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ABSTRACT

We develop a general formalism based on multiparticle
dispersion theory and multi~Regge theory for describing the
Pomercn in  QCD. To avoid a phase-transition we use Higgs
scalars in the fundamental representation only, and keep a
transverse momentum cut-off except when we have asymptotic
freedom. This allows the analytic continuation of a pertur-
bative Reggeon diagram description of high-energy behaviour
in the Higgs régime, of parameter space, to the confining
régime of a pure gauge theory. By restoring the gauge sym-
metry first to SU(2) and extracting the infra-red singular
part of the multiparticle Reggeon formalism we find a confi-
ning string-like result for both the Pomeron and the physical
states, with the Pomeron carrying odd colour charge parity.
All the features of super-critical Reggeon field theory are
present and there is no rising cross-section.

When a higher gauge symmetry is restored, with the
asymptotic freedom constraint on the number of fermions sa-
turated, there is a critical phenomenon producing rising
cross~-sections, whose nature is associated with the complex-
ity of closed strings {flux tubes) allowed by the symmetry,
It seems that  SU{3} preduces the purely even signature
"Critical Pomeron™, with the odd c¢olour charge parity of the
vacuum (Pomeron) possibly implying Nambu-Goldstone chiral
symmetry breaking. 3U(4) and higher gauge groupsare anti-
cipated to produce, in addition, anon-falling odd-signature
amplitude,

-

é It seems, therefore, that the experimental Pomeron
requires  SU(3) gauge theory for its description and the
continued rise of total c¢ross-sections may anticipate the
existence of many flavours of heavy quarks,
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1. - INTRCDUCTION

The purpose of this paper is to set up the machinery for what we hope will
prove to be reliable calculations of the Pomeron in QCD. In doing so, we shall
be led firstly to some rather striking conclusions on the dependence of the critical
nature of the Pomeron on the number of fermions and the size of the gauge group
in general Yang-Mills theoiries. Secondly, we shall derive a partial description
of the physical states which is sufficient to demonstrate that there is confine-~
ment of colour, with the Pomeron (and, by implication, the vacuum) odd under colour
charge conjugation, implying, we suspect, the spontaneous breaking of chiral sym-

metry when the Pomeron is sub-critical,

The vacuum quantum numbers of the Pomeron clearly suggest that it might be
closely related to all the fundamental problems of quantization in non-Abelian
gauge theories. For this and other related reasons it is often argued that it is
fruitless to search for its correct description before solving such problemsl).
Certainly the popularly anticipated picture of the Pomeron as associated with
closed strings in a string theory of hadrons suggests that we should first)have

to be

the fundamental problem of the quantization of confining Yang~Mills theories,

an adequate desacription of closed strings. Since this is thought by many2

the fruitleassness of our purpose in this paper may be thought to be inevitable.
Fortunately (and remarkably perhaps}, we have found that by pursuing the construc-
tion of the Pomeron to the end, we have been led towards z resolution of the guant-
ization problems. We also believe we may have uncovered the "“tip of the iceberg"
of a fascinating connection between the dynamics of the Pomeron and the dynamics

of chiral symmetry breaking.

The reason for these (largely unexpected) bonuses is, perhaps, the following.
During the barren years of quantum field theory (for strong interactions}, the
most sophisticated analyticity metheds were developed to study the Pomeron3).
Using multidispersion theory and multi-Regge theory (generalized complex angular
momentum theory), it became possible to construct very complicated multiparticle
amplitudes almost completely from general principles in multi-Regge regions of
phase-space, the construction veing most complete for Pomeron amplitudes. At
present, it is unclear whether field-theoretic methods will succeed, in principle
or in practice, to define and calculate QCD away from the short-distance region.
Clearly, if we can input enough of the defining structure of QCD into the S§ matrix
methods we may succeed not only in defining (at least the high-energy limit of')
the QCD S matrix, but we will also have a very powerful method for its construc-
tion. This is, in effect, what we do in this paper. By exploiting and developing
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recent lattice gauge theory results on the analytic relation of the Higgs, and
confining regimes in some theories, we are able to input the gauge theory structure
into the S mabtrix framework in the perturbative Higegs regime, and then, analyt-
ically continue to pure QCD. Although our initial target is the Pomeron, it is
clear that the method is powerful enough to answer many other questions, either
directly or indirectly, about the QCD 5 matrix,.

In fact, many of the qualitative features of the string picture emerge from
our results and it is most easy to see how these results will extend to higher
gauge groups when they are interpreted in terms of closed string’exchange. As we
have implied above, a complete, predictive description of gauge theories in terms
of string operators may well prove elusive. Our approach may, therefore, compli-
ment, or even illuminate, the problem of string construction. However, the con-
struction of non-local stringiike states from a local field theory perturbation
expansion 1s a very complex miltiparticle infra-red problem, and so it should not
be surprising that we have to push the complicated multiparticle aspects of our
general dispersion theoretic formalism to its present limits in order to even be-
gin to discuss the problem.

