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Abstract

The production of mesons containing strange quarks (K0
S, φ ) and both singly and doubly strange

baryons (Λ, Λ, andΞ−+Ξ+
) are measured at central rapidity in pp collisions at

√
s = 0.9 TeV

with the ALICE experiment at the LHC. The results are obtained from the analysis of about 250 k
minimum bias events recorded in 2009. Measurements of yields (dN/dy) and transverse momen-
tum spectra at central rapidities for inelastic pp collisions are presented. For mesons, we report
yields (〈dN/dy〉) of 0.184± 0.002 (stat.) ± 0.006 (syst.) for K0

S and 0.021± 0.004 (stat.) ±
0.003 (syst.) for φ . For baryons, we find〈dN/dy〉 = 0.048± 0.001 (stat.) ± 0.004 (syst.) for
Λ, 0.047± 0.002 (stat.) ± 0.005 (syst.) for Λ and 0.0101± 0.0020(stat.) ± 0.0009(syst.) for
Ξ−+Ξ+

. The results are also compared with predictions for identified particle spectra from QCD-
inspired models and provide a baseline for comparisons withboth future pp measurements at higher
energies and heavy-ion collisions.

∗See Appendix A for the list of collaboration members
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1 Introduction

The production of hadrons at high transverse momenta in highenergy proton-proton collisions is reason-
ably well described by perturbative Quantum Chromodynamics (pQCD) in terms of hard parton-parton
scattering (large momentum transfers) followed by fragmentation [1, 2]. However, the low-momentum
region, where most particles are produced and which therefore contributes most to the underlying event,
is dominated by soft interactions. In the soft regime, it hasbeen found that particle production can be
described effectively by models based on emission from an equilibrated system at a specific temperature
and baryo-chemical potential, with additional accountingof conserved quantities [3, 4, 5]. It can also
be treated in the framework of QCD inspired phenomenological models, that include multi-parton pro-
cesses, extrapolated to very low-momentum transfers [6]. The contribution and evolution of multi-parton
processes as a function of

√
s is difficult to establish. Measurements of identified particles at the beam in-

jection energy of the LHC and in the low transverse momentum (pT) region, along with their comparison
with QCD-inspired models, constitute a baseline for comparisons with higher centre-of-mass energies.
The low pT cutoff achievable through the low material budget, low central barrel magnetic field (0.5 T)
and excellent particle identification (PID) of the ALICE detectors, allows an accurate measurement of
the low momentum region at mid-rapidity.

The differential transverse momentum yields (pT spectra) and integrated yields at central rapidity of K0
S,

φ , Λ, Λ andΞ−+Ξ+
have been measured by the ALICE experiment during the commissioning phase

of the LHC (December 2009) [7] with the very first proton-proton collisions [8] and are reported in
this article. A sample of 250 k minimum bias pp collisions at

√
s = 0.9 TeV has been selected with

triggers combining several fast detectors [9]. Measurements are performed using the tracking devices
and the main PID detectors of ALICE in the central rapidity region (|y| < 0.8). A comparison of the
transverse momentum shapes (mass dependence and mean transverse momentum) with PYTHIA [1] and
PHOJET [2] is provided.

This article is organized as follows. Section 2 presents theexperimental conditions, the minimum bias
event selection as well as a brief description of the main detectors and the associated event reconstruction
tools used for the analysis. Section 3 is dedicated to the data analysis, including track and topological
selections, signal extraction methods and the corresponding efficiency corrections. The determination
of the systematic uncertainties are also described in this section. In section 4, thepT spectra and the
integrated yields of the studied particle species are givenand compared with previous measurements and
model predictions. Conclusions are given in section 5.

2 Experimental set-up and data collection

A detailed description of the ALICE experimental setup and its detector subsystems can be found in [10].

2.1 Main detectors and reconstruction techniques used for the analyses

The central barrel of ALICE covers polar angles from 45◦ to 135◦ over the full azimuth. It is embedded in
the large L3 solenoidal magnet providing a nominal magneticfield B of 0.5 T. Within the barrel, the two
tracking detectors used in these present analyses consist of an Inner Tracking System (ITS), composed
of 6 cylindrical layers of high-resolution Silicon detectors and a cylindrical Time Projection Chamber
(TPC). PID is performed using secondary (displaced) vertexreconstruction, invariant mass analysis and
single track PID methods, which include the measurement of specific ionization in the ITS and the TPC,
and the information from the Time-Of-Flight detector (TOF).

2.1.1 The Inner Tracking System

The Silicon Pixel Detector (SPD) corresponds to the two innermost ITS layers. These two layers have
a very high granularity with a total of about 9.8 million pixels, each with a size of 50×425 µm2. They
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are located at radii of 3.9 and 7.6 cm and the pseudorapidity coverages are|η | < 2.0 and |η | < 1.4
respectively. The detector provides a position resolutionof 12 µm in the rφ direction and about 100µm
in the direction along the beam axis. It can also deliver a signal for the first level of trigger (L0) in less
than 850 ns. The two layers of the Silicon Drift Detector (SDD), located at radii of 15.0 and 23.9 cm,
are composed of 260 sensors, including 133 000 collection anodes with a pitch of 294µm. They provide
a charge deposit measurement and a position measurement with a resolution of about 35µm in the rφ
direction and about 25µm in the beam direction [11]. The Silicon Strip Detector (SSD) consists of 1698
double-sided sensors (with a strip pitch of 95µm and a stereo angle of 35 mrad) arranged in 2 layers
located at radii of 38 and 43 cm. It provides a measurement of the charge deposited in each of the 2.6
million strips, as well as a position measurement with a resolution of 20µm in the rφ direction and about
800µm in the beam direction.

The ITS sensor modules were aligned using survey information and tracks from cosmic-ray muons and
pp collisions. The corresponding methods are described in [11].

The percentage of operational channels in the ITS during the2009 run is 82% for the SPD, 91% for the
SDD and 90% for the SSD.

2.1.2 The Time Projection Chamber

The ALICE TPC is a cylindrical drift detector with a pseudorapidity coverage of|η | ≤ 0.9 [12]. It has
a field cage filled with 90 m3 of Ne/CO2/N2 (85.7/9.5/4.8%). The inner and outer radii of the active
volume are of 85 cm and 247 cm respectively and the length along the beam direction is 500 cm. Inside
the field cage, ionization electrons produced when charged particles traverse the active volume on either
side of the central electrode (a high voltage membrane at−100 kV) migrate to the end plates in less than
94 µs. A total of 72 multi-wire proportional chambers, with cathode pad readout, instrument the two
end plates of the TPC which are segmented in 18 sectors and amount to a total of 557,568 readout pads.
The ALICE TPC ReadOut (ALTRO) chip, employing a 10 bit ADC at 10 MHz sampling rate and digital
filtering circuits, allows for precise position and linear energy loss measurements with a gas gain of the
order of 104.

The position resolution in therφ direction varies from 1100µm to 800µm when going from the inner
to the outer radius whereas the resolution along the beam axis ranges between 1250µm and 1100µm.

