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BEAM DYNAMICSIN NSFFAG EMMA WITH DYNAMICAL MAPS

Y. Giboudot, R. Nilavalan, Brunel University, Uxbridge, UK
R. Edgecock, STFC Rutherford Appleton Laboratory, DidtiX,
A. Wolski, University of Liverpool, Liverpool, UK

Abstract cases, PyZgoubi routines are fast and reliable. However, an
alternative approach based on dynamical maps could pro-

The Non- ling Fixed Field Alternatin radient ac- . . . .
e Non-Scaling Fixed Field Alternating Gradie tadee some benefits, particularly where speed is important;

celerator EMMA has a compact linear lattice, in which th(?or example. when tracking manv particles throuah man
effects of magnet fringe fields need to be modelled care- pie, 9 yp 9 y

fully. A numerical magnetic field map can be generate ells. Dynamical maps also provide the possibility of read-

from magnet measurements or magnet design software. \ég significant quantities (such as tunes and chromatigitie

have developed a technique that produces from the num r[etc;tlynfr;)n; tCi?j n:jag,rgl\{lln% an '?Sl' g:t |rr71]tor;[he| (r:ig/rl?]mécs
ical field map, a dynamical map for a particle travelling in at1s not provide ectly by purely numerical methocs.

a full EMMA cell, for a given reference energy, without To generate a dynamical map, one propagates a variable

acceleration. Since the beam dynamics change with e'%:ough the (_:elfl_alfjafunctt;on instead cg‘fanumtlan_call\?alue..
ergy, a set of maps have been produced with various refer-© magngtlc leld must be expressed in ana ytlc_a orm.
ence energies between 10 MeV and 20 MeV. For each ref! approprlate form can b.e obtained f_rom a_numencal field
erence energy, the simulated tune and time of flight hava 2P by fitting an appropriate three-dimensional mode ex-

i . . . : ansion [6]. Then, we use a symplectic integrator imple-
been compared with results in Zgoubi - tracking dwec“fnented iL }che differential algeb)r/a (pDA) code (?OSY 7] pto

through numerical field map. The range of validity of a ropagate a vector of six power series (one series for each
single map has been investigated by tracking particles wi the six dynamical variables) through the field.

large energy deviation: the results can be used to implg—

ment a model of acceleration based on dynamical maps.
DYNAMICAL MAP DESCRIPTION

INTRODUCTION The DA integration routine outputs the dynamical map in
explicit form as shown in Table 1. The first column gives

In tracking studies, the behaviour of a single particle Cal) o hame of each coefficient following the TRANSPORT
be defined by six dynamical variables: the horizontal (ver-

: e code nomenclature. The final six columns indicate, as ex-
t|f:al)_p05|t|on_)_( (Y)_and momemtunP’x (Py), the IQH' ponents for the six dynamical variables, the term in the map
gitudinal position with respect to a reference partiZle

and the energy deviatiah Tracking a particle through a to which the coefficient in second column refers. Thus,

sequence of magnetic elements in a beamline consistsea}Ch variable is expressed as a power series in the values
q 9 of the dynamical variables at the entrance of the cell. For

gomputlng the values of these variables at d|ﬁerenF lo.cal\ﬁstance the expression for the horizontal position is:
tions or steps. If the numerical values of the magnetic field
components are known on grid points throughout the mag-X; = 1.0344 X, + 0.2683 Pxo — 0.0103 §¢ +
_netic elgment, then thg equations of mo.tion for thg dyn_am— 4.6261 X2 + 1.7204 XoPxo - - + 0.0096 62.
ical variables may be integrated numerically for given ini-
tial conditions, to find the values of the variables at theé exi Therefore, once the dynamical map has been obtained,
of the magnetic element. However, this method requirdggacking particles in the EMMA cell simply involves calcu-
tracking through the beamline each time one wants a chaating the ouput values for a given set of input values. The
acterization of the beam behaviour. When tracking mangower series is truncated at a certain order (in the exam-
particles through many steps, the process can be highly gde in Table 1, at 2nd order). Even though the integration
manding in terms of computing time and memory.