4}1,5)

Qur starting point is the known perturbative results on the high-energy

behaviour of spontanecusly broken gauge theories (SBGT's). At first sight the

possibility of a complete description of the high-energy behaviour of these theories
looks very prouising to a Regge theorist. HNon-Abelian SBGT's have the remarkable
property that all gauge vector mescns lie on Regge trajectories. Furthermore, it
has been proven that (up fo tenth order) in perturbation theory, the leading high-
energy behaviour of all amplitudes can be described by multiple exchanges of the
reggeized vectors. Therefore, we might anticipate that this would be the ideal
situation to apply the general techniques of multi-Regge theory, and reggeon

Field Theory (RFT) ir particular, to study the complete asymptotic behaviour of

the theory. For just this reason, Bartelsé) has embarked on an extensive pro-
gramme to derive the weak-coupling limit of the appropriate RFT by extending the

dispersion theory calculations of Lipatov et al.q).

Unfortunately, there is a, by now well-known, problem in making this a com-

4)'7). The Regge description of the high-energy behaviour of

plete programme
amplitudes depends on the transverse momentum of the theory being cut off. This
is true perturbatively, order by order, in an non-Abelian SBGT, because of the

renormalizability of the theory. But, in the leading-log approximation at least,
the summation to infinite order produces a transverse momentium divergence in the

vacuum chamnel. This divergence leads to a fixed-cut in the angular momentum
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plane which violates the Froissart bound. A general SBGT in which all vectors

have mass and therefore reggeize is automatically non-asymptotically free. Con-
sequently, the large transverse momentum region will be dominated by large re-
normalization contributions to the Higgs system in high orders of perturbation
theory (renormalons) and is essentially uncalculablel(if not meaningless) in this
regions). 1t seems that the perturbative starting point of reggeizing vector
mesons with cut-off transverse momentum which, at first sight, seems SO encouraging
for SBGT's, is completely overshadowed by the fundamental problem of the defini-
tion of the theory at short distances when we probe deeper inte the high-energy
behaviour,

It has been argueda)—6)’9)‘ll)

that this situation may nevertheless be

useful for calculating the‘high-energy behaviour of unbroken gauge theories. Since
the fixed-cut occurring in SBGT's is due to a transverse momentum divergence, it

is actually independent of the masses of the vector-mesons involved. A similar
singularity may, it is argued, also occur in the corresponding (confining) un-
broken gauge theory with the asymptotic freedom of the unbroken theory chanéing

the fixed-cut to a moving Regge pole ({still violating the Froissart bound)ll}.

However, the infra-red divergences of the (high-energy) perturbation expansion,

arising in the massless limit, completely dominate the ultra-violet transverse
momentum region (in gluon and quark scattering amplitudes at least), and when the
leading infra-red singular behaviour is summed, the resulting high-energy behaviour

is very differentle)’l3].

In particular, there is no vioclation of the Froissart
bound, in the sense that the amplitude does not increase with energy at fixed-
momentum transfer. A priori therefore, there seems no reason to believe that
the high-energy limit commutes with the massless limit. In fact, since we, in

14}

general, expect a phase-transition between the Higgs phase with massive vector
mesons, and the confining phase of a gauge theory, we have no justification for
expecting such a fundamental property of the theory as the high-energy behaviour

to be preserved across the phase transition,

It is clear from the above discussion that there are many pitfalls in the
way of extracting sensible high-energy results from gauge theories. It seems to
us that we must initially have reggeizing massive vector mesons in the theory if
we are to have a starting point for multi-Regge theory. We must also have asym-
ptotic freedom if renormalization problems at large transverse momentum are not
to dominate the calculations., If we want to study unbroken gauge theories we
must have a limit into the unbroken theeory in which the developing infra-red di-
vergences do not destroy the high-energy behaviour. In effect, this means there

must be no phase-transition from a Higgs to a confining phase in the limit
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we consider. Most important of all perhaps, if we are to hope to handle the infra-
red divergences sensibly, we must also make sufficient contact with a confining
{presumably stringlike} description of the physical states.

It might be thought that if we wish to satisfy all of the requirements of

the last paragraph, then we will not find a theory that we can start to calculate,
Fortunately, this is not the case, but our choice of theory is extremely restricted.
If we wish to avoid the Higgs-confinement phase-transition, then recent lattice
gauge theory calculations tell us that we should always use Higgs scalars in the
fundamental representation of the gauge grouplS)’lé). If we also want asymptotic
freedom for the complete theory including the Higgs system then not only'is the
number of scalars we can add very restricted, but we must also have a large number

17},18)

of fermions present In fact, the simplest theory to which we can add Higgs

scalars and preserve asymptotic freedom is QCD with 16 flavours (QCDM - the
asymptotic freedom constraint on the number of fermions is saturated). We can

add just one complex triplet of scalars to QCD Applying the Higgs mechanism

M
then breaks the gauge symmetry from SU(3) to SU{(2) and gives a theory which

we refer to as QCDMB.