2.1.3 The Time-Of-Flight detector

The ALICE Time-Of-Flight detector [13] is a cylindrical assembly of Multi-gap Resistive Plate Cham-
bers (MRPC) with an inner radius of 370 cm and an outer radius of 399 cm, a pseudorapidity range
|η | < 0.9 and full azimuth angle, except for the region 260< φ < 320 atη near zero where no TOF
modules were installed to reduce the material in front of thePhoton Spectrometer. The basic unit of the
TOF system is a 10-gap double-stack MRPC strip 122 cm long and13 cm wide, with an active area of
120× 7.4 cm2 subdivided into two rows of 48 pads of 3.5× 2.5 cm2. Five modules of three different
types are needed to cover the full cylinder along the z direction. All modules have the same structure
and width (128 cm) but differ in length. The overall TOF barrel length is 741 cm (active region). It
has 152,928 readout channels and an average thickness of 25−30% of a radiation length, depending on
the detector zone. For pp collisions, such a segmentation leads to an occupancy smaller than 0.02 %.
Its front-end electronics is designed to comply with the basic characteristics of a MRPC detector, i.e.
very fast differential signals from the anode and cathode readout. Test beam results demonstrated a time
resolution below 50 ps, dominated by the jitter in the electronic readout.
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2.1.4 The VZERO Counters

The VZERO counters are two scintillator hodoscopes locatedalong the beam direction at−0.9 m and
3.3 m from the geometrical centre of the experiment. They correspond to a coverage of−3.7<η <−1.7
and 2.8 < η < 5.1 respectively and have a time resolution close to 0.5 ns. They are used as trigger
detectors and help to remove beam-gas interaction background.

2.1.5 Track reconstruction and particle identification

The global tracking system in the ALICE central barrel (combining the ITS and the TPC) covers the
pseudorapidity window|η |< 0.9.

The reconstruction in the tracking detectors begins with charge cluster finding. The two coordinates of
the crossing points (space points) between tracks and detector sensitive elements (pad rows in the TPC,
and silicon sensors in the ITS) are calculated as the centresof gravity of the clusters. The errors on the
space point positions are parametrized as functions of the cluster size and of the deposited charge. In the
TPC, these errors are further corrected during the tracking, using the crossing angles between tracks and
the pad rows.

The space points reconstructed at the two innermost ITS layers (pixel detector, SPD) are then used for the
reconstruction of the primary vertex. One space point from the first SPD layer and one from the second
layer are combined into pairs called “tracklets”. The primary vertex is consequently reconstructed in 3D
as the location that minimizes the sum of the squared distances to all the tracklet extrapolations. If this
fails, the algorithm instead reconstructs thez coordinate of the vertex by correlating thez coordinates
of the SPD space points, while forx and y the average position of the beam in the transverse plane
(measured basis by a dedicated calibration procedure on a run-by-run basis) is assumed.

Track reconstruction in ALICE is based on the Kalman filter approach and is discussed in detail in [15].
The initial approximations for the track parameters (the “seeds”) are constructed using pairs of space
points taken at two outer TPC pad rows separated by a few pad rows and the primary vertex. The primary
vertex position errors for this procedure are considered tobe as big as 3 cm. The seeds for the secondary
tracks are created without using the primary vertex, since such a constraint would unnecessarily reduce
the V0 finding efficiency. The space points are searched alongthe line connecting the pairs of points
taken at those two outer TPC pad rows.

Once the track seeds are created, they are sorted according to the estimate of their transverse momentum
(pT). Then they are extended from one pad row to another in the TPCand from one layer to another
in the ITS towards the primary vertex. Every time a space point is found within a prolongation path
defined by the current estimate of the covariance matrix, thetrack parameters and the covariance matrix
are updated using the Kalman filter. For each tracking step, the estimates of the track parameters and
the covariance matrix are also corrected for the mean energyloss and Coulomb multiple scattering in
the traversed material. The decision on the particle mass tobe used for these corrections is based on the
dE/dx information given by the TPC when available. If the information is missing or not conclusive, a
pion mass is assumed. Only five particle hypotheses are considered: electrons, muons, pions, kaons and
protons.

All the tracks are then propagated outwards, through the ITSand the TPC. When possible, they are
matched with the hits reconstructed in the TOF detector. During this tracking phase, the track length
and five time-of-flight hypotheses per track (correspondingto the electron, muon, pion, kaon and proton
masses) are calculated. This information is later used for the TOF PID procedure. The track parame-
ters are then re-estimated at the distance of closest approach (DCA) to the primary vertex applying the
Kalman filter to the space points already attached. Finally,the primary vertex is fitted once again, now
using reconstructed tracks and the information about the average position and spread of the beam-beam
interaction region estimated for this run.
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In pp collisions, the track reconstruction efficiency in theacceptance of TPC saturates at about 90%
because of the effect of the dead zones between its sectors. It goes down to about 75% aroundpT =
1 GeV/c and drops to 45% at 0.15 GeV/c. It is limited by particle decays (for kaons), track bendingat
low pT and absorption in the detector material. The amount of material traversed by particles nearη = 0
is about 11% of of a radiation length including the beam pipe,the ITS and the TPC (with service and
support).

The overallpT resolution is at least as good as the TPC-standalone resolution, which is typically 1% for
momenta of 1 GeV/c and 7% for momenta of 10 GeV/c, and follows the parameterization(σ(pT)/pT)

2 =
(0.01)2+(0.007 pT)

2 wherepT is expressed in GeV/c (see [14] for the details).

The resolution of the track transverse impact parameter (the minimal distance between a track and the pri-
mary vertex in the transverse plane) depends on the precision of track and primary vertex reconstruction.
These in turn depend on the momentum, and, in the case of the vertex, on the number of contributing
tracks. As it was estimated from the data, the transverse impact parameter resolution for a typical pp
event could be parameterized asσ(pT) = 50+60/(pT)

0.9 (σ is in µm, andpT is in GeV/c), which was
defined by the level of the ITS alignment achieved in 2009.

The dE/dx resolution of the TPC is estimated to be about 5% for tracks with 159 clusters [12], which is
better than the design value [15]. When averaged over all reconstructed tracks, this resolution is about
6.5%.

During the run, the preliminary calibration of the TOF detector corresponds to a resolution of 180 ps,
which includes 140 ps due to the jitter in the absolute time ofthe collisions. This contribution is reduced
to about 85 ps for those events with at least 3 tracks reachingthe TOF, in which case an independent
time zero determination is possible. The matching efficiency with TPC tracks (which includes geometry,
decays and interaction with material) is on average 60% for protons and pions and reaches 65% above
pT = 1 GeV/c. For kaons it remains sligthly lower [16]. AbovepT = 0.5 GeV/c, the TOF PID has an
efficiency larger than 60% with a very small contamination.

2.2 LHC running conditions and triggers

For the first collisions provided by the Large Hadron Collider, four low intensity proton bunches (109

protons per bunch, giving the luminosity of the order of 1026 cm−2s−1) per beam were circulated, and two
pairs of them crossed at the ALICE interaction point. Under such conditions, the rate for multiple events
in a given bunch-crossing (“pile-up”) was negligible. The energy in the centre of mass corresponded to
twice the beam injection energy, that is

√
s = 0.9 TeV. The data acquisition of ALICE was triggered by

requiring two coincidence conditions: i) the LHC bunch-crossing signal together with the two beam pick-
up monitors (BPTX); ii) ALICE minimum bias (MB) trigger requiring a combination of signals from the
SPD and from the VZERO counters. For these analyses, the MBOR was used, which is fulfilled when at
least one of the VZEROs or the SPD trigger is fired [9]. The corresponding data rate was∼ 10 Hz.

3 Data analysis

3.1 Event and track selection

The primary vertex is reconstructed using either SPD tracklets [8] (5% of the events) or global tracks
(95% of the events). Events are selected by requiring that the distance between the position of primary
vertex and the geometrical centre of the apparatus along thebeam axis be less than 10 cm (z =−0.40 cm
and rmsz = 4.24 cm, wherez is the average position of the primary vertex along the beam axis). Events
with less centred primary vertices (|z| > 10 cm) are discarded in order to minimize acceptance and
efficiency biases for tracks at the edge of the TPC detection volume. The average position and dispersion
for both horizontal and vertical directions are found to bex = −0.35 mm (y = +1.63 mm) and rmsx =
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Fig. 1: Primary vertex distributions for the analysed events. The left panel shows the distributions along the beam
axis. Selected events (full symbols) are required to have a reconstructed primary vertex with|z|< 10 cm. The right
panel corresponds to the directions perpendicular to the beam axis: horizontally (i.e.x-direction, squares and full
line) and vertically (i.e.y-direction, triangles and dashed line).