In EMMA [1], a highly compact doublet cell is achieved Table 1: Selected Terms from the 2nd Order Dynamical
using short quadrupole magnets. A large aperture requirtap for the X Variable, for one EMMA Cell at 15 MeV
ment then leads to potentially significant fringe fields. AcReference Energy.

curate simulations of the beam dynamics in EMMA require Coefficient Order  Exponents

a dense description of the magnetic field, and numerous in- R11 1.0344 1 10 00 00

tegration steps. Solving Maxwell’s equations in an EMMA R12 0.2683 1 01 00 00

cell (by a Finite Element code, OPERA [2]) we have gen- R16 -0.0103 1 00 00 O1

erated a 3D magnetic field map that can be used for numer- 1111 4.6261 2 20 00 00
2

ical tracking in EMMA with PyZgoubi [3, 4, 5]. In most T112 1.7204 11 00 00

*Work supported by the Engineering and Physical SciencesdRes
Council, UK.
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routine is symplectic, the truncation results in a symjdect o.o

0.35r=

error. A symplectic transformation satisfi¢s - S-J = S, . .} 030

where S is a block diagonal matrix constructed from thez | - foxst

‘unit’ 2 x2 antisymmetric matrix, and is the Jacobian of : . $020 i

the transformation. A symplectic error in a map may be’”’ . Zo1s L]
significant if the map is applied iteratively many times, or °% ey T019 T
if small non-symplectic physical effects are being investi 01515 1711 Te 18 % 008z 17 16 18 20

gated. If the map is computed using a symplectic integrator

(asis the case for the results presented here), then the syfyyre 1: Horizontal (left) and vertical (right) tune vessu
plectic error depends on the order of truncation, rather thnetic energy using multiple dynamical maps.
integration step size.

The symplectic integrator that we use requires the parax-
ial approximation. This requires some care, since in an 14
FFAG, beam excursions can be large (of the order of a few
cm). However, when one computes a dynamical map, it is
necessary to make a choice of reference trajectory. Since
energy and transverse position are correlated, a sensible
choice is to look for closed orbits for various reference en- 5 NN N N S
ergies over the full energy range (in EMMA, from 10 MeV Kinetic Eneray (MeV)
to 20 MeV), and use these closed orbits as reference tra- o )
jectories. For small energy deviations, particle trajget Figure 2: Path length versus kinetic energy from dynamical
should then remain close to the reference trajectory, and tf1@P (blue) and PyZgoubi (red).
paraxial approximation should be valid.

In practice, we do not use exactly the closed orbit as,nyersion from time to flight to path length and has to be
the reference trajectory at a given reference energy. Fgfgied in more detail. A hard-edge model of the magnets
simplicity in the integration, we use instead a straight linj, 794 pjis also shown (in green) on the plot, and indicates
starting (and ending) at the middle of a long drift, whergyg jmpact of the fringe field on the vertical tune: a discrep-
the field is close to zero; the position of the straight I|neGmCy of about 10% is found at 10 MeV. Betatron motion
is chosen to minimize the excursion of the_ closed orb'rtnay be studied in more detail by applying the dynamical
with respect to this reference trajectory. Since there atg, s 15 particles with some initial transverse offset with
42 cells in total in EMMA, concatenating the dynamicalegpect to the reference trajectory. Figure 3 shows the hor-
map around the straight reference trajectory with a ratatiq, o 5| phase space for reference energies from 10 MeV to
through_ 2r/_42 (apout a vertical axis) produces a map fop MeV, constructed by applying the appropriate dynami-
one periodic section of the EMMA lattice. cal map iteratively to particles with 1 mm initial transvers

offset (with respect to the reference trajectory). We reotic
MAPSWITH VARIOUS REFERENCE that there is some non-physical growth in the amplitude
ENERGIES over time for 10MeV and 11 MeV: this is a consequence

of the truncation of the dynamical map to 2nd order. The

We first compare t he resuI.tS O.f the dynamical map Witl%ffect disappears if terms up to 4th order are retained.
the results of numerical tracking in Zgoubi. Eleven dynam-

ical maps were calculated around the closed orbits for ref-
erencegnergies from 10 MeV to 20 MeV, in steps of 1 MeV. MAPSWITH ENERGY DEVIATION
The tunes (phase advances per cell) can be obtained fromrhe number of dynamical maps required to model the
the eigenvalues of the linear part of a given map: dynamics over the full energy range in EMMA will de-
\ = eE2miv pend on the range of validity Qf gach map with respect
’ to variations in the energy deviatiah Figure 4 shows

0.8
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0.2 . i
0.0 Foof

Path length [mm]

wherev is the tune.
The zeroth-order term in the map for the fifth variable

phase space phase space

15 =10

(longitudinal coordinateZ) represents the difference in |\ 018
path length of the closed orbit with respect to the referenc o % 0-16'(\\
trajectory. RGN Y S04 \\\\
The comparisons of these features with numerical trach o “‘b‘:;ﬁ fouf D
ing through the magnetic field map with PyZgoubi are plot- ., AN S . Y%ﬁ?:::ng__\_
ted in Figs. 1 and 2. The two codes show good agre¢ °° D tos )