For reasons that we shall elaborate it is likely that we can take a smooth
}imit from QCDMB into QCDM and that, in this limit, a reggeized vector be-
comes massless and decouples from the physical spectrum, QCDM is probably there-
fore the simplest continuum theory with the property that a small variation of the
parameters of the theory can smoothly introduce a reggeized vector (with mass pro-
portional to the parameter variation) into the theory. In recent papers we have
argued that precisely this property is necessary to obtain the RFT critical Pomeron
(that is a strong coupling, even signature, Regge pole with intercept one) as a limit
from the RFT "super—éritical phase"lgj. This connection provides the central
reason for our hope to be able to calculate precisely the high-energy behaviour
of QCDM. In this and succeeding papers we hope to establish that the high-energy
behaviour of QCDMB is that of "super-critical RFT" (the Pomeron intercept is form-
ally above one}, and that the limit from QCDMB into QCDM gives the RFT critical
PomeroneO)’gl). An additional general reason for believing that this limit gives
the critical Pomeron is that in the versicn of RFT in which = channel unitarity

22)), the super-critical phase can be de-

is manifest (via the AGK cutting rules
scribed as the spontaneous breakdown of a global SU{(3) symmetry of the critical
RFT to an SU(2} symmetry via a fundamental (complex triplet) representation of
the SU{3) symmetry, Therefore, the symmetry breaking is the same as that in-
volved in going from QCDM to QCDMB. If these symmetry patterns are indeed re-

lated, as we shall claim, then it implies & deep connection between the critical
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Pomeron and the AGK cutting rules on the one hand, and SU(3) gauge symmetry
on the other., We shall give a heuristic explanation of this connection in terms
of Wilson loop operators in the last Section of this paper. We shall alsoc re-
turn to the generalization te higher groups later in this introduction. First we
discuss further the problems involved in finding the high-energy behaviour of
QCDMB.

‘We still have an unbroken 3SU(2)} gauge symmetry to cope with in QCDMB and
30 to begin our calculations we must also break this symmetry by adding a second
SU(3) triplet of Higgs scalars. We keep the large transverse momentum behaviour
under contrel at this stage by introducing a (transverse momentum) cub-off. We
then have a theory which is, in principle, calculable from its perturbation ex-
pansion. [?ince we have used fundamental representations of Higgs scalars, even
the centre of the gauvge group does not remain as a symmetry and, as a consequence,
there are no non-perturbative classical configurations that we should consider in
addition to the perturbation expansion,? In this situation therefore we can hope
to extrapolate ﬁhe perturﬁative higheeﬂ;rgy calculations into a complete>descrip—

tion of the (cut-off dependent) highienergy behaviour of all the multiparticle

amplitudes of the theory, [?he importance of coenstructing the multiparticle amp-
litudes is that, as we shall soon discuss, they are essential if we wish to follow
the process of "string formation" as the SU(2) gauge symmetry is restored.]

To carry out the desired extrapolation of the perturbative results we have to make
maximum use of the multi-Regge theory developed in Ref, 3). In the past, this
formalism has always been applied to justify the use of RFT for the even-gignature
{experimentally observed!) Pomeron. We show that it can be used equally well %o
derive a general diagram formalism for interacting reggeized vectors - 'reggeons.
Our multi-Regge theory is based on multiparticle dispersion relations3)’23) which

23)

incorporate extensive S matrix unitarity analyses and also global analyticity

domains which can be traced back to the primitive analyticity domains derived from
axiomatic field theoryzA). It also incorporates a complete analysis of multi~-
particle unitarity in the complex angular momentum plane. It is therefore a poten-
£ially very powerful formalism, and we feel that this is well demonstrated by its

application to the "reggeon" problem.

Essentially, the general formalism enables us to iterate the perturbative
Regge pole structure of multiparticle amplitudes through dispersion relations to
obtain a “reggeon calculus" loop expansion for any multiparticle amplitude. In
principle, one can then ask whether there is a simple RFT Lagrangian which gen-
erates this expansion for particular amplitudes; this is the guestion asked for

elastic amplitudes by Bronzan and SugarT), and also Bartels6), in the weak.coupling
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limit. However, the most important problem for us is the infra-red singular be-
haviour of all amplitudes, We therefore concentrate on the general transverse
momentum singularity structure of the formalism. In the previous weak-coupling

RFT descriptions of elastic amplitudesB)’T)

it has appeared that both reggeaon
trajectory functions and all interactions have transverse momentum singularities
whose structure could only be completely determined by impossibly laborious uni-
tarity or Feynman diagram calculations, In fact, from our formalism we can show
that all of the transverse momentum singularities found in the perturbation theory
calculations have their origin in a regular triple reggeon interaction which simply.
contains a "nonsense zero!" due to the odd-signature of the reggeons. This zero
prevents the triple interaction from appearing in an RFT formulation of elastic
amplitudes except as generafing singﬁlarities in higher-order interactions. It

will, however, appear in multiparticle amplitudes.