0.23 mm (rmsy = 0.27 mm). No conditions were applied on thex and y position of the vertex. The
total number of events used for obtaining the particle spectra and yields is about 250 k events. Figure 1
shows the primary vertex distribution along the beam axis (left panel) and for thex andy directions (right
panel). The dashed lines indicate the limits of the selectedvertex region.

The normalization to the number of inelastic events (INEL) is obtained in the same way as other ALICE
analyses [8, 16]. It leads to a correction for the normalization of∼ 5% with an uncertainty of 2%. This
uncertainty is added to the ones described in section 3.5 andmainly related to the modeling of the fraction
of diffractive events with several Monte Carlo event generators.

Several quality criteria are defined for track selection. Each track is required to have been reconstructed
in the TPC in the initial outward-in step of tracking and thensuccessfully refitted in the final back-
propagation to the primary vertex as described in section 2.1.5. It is also required that each track has at
least 80 TPC clusters out of a maximum of 159. At the reconstruction level, split tracks are rejected as
well as those which may correspond to daughters of kaons decaying in the TPC.

As the φ particle is a strongly decaying resonance, its daughters are indistinguishable from primary
particles at the reconstruction level and therefore primary track selections are used. As a first step, each
track is propagated to the reconstructed primary vertex. Ifthis operation is successful, the track is kept
if it has a DCA smaller than 5 mm (3 cm) in the transverse (longitudinal) direction with the additional
constraints of having at least one SPD cluster and aχ2 of less than 4 per cluster assignment (for each
cluster, theχ2 has two degrees of freedom).

Depending on its lifetime, a particle may cross several layers of the ITS before weakly decaying. The
probability that the daughter tracks of K0

S, Λ, Λ andΞ−+Ξ+
have a hit in this detector decreases accord-

ingly. Therefore, no specific condition on the number of ITS hits is required for the daughter tracks of
the reconstructed secondary vertices. However, other quality criteria are applied for selecting the daugh-
ter tracks of weakly decaying particles which are not considered as primaries. The selections described
are summarized in Table 1. The measurement of differential yields in rapidity andpT bins cannot be
performed simultaneously for the particles considered dueto the small available statistics. Therefore
the rapidity ranges are chosen such that i) the efficiency does not vary strongly for each species and ii)
the rapidity distribution is sufficiently flat for it to be possible to rely on the Monte Carlo to obtain the
corrections.
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Table 1: Track selection criteria.

Common selections

Detectors required for track rec./fit ITS,TPC
Number of TPC clustersa > 80
N(σ ) dE/dx (TPC PID) 3to 5

Primary track selections

χ2 per cluster < 4
DCA to primary vertex (r,z) < (0.5,3.0) cm
Number of SPD clustersb ≥ 1

Secondary track selections

transverse momentumc > 160 MeV/c

a maximum number for the TPC is 159;
b maximum number for the SPD is 2;
c in the cases of K0S, Λ andΛ.

Table 2: Secondary vertex selection criteria.

Common selections

Minimum transverse decay radius > 0.2 cm
Maximum transverse decay radius < 100 cm

V0 vertex selections (K0S, Λ andΛ)

DCA of V0 daugther track
to primary vertex > 0.05 cm
DCA between V0 daughter tracks < 0.50 cm
Cosine of V0 pointing angle (Λ andΛ) > 0.99

Cascade vertex selections

DCA of cascade daughter track
to primary vertexa > 0.01 cm
DCA between V0 daughter tracks < 3.0 cm
Cosine of V0 pointing angle > 0.97
DCA of V0 to primary vertex > 0.001 cm
V0 invariant mass > 1110 MeV/c2

V0 invariant mass < 1122 MeV/c2

DCA between V0 and bachelor track < 3.0 cm
Cosine of cascade pointing angle > 0.85

a for bachelor and each V0 daughter.
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Table 3: Main characteristics of the reconstructed particles: valence quark content, mass, cτ and charged decay
branching ratio (B.R.) [18].

Particles mass (MeV/c2) cτ charged decay B.R. (%)

Mesons
K0

S 497.61 2.68 cm K0
S→ π++π− 69.2

φ (ss̄) 1019.46 45 fm φ → K++K− 49.2

Baryons
Λ (uds) andΛ (uds) 1115.68 7.89 cm Λ→ p+π− andΛ→ p+π+ 63.9
Ξ− (dss) andΞ+

(dss) 1321.71 4.91 cm Ξ−→ Λ+π− andΞ+→ Λ+π+ 99.9

3.2 Particle reconstruction and identification methods

3.2.1 Topological reconstruction ofK0
S, Λ, Λ and Ξ−+Ξ+

The K0
S, Λ, Λ andΞ−+Ξ+

are identified by applying selections on the characteristics of their daughter
tracks (see Table 2) and using their weak decay topologies inthe channels listed in Table 3.

The measurement of K0S, Λ andΛ is based on the reconstruction of the secondary vertex (V0) associated
to their weak decay. The V0 finding procedure starts with the selection of secondary tracks, i.e. tracks
having a sufficiently large impact parameter with respect tothe primary vertex. All possible combinations
between two secondary tracks of opposite charge are then examined. They are accepted as V0 candidates
only if the DCA between them is smaller than 0.5 cm. The minimization of the distance between the
tracks is performed numerically using helix parametrizations in 3D. The V0 vertex position is a point
on the line connecting the points of closest approach between the two tracks. Its distance from each
daughter track is taken to be proportional to the precision of the track parameter estimations. Once their
position is determined, only the V0 candidates located inside a given fiducial volume are kept. The
inner boundary of this fiducial volume is at a radius of 0.2 cm from the primary vertex, while the outer
limit is set at 100 cm. Finally, forΛ andΛ reconstruction, the V0 finding procedure checks whether the
particle momentum (~p) associated with the V0 candidate (calculated as the sum of the track momenta
extrapolated to the position of the DCA) points back to the primary vertex. This is achieved by applying
a cut on the cosine of the angle (pointing angleθ~p) between~p and a vector connecting the primary vertex
and the V0 position (cosθ~p > 0.99). The invariant mass of each candidate can then be calculated either
under the K0S or theΛ hypothesis.

The TPC PID helps substantially to remove the combinatorialbackground for theΛ andΛ (mainly for
the baryon daughter identification, while it is not needed for the K0

S decaying into pions). TPC PID
is described in paragraph 3.2.3. The selections here concern the proton daughter only and have been
chosen to be looser for the daughter track with momentum below 0.7 GeV/c (±5σ ) and tighter for
higher momentum (±3σ ).

TheΞ−+Ξ+
particles are identified via their “cascade” decay topology. The cascade finding procedure

starts from the V0 finding procedure for theΛ daughter but with less stringent selection criteria (see
Table 2 and Cascade vertex selections). This is done to increase the efficiency and to allow for the fact
that the daughterΛ’s do not have to point back to the primary vertex.

The V0 candidates found within theΛ mass window (1116± 6 MeV/c2) are combined with all pos-
sible secondary tracks (bachelor candidates) with the exception of both V0 daughter tracks. A cut on
the impact parameter of the bachelor track is applied to reject the primary particles which increase the
combinatorial background.

