con-
cern possible imperfections in the description of HIPs in the
detector by the simulation.

m [GeV] |q| = 6e |q| = 10e |q| = 17e
200 0.102± 0.002 0.175± 0.003 0.112± 0.002
500 0.150± 0.003 0.236± 0.003 0.193± 0.003
1000 0.133± 0.002 0.299± 0.004 0.237± 0.004

Table 3: Expected fractions of signal events passing the final selection, assum-
ing Drell-Yan kinematics. Uncertainties due to MC statistics are quoted; other
systematic uncertainties are discussed in Section 6.

• The recombination of electrons and ions in the sampling
region of the EM calorimeter affects the measured current
and thus the total visible energy. Recombination effects
become larger with increasing dE/dx. In the ATLAS simu-
lation, this is parametrised by Birks’ law [25]. To estimate
the uncertainty associated with the approximate modeling
of recombination effects, predictions from the ATLAS im-
plementation of Birks’ correction [26] are compared to
existing data of heavy ions punching through a layer of
liquid argon [27–29]. In the range 2· 102 MeV/cm <
dE/dx< 2·103 MeV/cm, which corresponds to typical HIP
energy losses in the EM calorimeter for the charges and
masses under consideration, the uncertainty in the sim-
ulated visible energy fraction is±15%. This introduces
between 4% and 23% uncertainty in the signal selection
efficiency. The impact is largest for charge 6e, for which
a lower visible energy would be more likely to push the
candidate below the 15 GeV clusterET threshold.

• The fraction of HIPs which stop in the detector prior to
reaching the EM calorimeter is affected by the assumed
amount of material in the Geant-4 simulation. Vary-
ing the material density within the assumed uncertainty
range (± ∼ 10% [30]), independently in the ID and EM
calorimeter volumes, leads to a 6% uncertainty in signal
acceptance.

• The modeling of inactive or inefficient EM calorimeter re-
gions in the simulation results in a 2% uncertainty in the
signal efficiency.

• Cross-talk effects between EM calorimeter cells affect the
w1 and w2 variables and this may not be accurately de-
scribed by the simulation for large energy depositions per
cell. The resulting uncertainty in signal efficiency is 2%.

• Secondary ionisation by delta electrons affects the track
reconstruction and the calorimeter energy output. The
amount of delta electrons in ATLAS detectors as described
in Geant-4 depends on the cutoff parameter (the radius be-
yond which delta electrons are considered separate from
the mother particle). Varying this parameter results in a
3% uncertainty in the signal efficiency.

• For clusters delayed by more than 10 ns with respect to the
expected arrival time of a highly relativistic particle, which
corresponds toβ < 0.37, there is a significant chance that
the event is triggered in the next bunch crossing by the first
level EM trigger. In most of the mass and charge range
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m [GeV] |q| = 6e |q| = 10e |q| = 17e
200 25% 11% 9%
500 17% 10% 9%
1000 28% 10% 9%

Table 4: Relative systematic uncertainties in efficiency, combining in quadra-
ture all the effects described in the text.

considered in this search, more than 99% of the particles
which are energetic enough to reach the EM calorimeter
and pass the event selection are in the high-efficiency range
β > 0.4. The only exception is|q| = 6eandm= 1000 GeV,
for which theβ distribution after selection peaks between
0.32 and 0.47. The trigger efficiency loss is corrected for,
resulting in an additional 25% uncertainty for this particu-
lar case.

• Uncertainties in the choice of parametrisation for the par-
ton density functions (pdfs) of the proton have an impact
on the event kinematics. To test this effect, events were
generated (see Section 3) with 7 different pdfs from vari-
ous sources [19, 31–34]. Assuming that acceptance vari-
ations due to the choice of pdf are Gaussian, the resulting
relative uncertainty in the acceptance is 3%.

• The relative uncertainty in efficiency due to MC statistics
is of the order of 2%.

Other effects, like event pile-up and electron pick-up by pos-
itively charged particles, have been investigated and found to
be negligible. Efficiency systematics are dominated by Birks’
correction. The relative uncertainties in the signal selection ef-
ficiencies (Tables 2 and 3), obtained by adding all effects in
quadrature, are shown in Table 4.

The systematic uncertainty in the absolute integrated lumi-
nosity is 11% [35].

7. Upper Limit on the Cross Section

A very low (≪ 1 event) background yield is expected and
no events are observed to pass the selection. Knowing the in-
tegrated luminosity (3.1 pb−1) and the selection efficiency for
various model assumptions (Tables 2 and 3), cross section limits
are obtained. This is done using a Bayesian statistical approach
with a uniform prior for the signal and the standard assumption
that the uncertainties in integrated luminosity (11%) and effi-
ciency (Table 4) are Gaussian and independent. The limits are
presented in Table 5 (for a particle produced in the acceptance
kinematic region defined by Table 1) and in Table 6 (assuming
Drell-Yan kinematics).

These limits can be approximately interpolated to intermedi-
ate values of mass and charge. Also, the limits quoted in Ta-
ble 5 can be used to extract cross section limits for any given
model of kinematics by correcting for the acceptance (fraction
of events with at least one generated HIP in the ranges defined
by Table 1): such a procedure yields conservative limits thanks
to the fact that candidates beyond the sharp edges of the accep-
tance regions defined in Table 1 can also be accepted.

m [GeV] |q| = 6e |q| = 10e |q| = 17e
200 1.4 1.2 2.1
500 1.2 1.2 1.6
1000 2.2 1.2 1.5

Table 5: Inclusive HIP cross section upper limits (in pb) at 95% confidence
level for long-lived massive particles with high electric charges produced in
regions of pseudorapidity and kinetic energy as defined in Table 1. Efficiencies
in Table 2 and uncertainties in Table 4 were used in the cross section limit
calculation.

m [GeV] |q| = 6e |q| = 10e |q| = 17e
200 11.5 5.9 9.1
500 7.2 4.3 5.3
1000 9.3 3.4 4.3

Table 6: Pair production cross section upper limits (in pb) at95% confidence
level for long-lived massive particles with high electric charges, assuming a
Drell-Yan mechanism. Efficiencies in Table 3 and uncertainties in Table 4 were
used in the cross section limit calculation.

8. Summary

A search has been made for HIPs produced in the ATLAS de-
tector at the LHC using 3.1 pb−1 of ppcollisions at

√
s= 7 TeV.

The signature of high ionisation in an inner detector track
matched to a narrow calorimeter cluster has been used. Up-
per cross section limits between 1.2 pb and 11.5 pb have been
extracted for HIPs with electric charges between 6eand 17eand
masses between 200 GeV and 1000 GeV, under two kinematics
assumptions: a generic HIP in a fiducial range of pseudorapid-
ity and kinetic energy, or a Drell-Yan fermion pair production
mechanism. HIP mass ranges above 800 GeV [11] are probed
for the first time at a particle collider. These limits are thefirst
constraints obtained on long-lived highly charged particle pro-
duction at LHC collision energies.
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P. Kodys126, K. Köneke29, A.C. König104, S. Koenig81,
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