We extrapolate this last result. by assuming that (in general} SBGT's can be
described by non-singular reggeon interactions containing, when nscessary, non-
sense zeros and with all interactions related by Ward identities as an expression
of the over-all gauge invariance of the theory25). This extrapolation is sufficient
to enable us to analyse and characterise the infra-red singular behaviour of all
reggeon diagrams, in the limit that the SU(2) symmetry is restored to give
QCDMB,Q)pg?Vided we extract another important feature of the perturbative calcul-
ations ‘', That is, the limit is best described by first undoing the reggeiz-
ation of those gluons that are to be made massless, treating them essentlally as
clementary fixed-poles (in the angular momentum plane) having non-trivial trans-
verse momentum interactions with properties we must generalize. The perturbation
theory results show that these interactions lead to infra-red divergent diagrams
except when the total SU{2) (t channel) colour is zero, with the result that
all diagrams not carrying zero colour are suppressed. [ihis suppression is direct-
ly due to the "exponentiation™ of reggeization which in turn is closely related
to the "Sudakov form factor" -exponentiation originally proposed by Cornwall and
Tiktopoulosaé) as a perturbative colour confinement mechanism.:l The infra-red
finiteness of the colour zero interactions in fact extends to all "off-shell"
gluon or reggeon diagrams appearing in elastic amplitudes., Consequently, the
only remaining infra-red divergences either occur when gluons or reggeons (or
quarks) are taken on-shell to define particle amplitudes, or are generalizations

of such singularities which appear in multiparticle reggeon amplitudes,

In fact, in colour zero elastic amplitudes, the leading "mass-shell" sing-
ularities also exponentiate to give finite results. We argue that this will be

a general result as a consequence of the remaining infra-red singularity of the
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colour zero interactions in non scale-invariant infra-red limits. However, be-

cause of the finiteness of the same interactions in scale-invariant infra-red

limits, there is a class of mass-shell singularities in multiparticle amplitudes
which do not exponentiate or cancel in any analogous way. The existence of these
mass-shell singularities is closely tied to the breakdown of signature rules for
reggeort diagrams in multiparticle amplitudes. They therefore imply that the states
emerging from the infra-red limit are necessarily multiparticle gluon states.
Indeed, it is this class of multiparticle mass-shell infra-red singularities which
We argue are responsible for the formation of stringlike (that is, "flux-tube')
physical states as the symmetry is restored. Let us discuss now why and how we
believe we can make this identification, First we note that, since the high-energy
limit giving the Pomeron is expected to be dominated by the exchange of low trans-
verse momentum closed strings, it will not be surprising if we see only the struc-
ture of the large (in transverse distance) closed strings surrounding the zero-
colour local physical states and do not see the short "linear" (presumably) string
between constituent quarks.

Since our transverse momentum cut-off should be equivalent to a transverse

lattice, we anticipate that the lattice argumentslS)’lé)

will apply and the res-
toration of the SU(2)} gauge symmetry takes place smoothly, That is, as .in the
lattice theory, the stringlike states of the unbroken symmetry form continuously
from multiparticle local states. In practice, this means that if we determine the
infra~-red singular reggeon diagrams we should find that the singularities can be ab-
sorbed into a re-definition of the external states as stringlike states, and that
once this is done we have a smooth limit into the unbroken SU(2) gauge theory
(with a transverse momenftum cut-off). Since string states are complicated multi-
particle states with a very spec¢ial space-time structure, we anticipate that the
most singular reggeon amplitudes will be those involving multiparticle external
gluon (and quark) states, carrying zero total SU{2) colour, in particular mo-
mentum configurations associated with strings. The infra-red singularities that
we find do have just this property. (We should perhaps emphasize that since all
our formalism is based on S matrix elements, there is no problem with gauge in-
variance, and, in particular, our description of infra-red behaviour is gauge-
invariant.}

The reggeon diagrams that we keep as the most infra-red singular all involve
the massless 3U(2) gluons only in a very particular way. They always occur as
SU(2) singlet combinations attached to initial or final external particle inter-

actions, all carrying zero transverse momentum, and having no self-interaction.

The scale invariance property of the self-interactions referred to above, (which
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actuvally produces the ultra-vioclet fixed-cut in the weak-coupling diagrams when

there is no transverse momentum cut off7)),

guarantees that they cannot cancel or
enhance the EEEEETEEQ divergence of the non-interacting diagrams as the transverse
mementa of all gluons go uniformly to zero, We argue that this transverse mo-
mentum distribution is indeed that which would be produced by large {transverse)
closed strings surrounding the {(colour-zero) external particles. Also, as we
discuss heuristically in Section 8, the negative charge parity and exchange de-
generacy of the Regge singularity generated by the combination of gluons and a
reggeon involved (which becomes our Pomeron), are just the properties that we
would expect from the t channel exchange of a Wilson loop closed string prop-
agating in transverse space, We feel confident, therefgpe, that we are recovering

stringlike amplitudes from the infra-red singular reggeon diagrams as anticipated.

The additional properties of the singular diagrams which are important (apart
from the simulation of string exchange) are, first, their independence of the cut-
of f region of transverse momentum in the SU(2) sector of the theory. This
implies that there is no residual ultra-violet problem from the removal of the
second Higgs triplet and that the ésymptotic freedom of continuum QCDMB can be
safely used to remove the transverse momentum cut-off without intreducing a fixed-
cut in the angular momentum plane. Secondly, the resulting high-energy behaviour,
after factorizing off the infra-red singularities, is given by an RFT formalism
which simply replaces all the S8U{2) particle poles in the ordiginal diagrams by
two~dimensional & functions of transverse momentum. Consequently, there is no
singularity at zeroc transverse momentum - we have complete confinement of 3U(2)
colour! Also, the leading high-energy behaviour is associated with an exchange
degenerate Regge\pole, the Pomeron in QCDMB, which can be described as an SU{(2)

singlet reggeized gauge vector meson accompanied by an infinite number of non-
interacting zero mementum SU{(2) gluons {a closed string of 3U(2) flux!) 1In
addition fo introducing the exchange degeneracy, the non-interacting gluons act
like a "classical background Pomeron field" producing reggeons and Pomerons from
the "vacuum" and also reabsorbing them. This produces precisely the situation

in the super-critical RFT phaselg).