A V0-bachelor association is performed if the distance of closest approach between the bachelor track
and the V0 trajectory (DCA between V0 and bachelor track) is small (less than 3 cm). Finally, this
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Fig. 2: Invariant mass distributions of K0S, Λ andΛ, φ and the sumΞ−+Ξ+
. The vertical arrows indicate the

nominal mass values from PDG.

cascade candidate is selected if its reconstructed momentum points back to the primary vertex (cosine of
cascade pointing angle). The cascade finding is limited to the fiducial region used for V0 reconstruction
(see Table 2).

In addition to topological selections, the reconstructionof cascades also makes use of the single-track
PID information delivered by the TPC. This is considered foreach of the three daughters (both pions
and the proton). For each track, a loose selection is required (±4σ over the whole momentum range) to
reject the combinatorial background in part. The resultinginvariant mass distributions are presented in
Fig. 2.

3.2.2 Additional quality checks forK0
S, Λ, Λ

A significant fraction of the reconstructed V0 come fromγ conversion in the detector material. This can
be clearly seen in the Armenteros-Podolanski distribution[17] shown in Fig. 3 wherep+L and p−L are
the longitudinal components of the total momentum for the positive and negative daughters respectively,
relative to the direction of the V0 momentum vector. The K0

S, Λ andΛ signal regions are symmetric and
clearly distinguishable.

The lifetime (cτ) distributions for K0
S, Λ and Λ are also checked. All V0 candidates within a±3σ

effective mass region around the nominal value are used in the distribution without further residual
background subtraction. The corresponding distributionsof cτ = L m

p are obtained, whereL is defined as
the distance between primary and V0 vertices, andm andp are the particle mass and momentum. Because
of the acceptance, the single track efficiency and the topological selections applied at reconstruction
level, the reconstruction efficiency as a function of the decay length is not constant. The corresponding
corrections are extracted from the reconstruction of full Monte Carlo simulations (see section 3.4). The
correctedcτ distributions are fitted using exponential functions. The results are shown with the statistical
uncertainties in Fig. 4. The extracted decay lengths of 7.9±0.1 cm, 7.7±0.1 cm and 2.72±0.03 cm for
Λ, Λ and K0

S, respectively, are compatible with the PDG values given in Table 3.
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ALEPH parameterization [19] of the Bethe-Bloch curve (solid line). Right panel shows the relative difference
between TOF measured times and that corresponding to a kaon mass hypothesis. The dashed lines delimit a coarse
fiducial region compatible with this kaon hypothesis.

3.2.3 φ reconstruction

The φ resonance is reconstructed through its principal decay channel φ → K+K− (see Table 3). With
a cτ of 45 fm, its decay vertex is indistinguishable from the primary collision vertex. Therefore the
selection criteria adopted for the candidate daughter tracks are the ones used for primaries, as specified
in Table 1.

A crucial issue for theφ reconstruction, as for any strongly decaying resonance, isthe combinatorial
background determination. In the present analysis PID is used to select kaons, rejecting most of the
background while leading to a very small loss in efficiency. For this purpose, tracks are selected if the
PID information from the TPC is compatible with a kaon signaland using the TOF signal when available.

For each track, the expected energy loss is calculated usinga parametrised response based on the Bethe-
Bloch formula [19] computed with a kaon mass hypothesis. It is compared with the TPC specific ion-
ization dE/dx measured via truncated mean (the reconstructed momentum being evaluated at the inner
radius of the TPC). With the current TPC calibration for thisdata set, the assumed dE/dx resolution is
6 %. For momenta smaller than 350 MeV/c, the species are well separated so the window is set to±5σ
with little or no contamination; above 350 MeV/c, it is set instead to±3σ as shown in the left panel of
Fig. 5.

The accepted band for TOF kaon identification is defined with two hyperbolas as shown in the right panel
of Fig. 5.

3.3 Background evaluation and signal extraction

For minimum bias pp collisions, the signals for all particles are clearly distinguishable from the combina-
torial background as shown in Fig. 2. Two different methods are used to extract the invariant mass signal
from the background. For the single strange particles (K0

S, Λ andΛ), the signal is first approximated by
a Gaussian on a second order polynomial background. This gives an estimate of the signal mean and
width although the invariant mass signal is not strictly Gaussian. Then the background is sampled on
each side of the signal by using both sampled regions that aremore than 6σ away from the Gaussian
mean. The assumption that no reconstructed signal is included in these regions is checked using Monte
Carlo data. The width of the background regions can vary depending on thepT interval considered in the
invariant mass distributions. The sum of signal and background (S+B) is sampled in the region defined
by the mean±4σ .



Strange particle production in pp at
√

s = 0.9 TeV 13

)2) (GeV/c-π+πM(
0.4 0.45 0.5 0.55 0.6

2
C

ou
nt

s 
pe

r 
M

eV
/c

0

50

100

150

s
0K  (GeV/c) < 0.50

T
0.40 < p

 35±Signal [0.482;0.509] = 962 

 15±Noise under peak = 239 

Fig. 6: Plot illustrating the “bin-counting” method used to extract the raw yields. It corresponds to the invariant
mass distribution of K0S for the pT bin [0.4− 0.5] GeV/c. The hashed regions show where the background is
sampled; they are chosen to be 6σ away from the signal approximated with a Gaussian distribution. The averaged
or fitted background is subtracted from the signal region of±4σ .

The sampling method is illustrated in Fig. 6 for the K0
S. Two methods are used to evaluate the background

and give consistent results. The background areas are either i) fitted simultaneously with polynomial
functions (from first to third order) or ii) averaged by simply counting the number of entries (“bin-
counting”). The backgroundB under the signalS is estimated using the normalized area sampled on
both sides of the signal region (Gaussian mean±4σ ). The signal yieldS = (B+S)−B is thus evaluated
without any assumption as to its shape. Systematic effects such as signal asymmetry are taken into
account by varying the size of the signal and background intervals up to 1σ . The difference between the
two methods (fit and bin-counting) contributes to the evaluation of the systematic uncertainties associated
to the signal extraction.

In the case of theΞ−+Ξ+
, statistical uncertainties are significant so that, in parallel to the bin-counting

method, the background level is simply estimated by a straight line fit.

Theφ invariant mass distribution has a larger combinatorial background and a function reproducing both
the background and the signal is preferred. It is found that the background can be well reproduced by
a function f(M) =a

√
M−b, while the peak has the shape of a Gaussian. The peak range is defined as

±4σ around the PDG mass of theφ , whereσ = Γ/2.35 andΓ is the nominal value of the resonance full
width at half maximum (4.5 MeV/c2) [18]. For each analyzedpT bin, several fit ranges are investigated.
It is found that the fitted width matches that extracted from afull Monte Carlo simulation (as defined in
section 3.4) within 5%, except for the lastpT bin where it is broader (∼ 10%). While fluctuations of the fit
values as a function of the fit range are taken into account forthe systematic error (see section 3.5.1), the
fit values used for all subsequent steps in the analysis are those that minimize the difference|χ2/NDF−
1|. Figure 7 illustrates the method for the[1.0−1.5] GeV/c pT bin. Every unlike-sign track pair passing
all selection criteria and falling within theφ invariant mass peak range is counted. The total number ofφ
is estimated by subtracting the integral of the background function alone, computed in the same invariant
mass range.

The signal counts (raw yields) for each of thepT bins are histogrammed as a function ofpT for K0
S, Λ,

Λ in Fig. 8 and forφ andΞ−+Ξ+
in Fig. 9. The uncertainties correspond to both the statistical errors

related to the number of counts and the systematics from the bin-counting and fit methods used to extract
the signal from the background.
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after background subtraction. The vertical arrows indicate the nominal mass value from PDG.