=5 3 .
ximm] dmm]

ment for the horizontal tune and path length, although U
slight discrepancy occurs in the path length for high en- _ _ _ _
ergy. This might be due to a truncation in the relativisticFigure 3: Betatron motion with multiple dynamical maps.
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Figure 4: Betatron tunes computed with a set of dynamic&iigure 6: Closed orbit path length computed with a set of

maps at different reference energies (blue dots), and withdnamical maps at different reference energies (blue dots)

single dynamical map with different energy deviations (re@nd with a single dynamical map with different energy de-

crosses). viations (red crosses). Left: dynamical map up to 2nd or-
der. Right: dynamical map up to 4th order.
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ent reference trajectories. The phase advance per cell and
the path length computed using a dynamical map show
good agreement with the results obtained using a numer-
ical tracking code, Zgoubi. Accurate description of the be-

tatron motion requires the dynamical maps to be computed
to at least the 4th order, at small energy deviation. If the
energy deviation is large (for example, to cover the full en-
Figure 5: Betatron motion at different energies, simula’cegrgy range in EMMA from 10 MeV to 20 MeV in a single
with dynamical map up 4th order (left), and Sth ordeiyynamical map), then a map up to 9th order may be re-
(right). quired to model the horizontal motion.

Acceleration may be included in the dynamics by mak-

the tune as a function of energy obtained in two differind @n appropriate adjustment to the energy deviation at the

ent ways: first, from different dynamical maps compute nd of each cell (representing the effect of an RF 9avity in

for different reference energies (blue dots); and secon c cgll). The rgsults presented here su_gg_est that it may be
from a single dynamical map at a single reference eneréi?ssm.le o gchleve a reasonable descrlpnoq of the dynam-
(15 MeV), but with different values for the energy devia- s using a fixed reference energy at the mid point of the

tion ¢ (red crosses). The good agreement between the o Srgy range. However, If a very accurate description is

methods suggests that it may be possible to use a Sinngquwed, then it may be necessary to change to a different

map to describe the transverse dynamics with good aCCl?fTerence energy at one or more points during the acceler-
L : tion.

racy, even for large energy deviations. Figure 5 shows e

horizontal phase space for different energies, generated u

ing maps with different reference energies (dots), and with REFERENCES

fixed 15MeV reference energy but different energy devigy) j.s. Berg, “The EMMA main ring lattice,” Nuclear Instru-
tions (crosses). We see a strong effect from the symplectic ments and Methods in Physics Research A 596 (2008) 276-
error with a map truncated at 4th order; the effect of the 284.

error is greatly reduced by retaining terms in the map UR] Vector Field OPERA 3D, http://www.vectorfield.
to 9th order. For modelling acceleration in EMMA, it is
important that the dynamical maps also describe accurate@j F. Méot, “The ray-tracing code Zgoubi” Nuclear Instru

the variation in path length with energy. Figure 6 shows th ments and Methods in Physics Research A 427 (1999) 353-
length of the closed orbit computed in two different ways: 356 £ Meot S. Valero “Zgoubi users’ guide,” CEA DSM
first, from a set of dynamical maps at different reference papnia/SEA-97-13 (1997).

energies (blue dots); and second, f.rom.a single dynami(‘ﬁi Y. Giboudot ,F. Méot, “Optical matching of EMMA cell pa-
map (15MeV reference energy) with different values fo rameters using field map sets,” Procs. PAC 09, Vancouver.

the energy deviation (red crosses). We see there are large
discrepancies (more than 10%) at large energy deviatio
when the maps are truncated at 2nd order; however, there

is good agreement for the maps truncated at 4th order. [6] Y. Giboudot, A. Khan, R. Edgecock, A. Wolski, “Particle
tracking studies using dynamical map created from finite ele

ment solution of the EMMA cell,” Procs. PAC 09, Vancouver.

SUMMARY AND NEXT STEPS -
[7] COSY Infinity,

The large range of transverse positions in an FFAG can htm.
be modelled using multiple dynamical maps with differ-

0

—15 -10 —05 00 05

48615 —0.010 —0.005 0.000
xieml x(m1

0.005

com/.

S. Tygier, D. Kelliher, “PyZgoubi interface to Zgoubi,”
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