Thus it seems that the high-energy behaviour of QCDMB is indeed that of
super-critical RFT as we hoped from general arguments. We also show that the
additional cancellation of infra-red divergences, which takes place as the SU(3)
gauge symmetry is restored to give QCDM, removes the vacuum production and ab-
sorption of Pomerons. Since the intercept of the exchange degenerate Pomeron
also goes to one in this limit, we will have all the features of the critical

Pomeron limit provided that the odd-signature trajectory (on which the SU(2)
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singlet gluon lies) decouples as it should [}nd restoration of the 3U{(3) symmetry
implies it musﬁ], and we can identify a triple Pomeron interaction which remains
finite in the limit. We shall show that quarks are essential for the triple Pomeron
interaction, but the need to adequately incorporate reggeized quarks in our general
formalism will prevent us from giving a complete description of the critical limit.
However, the importance of quarks for the triple Pomeron interaction already hints
at the connection of the chiral limit with the critical Pomeron limit, We actually
cutline several reasons why we believe it is the critical (and sub-critical} Pomeron
which hides the parity-doublet hadron trajectories and is therefore responsible

for the Nambu-Goldstone realization of chiral symmetry. The negative colour charge-
parity of the Pomeron (which we have implied above is associated, at least heur-
istically, with an analogous property of Wilson leoeops) is certainly central. Un-
fortunately, while we believe that eventually all this part of the discussion can

be made precise, this is certainly not the case at the moment. Apart from the

need to incorporate quarks properly, we would like to carry out the infra-red
analysis of QCD

MB

that the critical Pomeron occurs in QCDM. We also intend to publish a better

derivation of the super-critical Pomeron (from reggeon unitarity) than we have

in more detail before claiming to have proved beyond a doubt

glven previously, before attempting an exact comparison with QCDMB' Nevertheless,
we do believe that we have already derived all the essential ingredients to show
that the critical Pomeron deoes indeed occur in QCDM. our confidence in the cbrrectn
ness of this result and an understanding of the underlying physics is enhanced once
we consider the generalization of our results to higher groups and arbitrary numbers
of fermions, and alsoc their connection with the closed string structures of such
theoriele). Eihe string picture actually shows us that the odd-signature trajec-
tory will naturally decouple as we take the limit from QCDMB into QCDM:

First we consider what we can say if we have less than 16 flavours in QCD.
We can repeat all the arguments made for QCDM, ‘but keeping the transverse mo-
mentum cut off throughout. This means that we may formally define a transverse
cut-off QCD which gives the critical Pomeron, However, it is straightforward
to show that raising the cut-off lowers the Pomeron intercept. Consequently,
the total cross-section ultimately falls asymptotically if thefe is less than the
maximum number of fermions.

If the gauge group is larger than SU(3), saturating the theory with fermions
again enables us to break the gauge symmetry down to SU(2) and retain asymptotic
freedcm. Repeating the arguments made for QCDMB, we obtain a similar *super-
critical" phase, but with a more complicated "Pomeron" spectrun of trajectories.

Thus restoring the full symmetry in higher gauge groups will produce a more
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complicated critical phenomenon than the familiar "critical Pomeron®, In partic-
ular, we argue that in SU(4) there will be an odd-signature Pomeron trajectory
in addition to the usual even signature trajectory. In higher groups, there will
presumably be increasing numbers of trajectories of both signatures, with many
associated critical points as the number of fermions approaches the maximum. We
emphasize, however, that all trajectories simultansously have intercept one only
when the asymptotic freedom constraint on the number of fermions in the theory is
saturated, a situation far removed from the N+ o limit of SU(XN) theories with

a finite number of fermions.

The string formalism actually supports and illuminates this picture, if we as-
sume that, toafirst approximation, the t c¢hannel exchange of a Wilson loop com-
posed of vectors gives an amplitude proportional to the total energy, with the
stringlike structure appearing in the transverse space. We show that the welli-
known 't Hooft commutation Puleslg) for closed strings in a non-Abelian theory
then imply that SU(2} cannot produce a pure imaginary Pomeron, SU(3) c¢an, but
cannot produce an odd-signature component. 3SU(4) can produce an odd-signature
Pomeron trajectory and so on. From this point of view, it becomes clear that our
method of calculation essentially involves breaking down the complicated closed
strings of a large gauge group into SU{2) closed strings, plus whatever number
of SU{2) singlet, massive, reggeized vectors is necessary to build up the complete
gauge symmetry from SU(2). The resulting critical phenomenom as the full symmetry
is restored, then involves trajectories associated with all such vectors, Only in

SU(3) is there just one trajectory.