 (GeV/c)
T

p
0 0.5 1 1.5 2 2.5 3 3.5

R
aw

 Y
ie

ld
s

0

500

1000
S
0K

Λ

Λ

Fig. 8: Reconstructed (raw) yields of K0S (open circles),Λ (open squares) andΛ (open triangles) as a function of
pT. The change of bin size results in successive offsets of the raw counts atpT = [1.4,1.6,2.4] GeV/c for K0

S and
pT = [1.6,2.4,3.0] GeV/c for Λ andΛ. Uncertainties correspond to the statistics and the systematics from the
signal extraction. They are represented by the vertical error bars. The horizontal error bars give the bin width.

 (GeV/c)
T

p
0 0.5 1 1.5 2 2.5 3 3.5

R
aw

 Y
ie

ld
s

50

100

150

200

250

1020
φ

+
Ξ + -Ξ

Fig. 9: Reconstructed (raw) yields ofφ (stars) andΞ−+Ξ+
(diamonds) as a function ofpT. With the current

statistics, 4pT bins are used for theφ ([0.7-1.0], [0.7-1.5], [1.5-2.0] and [2.0-3.0] GeV/c) and 3pT bins for the
Ξ−+Ξ+

([0.6-1.4], [1.4-2.0] and [2.0-3.0] GeV/c). Uncertainties correspond to the statistics (i.e. the number of
reconstructed particles) and the systematics from the signal extraction. They are represented by the vertical error
bars (the horizontal ones give the bin width).



Strange particle production in pp at
√

s = 0.9 TeV 15

 (GeV/c)
T

p
0 0.5 1 1.5 2 2.5 3 3.5

E
ffi

ci
en

cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
0K Λ Λ

Fig. 10: Efficiency of K0
S (open circles),Λ (open squares) andΛ (open triangles) as a function ofpT. The

uncertainties correspond to the statistics in Monte Carlo samples used to compute the corrections. The efficiency
is limited by the branching ratio represented by a solid arrow for K0

S (0.692) and by a dashed arrow forΛ andΛ
(0.639).

 (GeV/c)
T

p
0 0.5 1 1.5 2 2.5 3 3.5

E
ffi

ci
en

cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1020
φ

+
Ξ + -Ξ

Fig. 11: Efficiency ofφ (stars) andΞ−+Ξ+
(diamonds) as a function ofpT. The uncertainties correspond to the

statistics in the Monte Carlo sample used to compute the corrections. The efficiency is limited by the branching
ratio represented by a solid arrow forΞ−+Ξ+

(0.636) and by a dashed arrow forφ (0.492).

3.4 Efficiency corrections

The efficiency corrections are obtained by analysing Monte Carlo (MC) events in exactly the same way
as for the real events. Little dependence is found on the several MC generators which are used. Therefore
the corrections presented here are obtained using the eventgenerator PYTHIA 6.4 (tune D6T) [1, 20]
and GEANT3 [21] for particle transport through the ALICE detectors.

The MC information is propagated through the whole reconstruction and identification procedure to
generate the differentialpT efficiencies as shown in Fig. 10 for K0

S, Λ andΛ and in Fig. 11 forφ and

Ξ−+Ξ+
. The uncertainties correspond to the statistics of Monte Carlo samples used to compute the

corrections. For all particles, the global efficiency is limited at low pT because of the acceptance of
at least two charged daughter tracks in the detection volumeof the TPC (three tracks in the case of
Ξ−+Ξ+

). It rapidly increases withpT but cannot exceed the asymptotic limits given by the charged
particle decay branching ratios presented in Table 3. The difference between theΛ andΛ reflects the
absorption of the anti-proton daughter of theΛ. For all the variables used to select the particles and
improve the signal over noise ratio (see Tables 1 and 2), it isverified that data and MC distributions
match, thus possible efficiency biases can be properly managed. Examples of such distributions are
presented in Fig. 12.
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ables used to select secondary vertices. The top panels correspond to the K0S candidates selected in a±20 MeV/c2
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right top panels respectively. On the bottom panels, the same distributions are shown for theΛ candidates selected
in a±8 MeV/c2 invariant mass window around the nominal mass.
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Table 4: Point-to-point systematic uncertainties expressed in percentage forpT spectra of different particles. For
each particle, the reported values correspond to the effecton the lowestpT bin, the average and the highestpT bin,
except for the feed-down contributions where values are estimated as being constant versuspT or where the effect
is found to be negligible (less than 2 standard deviations from the default value on the corrected spectrum).

systematic effects (%) K0S Λ Λ φ Ξ−+Ξ+

Selections
tracks [4.6−1.1−2.1] [2.6−2.0−2.5] [3.0−2.0−4.1] [0.9−3.1−6.0] [negl.−5.4−negl.]

topological [3.8−1.4−1.3] [3.3−3.3−1.5] [4.7−4.7−3.8] −− [6.8−11.6−13.9]

Signal extraction [4.5−1.5−1.5] [3.0−2.0−5.0] [3.0−2.0−5.0] [3.2−4.3−7.0] [5.6−negl.−2.5]

TPC dE/dx −− [5−negl.] [5−negl.] [1.8−2.9−3.6] [negl.]

Efficiency
material budget [1.5−1.5−1.1] [3.4−1.0−1.6] [3.7−2.0−4.5] [4.7−4.0−2.3] [2.7−1.5−3.6]
p̄ cross-section −− < 1 < 2 −− < 2

Feed-down −− 1.7 1 −− −−

3.5 Estimation of the systematic uncertainties

Systematic uncertainties are discussed in the following sections, where details are given on the contri-
butions due to topological selections and signal extraction methods, as well as those due to material
budget and feed-down. As for efficiency corrections, MC dataare generated with PYTHIA 6.4 (tune
D6T) [1, 20] and transported with GEANT3 [21]. At lowpT, the anti-proton absorption cross section
in GEANT3 is known to be too large [22, 23]. GEANT4 (with the absorption cross-sections of [24])
was then used to correct the anti-proton tracking efficiency. The information is summarized in Table 4.
In addition to these point-to-point systematic uncertainties, there is also a 2 % systematic error on the
global normalization coming from the evaluation of the total number of inelastic events.

3.5.1 Systematic uncertainties due to track or topologicalselections and signal extraction

Systematic uncertainties due to tracking and topological identification are determined by varying the
track and topological (for secondary vertices) selections, as well as the definition of the regions sampled
for signal extraction. To assess the different systematic uncertainties, only the deviations that are statisti-
cally significant are taken into account (more than 2 standard deviations away from the central value on
the corrected spectrum).

The systematic variation of track and topological selections results in a variation of the amount of signal
extracted from invariant mass distribution in both data andthe Monte Carlo simulation mentioned above.
The difference between these amounts of signal correspondsindirectly to the accuracy with which the
MC simulation reproduces the characteristics of real events, from the simulation of the detector response
to the background shape and composition considered for the extracted signal. It is estimated that the
point-to-point uncertainties in thepT spectra are at most 4.6 %, 3.3 %, 4.7 %, 6 % and 13.9 % for the
K0

S, Λ, Λ, φ andΞ−+Ξ+
, respectively. The systematic uncertainties of the signalextraction for K0

S, Λ, Λ
andΞ−+Ξ+

arepT-dependent and estimated by varying the invariant mass regions where the signal and
the background are sampled using the bin-counting method described in section 3.3. For theφ signal,
the systematic uncertainties from background subtractionare estimated using three different criteria.
First of all, the function reproducing the background is replaced by a second or third order polynomial.
Moreover, the fit is repeated fixing the width parameter to±10% of the value obtained in the default
procedure (described in section 3.3), and also to the value obtained when fitting the Monte Carlo sample
and to±10% of this. Finally, the fit range is also varied. All of thesecomputations result in a variation
of the raw counts with respect to those shown in Fig. 9. Although a quite large compatibility region is
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requested for PID (at least 3σ ) the effects of varying the dE/dx selections are taken into account for the
corresponding efficiency calculation. For bothφ andΞ−+Ξ+

, statistical errors dominate after signal
extraction (see section 3.3) and consequently, some systematic effects due to PID are extrapolated from
single track and V0 measurements. The TOF PID selection is applied only to reject theφ background. No
systematic effects are observed on theφ signal i) for the Monte Carlo data sample, when the selectionis
applied to theφ daughters in addition to all other cuts; ii) for real events,when comparing theφ statistics
before and after applying the selection.