4 further physically attractive result emerges if we consider the s channel
intermediate state structure associated with the closed string picture. Ve are
then ablé to understand the association of 3U(3) with the AGK cutting rules
and the critical Pomeron. We show that if, in SU(N) theory, an initial Pomeron
trajectory is defined from a multiperipheral approximation to events with close to
the average multiplicity {(the usual phenomenological Pomercn) then events with
2,3,+..,8-2 times the average multiplicity will give rise to new trajectories
associated with the possible types of c¢losed strings in the theory. The AGK
cutting rules implicitly assume such a phenomenon is absent and s0 anticipate

SU(3) c¢losed strings.

Let us briefly comment on the relation of the above results to our previous
paper27} in which we argued that an unbroken non-Abelian gauge symmetry was suf-
ficient to produce the critical Pomeron, and that the supercritical phase occurred

when the symmetry was broken to an Abelian symmetry. Clearly, two essential
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elements of our present understanding were missing in that paper. That is the
importance of maintaining asymptotic freedom during the restoration of the final
symmetry and the importance of using Higgs scalars in the fundamental representa-
tion to avoid a phase transition. We also invoked a principle-value prescription
in transverse momentum to produce artificially the kind of structures which appear
directly from the infra-red singular part of the theory once the symmetry breaking
is handled correctly. Therefore, we forced the right kind of mechanism to create
the super-criticgl Pomeron to occur in a situation where it naturally does not
occur when the theory is treated properly. Not surprisingly, this "unnatural"
approach created almost hopeless problems of contrelling all unwanted contribu-
ticns, the unravelling of which led to our present {we hope) much better under-
standing.

Finally, we come to the lay-cut of the paper. Clearly, this is a very long
paper whose length, we believe, is justified by our development of a general form—
alism which we hope will eventually prove to be very powerful for studying a large
part of hadronic QCD, Certainly, our initial target of diffraction scattering
is sufficient justification in itself For the formalism. Unfortunately, almost
all of our formalism is little known, especially to many people that we hope will
be interested in this paper. In addition, we have to input many results from other
areas of gauge theory calculations - lattice gauge theories, string formalisms,

‘perturbative reggeization calculations, etc. Consequently, a large part of the
paper is given over to the review and organization of both our previous work, and
that of other authors from a coherent point of view required for the purpose of
this paper. Also, in order to show how the formalism can be developed and brought
to a conclusion in a finite length paper, much of the development is done in out-
line only. we hope nevertheless that the paper can be read in its entirety by a
reader with very little previous specialized knowledge, and an appreciation of
the potential power of our formalism gained. In succeeding papers we intend to
give the kind of detailed development which would enable a reader to apply the

formalism.

In Section 2 we review what general field theoretic properties of QCDMB
are known, and how we wish to interpret them and use them in our formalism. This
Section also makes clear the specific problem we wish to consider before we go on
to the succeeding general review Sections. In Section 3 we review the dispersion
and multi-Regge theory results obtained in Ref. 3) and give what developments are
needed for the rest of the paper. Section 4 reviews essentially all the needed
perturbative results on reggeization, RFT in Yang-Mills theories, the ultra-violet
fixed~cut of the leading-log calculations, and, finally, the analysis of infra-red

singularities of RFT diagrams,; with the resulting suppression of colour.
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Section 5 contains the first really new formalism, We show how the multi-
Regge "hexagraph" formalism described in Section 3 can be used to reproduce all
the perturbative results from reggeon diagrams with non-singular reggeon inter-
actions. We then describe how the formalism can be developed to give a complete
high-energy description of all multiparticle amplitudes. In Section 6 we apply
the general formalism specifically te the infra-red limit involved in defining
QCDMB. We show how the mass-shell singularities which necessarily accompany
sighature non-conserving reggeon diagrams in the multiparticle amplitudes lead
naturally to a gauge-invariant string (or flux-tube) description of the states
of QCDMB,
sorption Pomeron diagrams which characterize super-critical RFT.

while at the same time developing zll the vacuum production and ab-

In Section 7 we discuss all aspects of our formalism in which quarks play a
central role. This includes the control of the large transverse momentum region
by asymptotic freedom as well as the triple Pomeron vertex. We discuss also the
eritical limit, its flux-tube interpretation and its relation to chiral symmetry
breaking. Finally, in Section 8 we discuss the generalization of our results to
higher groups and their connection with the Wilson loop structure, or closed
string structure of such groups. We also discuss the connection of the AGK cutting
rules with SU(3) gauge theory, and explain how the structure of a general gauge
group would manifest itself in a conventional phencmenclogical analysis of diffrac-

tion scattering.
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2. ~ QEDMB - A TOTAL SCREENING PHASE WITH ASYMPTOTIC FREEDOM

We write the Lagrangian density of the theory we call QCDMB as
=2, +4&_+ 2, (2.1)
where 'QG is the usual pure Yang-Mills Lagrangian for an SU(3) gauge field

an
ic. = -5 Tr cf-, Cu by AL~ o (AL A7) % =5 Tr F*:(A)
(2.2)

£F is the fermionic part of the Lagrangian

iF: %'. (a(i)/—f’l;,—%f\fﬁ/)q},c (2.3)

and ? is a sum over the "flavours" of the fermiocns Eﬂﬁ@h may be in different
representations of 3U(3) - the Af being the corresponding representation ma-

trices - we shall discuss which representations, and how many, shortly:]

The Higgs part of the theory is given by

2y=| (u-A)S)- L )\(55*?5)1*/“7’*9” (2.4)

where @ 1is a triplet of complex scalar fields transforming under the fundamental

(3) representation of SU(3). o% obviously transforms under the gf represen-
tation.

We begin by discussing the possible asymptotic freedom of the theory. This
has been investigated in the original paper of Gross and Wilczele) and also by
Cheng, Eichten and LilB). Defining running coupling constants g(t) and N(t)

as usual, from the renormalization group equations, it is shown that :

da = 3 ;&
Z_?: -ﬁ’ (3, ) (2.5)

{2.6)
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where
b, = Ao 1.3 - & ()_._1_
The % is due to the scalars © and ©* and S3(f) depends on the fermion repre-

sentations involved. 3Similarly

=53 (7,3)

- tT L
?.‘-A?\ +6A%+CQ 4+ - - (2.8)

>\

4
A

|

&

where A = [7/8ﬂ2), B = —(l/ﬂz), C = (13/&8ﬁ%. It is possible that X + O
consistently in (2.8) if X = qéz + O(é3). This gives the stability equation for
o

do. @" (Aa:,z-r— Ba 'l'C)
d+ {2,9)

where B = B' «+ bo‘ When the stability condition B2 > 4AC 1s satisfied there

are two fixed-points (al and ae) of (2.9) and the smaller is stable for t -+ .

The stability condition is satisfied only if

a 2
(-m%v.) > %

~ 5. > 8T b, {2.10)
24

If all fermions are SU{3} triplets then

- 2.1}
S, (%) Ne /o (2.31)
where Nf is the number of flavours. Remarkably if Nf = 16 then
Qb= L <« 2 (2.12)
(3 3 24

whereas if Nf = 15 then

19
3T b, 2 5z (2,13)

i
o
N
£
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and, of course, if Nf = 17, bo < 0 and even the gauge-coupling g is not
asymptotically free, Therefore if the number of flavours just saturates the
asymptotic freedom constraint on the gauge coupling the Higgs coupling A can
also be asymptotically free. By the end of the paper we will have attached great

physical significance to this simple fact.

An important point for the following discussion is that, from the above,
the Higgs coupling X must lie within a range of values proportional to éz as
t approaches infinity. That is

D < >\ < °12 25 t > e0
(2.14)

Therefore our choice of initial values for X and g ab some specified to must
place us on a trajectory in the (X,2) plane which approaches the origin as

t » ® as illustrated in Fig. 2.1. We shall return to this point shortly.

To complete our description of the asymptotic freedom constraints we quote
further from Ref. 18). Firstly if we add another representation of Higgs scalars
then asymptotic freedom is impossible without enlarging the gauge group. Secondly
the oniy possible medifications of the fermion representation content, given the
experimental observation of five flavours of triplets, are that we could have six
flavours of triplets and two sextets, or eleven triplets and one sextet, or ten

triplets and one adjoint.

We now begin a discussion which will eventually enable us to consider the

possibility of taking a smcoth limit from QCDMB into QCDM. To this end we first

discuss the recent lattice gauge theory results of Fradkin and ShenkerlS)

and Rabinovicil6}. This will als¢ enable us to discuss further breaking the sym-

and Banks
metry of QCDMB while keeping the transverse momentum cut-off.

Consider now the Lagrangian £r oo 'EG + 'QH where £ contains two

H

(complex) triplets of Higgs scalars @l and @2. Making the non-unique decom-

position (which is only possible strictly in the "Higgs régime" of parameter

space - see below)

g0 = leofo g,6)= 6o [ o
0 Fae))
2,00 QO (2.15)
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where Q(x) is an SU(3) matrix and Py+.+p, are real we can define

,.'—
B. =3 (.!53,“ - ,.) it (2.16)
and write

;(" = -k Te F;: (3) + g (@*ﬁ ;)’- *(ﬁ1*/" AL :) % [B:‘ B"‘].sa

a2 + 2 - + 2 . ¥
e [B,,B,.. wat? qu(&*.bf’)lg"‘s’“]gg-r 9 /‘%(ﬁ“ﬁ)[&&]ﬁ-— Yy —can
where V{p} is the (gauge-invariant) potential for G)l and (52.

The BU and pi are gauge-invariant local operators which are equal to the
usual "physical" operators in the unitary gauge [which is defined by Q(x) = IJ.
When (Vp] has a non-trivial minimum and the Ps acquire large expectation
values we would conventicnally say we are in the "Higgs phase' of the theory with
the physical states defined perturbatively by the Bu (which all become massive)
and the Py - That is there will be eight massive vector mesons and four massive

scalars.