3.5.2 Systematic uncertainties due to material budget and absorption cross-section

A dedicated study involved the variation of the detector material thickness crossed by particles. The
material budget uncertainty, based onγ conversion measurements, is estimated to be 7% in terms or
radiation length [22]. The efficiency variation due to this material budget uncertainty depends on the
momentum of each of the decay daughters. Although such a variation is also correlated with the mo-
mentum of the parent particle, the corresponding systematic uncertainties are reported as point-to-point
errors in Table 4 for the lowest, the average and the highestpT bin and eventually added in quadrature to
the total systematic errors.

Specific uncertainties are related to the (anti-)proton absorption and scattering cross-sections used for
propagating these particles through the geometry of the detectors with both GEANT3 [21] (and its default
absorption cross-sections) and GEANT4 (using the absorption cross-sections of [24]). More details about
the modifications can be found in [22, 23] and references therein. The corresponding corrections are
taken into account in the efficiency versuspT assuming that absorption cross-sections are identical for
the (anti-) hyperon and its (anti-) proton daughter. The uncertainties associated with these corrections are
derived from the (anti-)proton cross-section uncertainties and the values are estimated as constant and
lower than 1% (2%) forΛ (Λ) and 2% forΞ−+Ξ+

.

3.5.3 Systematic uncertainties forΛ and Λ due to feed-down

Some of the reconstructedΛ andΛ particles come from decays ofΞ-hyperons. The proportion of recon-
structed secondaryΛ andΛ depends on the selection criteria used. For the parameters listed in Table 2
(V0 vertex part), the impact of theΞ feed-down on the final spectra is evaluated to be 13% forΛ and
12% forΛ. No pT dependence is found within uncertainties.

This assessment results in a global correction of the spectra, applied as an additional factor in the overall
normalization. Provided that both primary and secondaryΛ have similar spectral shapes, such integrated
correction is applicable. This is tested directly using Monte Carlo data, but also with real data, changing
the fraction of the secondaryΛ by varying the DCA of reconstructed candidates. Within the available
statistics andpT reach, no significant change in spectral shape is observed.

Using Monte Carlo, the ratiorfeed−down of the reconstructedΞ− (Ξ+
) candidates to the number of recon-

structedΛ (Λ) candidates fromΞ decays is:

rfeed−down=
(NΞ−)MC

(NΛ←Ξ−)MC

Assuming that this ratio is the same in both Monte Carlo and data, the whole feed-down contribution to
the spectra is estimated by dividing the number of reconstructedΞ− (Ξ+

) in data by the ratio extracted
from Monte Carlo:

(NΛ←Ξ−)data=
(NΞ−)data

rfeed−down

Besides theΞ contribution, other sources may feed theΛ population resulting in additional systematic
uncertainties. In Monte Carlo simulations,Λ particles possibly generated in the detector material induce
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Fig. 13: Comparison of the corrected yields as a function ofpT for K0
S (circle) and charged kaons (K+) (open

squares), identified via energy loss in the TPC and ITS, and via time of flight in the TOF. The points are plotted at
the centre of the bins. The full vertical lines associated tothe K0

S points, as well as the gray shaded areas associated
to the K+ points, correspond to the statistical and systematic uncertainties summed in quadrature whereas the
inner vertical lines contain only the statistical uncertainties (i.e. the number of reconstructed particles) and the
systematics from the signal extraction.

a 1.7 % uncertainty. The same uncertainty in the case ofΛ is below 1 %. The contribution fromΩ decays
is found to be negligible. It should be noted that sinceΛ (Λ) from electromagneticΣ0 (Σ0

) decays cannot
be distinguished from the direct ones, the identifiedΛ (Λ) include these contributions.

3.6 pT spectra and global yield extraction

The K0
S spectrum is first shown on a linear scale in Fig. 13 and compared with charged kaon spectra [16].

Within uncertainties, good agreement is found between K0
S and K+ in the measuredpT range.

Figure 14 presents the correctedpT spectra for all species, including both statistical errorsand systematic
uncertainties. The spectra are fitted with two different functional forms in order to extract the global
integrated yields:

d2N
dyd pT

= A× pT× e−
pT
T (1)

d2N
dyd pT

=
(n−1)(n−2)

nT [nT +m(n−2)]
× dN

dy

×pT×
(

1+
mT−m

nT

)−n

(2)

wheremT =
√

m2+ p2
T. The pT exponential has two parameters: the normalizationA and the inverse

slope parameterT . The Lévy function [Eq. (2)], already used at lower energies [25], is shown to be useful
when thepT range is wide: it includes both an exponential shape for lowpT (which can be characterized
by an inverse slope parameterT ) and a power law component (governed by the power parametern) for
the higherpT region. The results of these fits to the spectra, where statistical and systematic uncertainties
are added in quadrature, are shown in Fig. 14 and in Table 5. Inthe case of K0S for which the statistics
and thepT range are larger than for other species, theχ2/NDF indicates clearly that thepT exponential
parameterization cannot properly reproduce the spectrum shape.

For the spectra of theφ , Λ andΛ both functions give similar and acceptableχ2/NDF. Within uncer-
tainties,Λ andΛ have the same fit parameters. In the case of theΞ−+Ξ+

spectrum, the low number
(i.e. 3) of pT bins cannot constrain the Lévy function and therefore itsχ2/NDF in Table 5 is not de-
fined. Nevertheless, for consistency and in order to extractparticle ratios, a Lévy fit is performed to
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Table 5: Summary of the parameters extracted from the fits to the measured transverse momenta spectra usingpT

exponential (1) and Lévy (2) functional forms and including point-to-point systematic uncertainties.

pT exponential (1) Lévy (2)
Particles T (MeV) χ2/NDF T (MeV) n χ2/NDF

Mesons
K0

S 325±4 117.6/14 168±5 6.6±0.3 10.8/13
φ 438±31 1.3/2 164±91 4.2±2.5 0.6/1

Baryons
Λ 392±6 10.2/7 229±15 10.8±2.0 9.6/6
Λ 385±6 5.1/7 210±15 9.2±1.4 3.7/6

Ξ−+Ξ+
421±42 2.0/1 175±50 5.2±2.3 −−
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Fig. 14: Particle spectra (corrected yields) as a function ofpT for K0
S (circles), Λ (squares),Λ (triangles),φ

(stars) andΞ−+Ξ+
(diamonds). The data points are scaled for visibility and plotted at the centre of the bins.

Uncertainties corresponding to both statistics (i.e. the number of reconstructed particles) and systematics from the
signal extraction are shown as vertical error bars. Statistical uncertainties and systematics (summarized in Table 4)
added in quadrature are shown as brackets. The fits (dotted curves) using Lévy functional form [see Eq. (2)] are
superimposed.

obtain the integrated yields and particle ratios for all species. It must be noted that the rapidity range is
slightly different for each species (cf. Table 6). However,the rapidity dependence of particle production
at mid-rapidity is weak enough to allow direct comparisons of the spectra [22].

4 Results and discussion

The pT spectra for K0S, Λ, Λ andφ are shown in Fig. 14 along with the Lévy fits. When comparing the
different spectra, it is found that the inverse slope parameter T increases with the mass of the particle.
For example, it changes from 168± 5 MeV for K0

S to 229± 15 MeV for Λ when the Lévy fit is used.

TheΞ−+Ξ+
apparently do not follow this trend. However, this is most likely because the very limited

statistics do not allow for a well-constrained fit. The shapes of thepT spectra are also compared to PHO-
JET and PYTHIA models. For PYTHIA, several tunes (109 [20], 306 [26] and 320 [27]) are presented.
For all species, thepT spectra are found to be slightly harder (i.e. they have a slower decrease withpT)
than the models as presented in Figs. 15, 16, 17 and 18. For transverse momenta larger than∼ 1 GeV/c,
the strange particle spectra are strongly underestimated by all models, by a factor of∼ 2 for K0

S and even
∼ 3 for hyperons. The discrepancy is smaller in the case of theφ .

The integrated yields (dN/dy) are obtained using the spectra in the measured range and integrating the
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Fig. 15: Comparison of the transverse momentum differential yield for the K0
S particles for INEL pp collisions

with PHOJET and PYTHIA tunes 109, 306 and 320.
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Fig. 16: Comparison of the transverse momentum differential yield for theΛ particles for INEL pp collisions with
PHOJET and PYTHIA tunes 109, 306 and 320.
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Fig. 17: Comparison of the transverse momentum differential yield for theφ particle for INEL pp collisions with
PHOJET and PYTHIA tunes 109, 306 and 320.
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particle for INEL pp collisions
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Table 6: Rapidity andpT ranges,〈pT〉, corrected yields and extrapolated fraction at lowpT using the Lévy func-
tion (2).

Particles |y| pT range (GeV/c) 〈pT〉 (GeV/c) dN/dy Extrapolation (%)

Mesons
K0

S < 0.75 [0.2−3.0] 0.65±0.01±0.01 0.184±0.002±0.006 12±0.4±0.5
φ < 0.60 [0.7−3.0] 1.00±0.14±0.20 0.021±0.004±0.003 48±18±7

Baryons
Λ < 0.75 [0.6−3.5] 0.86±0.01±0.01 0.048±0.001±0.004 36±2±4
Λ < 0.75 [0.6−3.5] 0.84±0.02±0.02 0.047±0.002±0.005 39±3±4

Ξ−+Ξ+
< 0.8 [0.6−3.0] 0.95±0.14±0.03 0.0101±0.0020±0.0009 35±8±4

Lévy function for the extrapolated regions at low and highpT. The uncertainties for the dN/dy and〈pT〉
values are computed from the errors on the fit parameters, where both the point-to-point statistical and
systematic uncertainties of thepT spectra are taken into account. Due to the rapid decrease of the spectra,
most of the extrapolation is done in the lowpT region and amounts to 12 % for K0

S and 48 % for theφ
(smallest and highest values respectively). Therefore, anadditional uncertainty is added for the dN/dy
to account for the uncertainty in the shape of the spectra outside the measured range: it corresponds to
25% of the extrapolated particle yields at lowpT. The measuredpT ranges are specified in Table 6 for
each particle species.

Using the particle integrated yields presented in this paper along with the yields of chargedπ, K, p and
p [16] and the measuredp/p ratio [22], a comparison with STAR feed-down corrected particle ratios at√

s = 0.2 TeV [25] is shown in Fig. 19. With the centre of mass energy increasing from
√

s = 0.2 TeV
to 0.9 TeV the measured ratios are similar except the ¯p/π− ratio which decreases slightly from 0.068±
0.011 to 0.051±0.005. The strange to non-strange particle ratios seem to increase but stay compatible
within uncertainties: the K−/π− from 0.101±0.012 to 0.121±0.013 and theΛ/π+ from 0.027±0.004
to 0.032±0.003.

The yields and〈pT〉 obtained with the ALICE experiment are compared for each particle with existing
data at the same energy and also with results at lower and higher energies. The various experiments
differ in acceptance and event selection (i.e. NSD or INEL) but the dependence of〈pT〉 with respect to
these variables is found to be negligible. Consequently the〈pT〉 values are directly comparable, whereas
the comparison of the yields can require further scaling because of different (pseudo)rapidity coverages.
Figure 20 reports ALICE〈pT〉 measurements along with those of the STAR experiment [25, 28]. It is
remarkable that the〈pT〉 remains close to the ISR parameterization [29] although thecollision energy
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Table 7: The K0
S mean transverse momentum and yields in INEL events from UA5,CDF, and ALICE and in

NSD events in STAR for various
√

s. STAR results are taken from [25], CDF ones and yield values with “ ∗” are
from [31]. Other UA5 values concerning〈pT〉 are from [30].

Experiment
√

s (GeV) acceptance 〈pT〉 (GeV/c) dN/dy|y=0

STAR 200 |y|< 0.5 0.61±0.02 0.134±0.011
UA5 200 |y|< 2.5 0.53±0.07 0.14±0.02∗

UA5 546 |y|< 2.5 0.57±0.03 0.15±0.02∗

CDF 630 |y|< 1.0 0.5±0.1 0.2±0.1∗

UA5 900 |y|< 2.5 0.62±0.08 0.18±0.02∗

ALICE 900 |y|< 0.75 0.65±0.01±0.01 0.184±0.002±0.006
CDF 1800 |y|< 1.0 0.60±0.03 0.26±0.03∗

Table 8: The (Λ+Λ) mean transverse momentum and yields for NSD events and different
√

s. STAR results
are from [25] and UA5 results are from [32, 33]. ALICE and STARresults are feed-down corrected. The yield
measured by ALICE has been scaled to match UA5 acceptance (|y|< 2.0) using the method explained in section 4.

Experiment
√

s (GeV) acceptance 〈pT〉 (GeV/c) dN/dy|y=0 〈nΛ+Λ〉 per event

measured scaled to UA5|y|
STAR 200 |y|< 0.5 0.77±0.04 0.074±0.005 — 0.24±0.02
UA5 200 |y|< 2.0 0.80+0.20

−0.14 — 0.27±0.07 —
UA5 546 |y|< 2.0 0.62±0.08 — 0.25±0.05 —
UA5 900 |y|< 2.0 0.74±0.09 — 0.38±0.08 —
ALICE 900 |y|< 0.75 0.85±0.01±0.01 0.095±0.002±0.003 — 0.46±0.01±0.02

increased by a factor 36. Table 7 summarizes the K0
S measurements performed by the UA5 [30], CDF [31]

and ALICE Collaborations for INEL events, and by the STAR [25] Collaboration for NSD events. The
ALICE K0

S yield at central rapidity, as well as the〈pT〉, are in good agreement with UA5 results at
900 GeV albeit with improved precision. The comparison of(Λ+Λ) measurements are presented in
Table 8 for NSD events. ALICE yields, measured in|y| < 0.75 for INEL events, are scaled to the
UA5 [32, 33] acceptance (|y| < 2.0) using PYTHIA simulations. TheΛ+Λ yield in NSD events is
estimated by scaling the measured yield in inelastic eventswith the known ratio R of charged particle
multiplicities in NSD and INEL events:

R =
(dN/dy)NchNSD

(dN/dy)Nch INEL
= 0.830±0.024

This scaling factor is also used for the ALICE (Ξ−+Ξ+
) yield presented in Table 9. The ALICE yields

and〈pT〉 for both (Λ+Λ) and (Ξ−+Ξ+
) are in good agreement with the UA5 measurements [33]. Ta-

ble 10 shows the evolution of dN/dy and〈pT〉 with the collision energy for theφ particle in NSD events.
It includes the ALICE measurements, which are the firstφ measurements at 900 GeV, and compares
them to the results from the STAR experiment [34, 35] at 200 GeV and the E735 experiment [36] at
1800 GeV.

The baryon to meson ratio as a function ofpT obtained with the(Λ+Λ) and K0
S spectra measured by

ALICE is presented in Fig. 21. It includes the(Λ+Λ)/2K0
S ratio in pp collisions at 200 GeV measured

by STAR [25], and the ratios in pp collisions at 630 GeV and 1800 GeV computed with the(Λ+Λ)
and K0

S spectra published by CDF [37] and UA1 [38]. UA1 and CDF Collaborations provide inclusive
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Table 9: The (Ξ−+Ξ+
) mean transverse momentum and yields for NSD events and different

√
s. STAR results

are from [25] and UA5 results are from [33]. UA5 measures (Ξ−+Ξ+
) for pT > 1 GeV/c. The ALICE yield has

been scaled to match the UA5 acceptance (|y|< 3.0) using the method explained in section 4.

Experiment
√

s (GeV) acceptance 〈pT〉 (GeV/c) dN/dy|y=0 〈n
Ξ−+Ξ+〉 per event

measured scaled to UA5|y|
STAR 200 |y|< 0.5 0.90±0.01 0.006±0.001 — 0.022±0.006
UA5 200 |y|< 3.0 0.80+0.20

−0.14 — 0.03+0.04
−0.02 —

UA5 546 |y|< 3.0 1.10±0.02 — 0.08+0.03
−0.02 —

UA5 900 |y|< 3.0 0.7+0.2
−0.1 — 0.05+0.04

−0.02 —
ALICE 900 |y|< 0.8 0.95±0.14±0.03 0.0101±0.0020±0.0009 0.078±0.015±0.007

Table 10: The φ mean transverse momentum and yields for NSD events and different
√

s. STAR results are
from [34, 35] and E735 results are from [36]. The E735 Collaboration provided two values of〈pT〉 depending on
the functional form used to fit the data points and the uncertainties associated with each value are only statistical.
ALICE yields measured for INEL events have been scaled to NSDas explained in section 4.

Experiment
√

s (GeV) acceptance 〈pT〉 (GeV/c) dN/dy|y=0

STAR 200 |y|< 0.5 0.82±0.03±0.04 0.018±0.001±0.003
ALICE 900 |y|< 0.6 1.00±0.14±0.20 0.021±0.004±0.003

E735 1800 −0.4< y < 1.0
1.06±0.18

0.0186±0.0041
0.94±0.26
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Fig. 21: (Λ+Λ)/2K0
S as a function ofpT for different collision energies in pp and pp minimum bias events. The

STAR ratio is taken from [25] whereas the CDF and UA1 ratios are computed with the(Λ+Λ) and K0
S spectra

published in [37] and [38] respectively. The ALICE and STAR ratios are feed-down corrected. Because the K0
S

and(Λ+Λ) spectra from UA1 have incompatible binning, the K0
S differential yield has been calculated for each

(Λ+Λ) pT data point using the fit function published by UA1. Such a choice is motivated by the fact that theχ2

value for the K0
S spectrum fit is better than that for the(Λ+Λ) spectrum.

spectra. The associated ratios are therefore not feed-downcorrected, unlike the ALICE and STAR ones.
The acceptance windows of these experiments differ significantly: ALICE measuresΛ, Λ and K0

S in
|y| < 0.75, STAR in|y| < 0.5, CDF in |η | < 1.0, whereas UA1 reconstructs(Λ+Λ) in |η | < 2.0 and
K0

S in |η | < 2.5. The ALICE ratio agrees very well with the STAR results in the measuredpT range,
which would suggest little or no energy dependence of(Λ+Λ)/2K0

S. A similar conclusion can be drawn
when comparing only the ratios measured by CDF at 630 GeV and 1800 GeV, although the ratio found
by CDF for pT > 1.5 GeV/c is higher than the one observed with ALICE and STAR. The ratiocomputed
from UA1 spectra however shows a clear disagreement with theother measurements in an intermediate
pT range betweenpT ≈ 1.5 GeV/c andpT ≈ 3.0 GeV/c. PYTHIA simulations show that this discrepancy
can not be attributed to the differences in the acceptance orin the colliding system (i.e. pp instead of pp).

5 Conclusions

Measurements of mesons containing strange quarks (K0
S andφ ) and hyperons (Λ, Λ andΞ−+Ξ+

) have
been performed for inelastic pp collisions at

√
s = 0.9 TeV with the ALICE experiment at the LHC. The

Lévy function gives a good description of the transverse momentum spectra which have been compared
with pQCD-based models. The K0

S transverse momentum spectrum is overestimated by PYTHIA tune
ATLAS-CSC and PHOJET below 0.75 GeV/c but is higher by a factor of∼ 2 in the pT range[1−
3] GeV/c. Within uncertainties, theφ meson spectrum is reasonably described by these models and the
best agreement is obtained by PYTHIA tune D6T. We find that strange baryons are significantly under-
predicted in both PYTHIA and PHOJET by a factor of∼ 3. The feed-down corrected ratio of baryon
to meson as a function ofpT, illustrated by theΛ/K0

S, is consistent with the STAR measurements at√
s = 0.2 TeV but lower than UA1 and CDF results at

√
s = 0.63 TeV and

√
s = 1.8 TeV. The integrated

yields and average transverse momenta have been compared with earlier data collected in pp and pp
interactions at various energies. These results provide a useful baseline for comparisons with recent
tunes of the PYTHIA model and a reference for future measurements in heavy-ion collisions at the LHC.
These studies demonstrate the precision with which ALICE can measure resonances and topologically
reconstructed weakly decaying particles. Measurements ofthese particles will be a substantial part of
the ALICE programme in both pp and Pb–Pb collisions. The measurement of theφ resonance provides
an unprecedented reference at this energy.
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A. Kolojvari20 , V. Kondratiev20 , N. Kondratyeva54 , A. Konevskih89 , E. Kornaś41 ,
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L. Milano34 , J. Milosevic59 ,xxvii, A. Mischke70 , D. Miśkowiec19 ,xix, C. Mitu79 , J. Mlynarz46 , B. Mohanty9 ,
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E. Quercigh6 , H. Qvigstad59 , A. Rachevski90 , A. Rademakers6 , O. Rademakers6 , S. Radomski63 , T.S. Räihä32 ,
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B. von Haller6 , D. Vranic19 , J. Vrláková56 , B. Vulpescu37 , B. Wagner1 , V. Wagner50 , R. Wan45 ,xxxiv,
D. Wang65 , Y. Wang63 , Y. Wang65 , K. Watanabe72 , J.P. Wessels42 , U. Westerhoff42 , J. Wiechula63 , J. Wikne59 ,
M. Wilde42 , A. Wilk42 , G. Wilk85 , M.C.S. Williams26 , B. Windelband63 , H. Yang36 , S. Yasnopolskiy13 ,
J. Yi114 , Z. Yin65 , H. Yokoyama72 , I.-K. Yoo114 , X. Yuan65 , I. Yushmanov13 , E. Zabrodin59 , C. Zampolli6 ,
S. Zaporozhets43 , A. Zarochentsev20 , P. Závada105 , H. Zbroszczyk92 , P. Zelnicek22 , A. Zenin55 , I. Zgura79 ,
M. Zhalov47 , X. Zhang65 ,i, D. Zhou65 , X. Zhu65 , A. Zichichi15 ,xxxv, G. Zinovjev16 , Y. Zoccarato68 ,
M. Zynovyev16

Affiliation notes
i Also at Laboratoire de Physique Corpusculaire (LPC), Clermont Université, Université Blaise Pascal,
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Institut Polytechnique de Grenoble, Grenoble, France
30 Departamento de Fı́sica de Partı́culas and IGFAE, Universidad de Santiago de Compostela, Santiago de

Compostela, Spain
31 Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
32 Helsinki Institute of Physics (HIP) and University of Jyväskylä, Jyväskylä, Finland
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