Alternatively if the minimum of V¥(p) is at the origin and the gauge symme-
try is "unbroken" uwe expect to be in the "confinement- phase". In this phase we

expect the most important "bare" states to be created by the "string operators™

¢:(x,) P exy [_ % g.x :""'A AM] 553(“93 ‘:5’- 1,2

(2.18)

1 and Xoe

The results of Refs. 15), 16) imply that on a lattice the states created by the

where as usual P denoles path-ordering along some path joining x

operators of the form (2.18) and the local operators (2.16) are in fact analytic-
ally connected as the parameters of the potential are varied from the Higgs to the

confinement region. There is no phase transition !

Heuristically we can understand that as the @'s acquire expectation values
it is straightforward for a line integral of the form of (2.18) to "break-up" into

a product of the Bﬁ operators. Writing the line-integral formally as
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T (_L -9 A(%D)Sxa

S

= oo (%;,. -0 F\(x...)) S, (%“. -qA(«;)) sx;(‘%a;, Af"&.)) cae -

(2.19)
+
= DDA (E - A(«;-a) S N DN
(]
+
x(r%;l‘Q)‘xcn{S)<gﬂ}jléq)j1 6tﬁ;)(:§;¥+;"5 }§GQMS) Q?Q*‘ e
(2.20)
= T o Bl)S=;
¢ {(2.21)
where the approximate equality follows from
+
ﬂ(‘xi) 1 (xa*o = | ? (2.22)

it is clear that a string state may be approximately described as a (bare) multi-

particle state created by the gauge invariant local operators B. In fact in the

case we are considering - two triplets of Higgs - there is essentially a 1-1
correspondence between the local vector operators {(2,16) and the string-operators
{2.18). Given ) and Xy We have the eight orientated operators of the kind
{2.18) shown in Fig. 2.2 (the arrow is directed from the point where the @
field is).

By analogy with the dual string model we anticipate that the open string ope-
rators (2.18) will create states, all of which lie on Regge trajectories. Since
(as we shall discuss further in Section 4) all the elementary vectors B reggeize
in perturbation theory in the Higgs phase, we anticipate also that (provided we stay
on a lattice or equivalently keeps a cut-off in the transverse momentum) the pertur-
bative Regge trajectories go smoothly into those associated with the string opera-

tors as the confinement régime of parameter space is approached.

A vital point for the above discussion is clearly that the Higgs fields @i
must be in the fundamental representation of the gauge group to enable us to define
the gauge invariant local operators (2.16), This also allows such operators to be
defined for the fermions of the theory, e.g., for triplet fermions
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A (=) = 7(x) Yoo

(2.23)

If the scalars are not in the fundamental representation then gauge-invariant
local operators cannot be written for all the perturbative states of the "Higgs
phase" and in general we have a fransition from a magnetic confinement phase o

an electric confinement phase as the parameters of the theory are varied. Banks

and Rabinovicilé) refer to the Higgs-confinement phase of a theory with fundamental
scalars as a "total-screening phase". HNote, however, that a difficulty is expected
16)

if we insist on the fermions being massless. Banks and Rabinovici anticipate
that in this case there will in general be & phase-trangition in which chiral sym-
metry is spontaneously broken. This will be important for our tentative discussion

of chiral symmetry breaking in Section 7.

The next point we consider is whether the above results may extend to the
continuum and in particular whether it is possible to take a limit into pure con-
fining QCD. The most general form of the invariant potential Vi(p} in (2.17) is

given by Cheng, Eichten and Lils)

and involves five scalar couplings, which we
refer to (loosely) in vector ncotation as A. There are also two mass terms for
the two representations with masses which we refer to (again loosely) as u. The
1imit L which in perturbation theory formally gives a pure gauge theory from a
Higgs régime of parameter space always has the general form (all of our limits in

the following will implicitly be of this form)

* A A
Lt M= -2, L »>-00 , & > 2 ,
M pt (2.24)

since this allows expectation values of the form <p> ~ "u2/A" to go to zero si-
multaneously with the mass of the scalars becoming infinite sufficiently fast.
That is since, for fixed external momenta, diagrams involving scalars are
o™
scalar diagrams go to zero in the perturbation expansion. The question is whether

, for some power n, the last condition in (2.24) ensures that all

this limit which is clearly delicate even in its definition has any chance to

succeed outside of perturbation theory ?

~ Since we necessarily have } -+ ® we can make direct contact with the explicit

lattice models of Fradkin and ShenkerlS), Thesze models are always defined with the

limit ) + » already taken. In a continuum theory this limit would give®® a
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non=-renormalizable massive Yang-Mills theory in the Higes régime and so would be
extremely dangerous. On the lattice it gives no problem. The resulting theories
are then functions of g2 the gauge coupling constant and p ~ "ue/l“. The re-
sulting phase diagram for a non-Abelian gauge symmetry where the Higgs scalars are
in the fundamental representation is anticipated to have the general form shown

in Fig. 2,3. From this diagram it is clear that the limit L that we need will
give us a pure gauge theory as long as we stay on a lattice. [?hen the scalars
are not in the fundamental representation the line AB becomes the Higgs con-—
finement phase-transition and extends right across the diagram. There is then no
chance to reach the confinement régime smoothly from the Higgs régime{] However,

29)

to define a continuum theory we must take the continuum limit by approaching

a second-order critical point. That is either B or C in Fig. 2.3,

To define a Higgs régime continuum theory the best hope (although not proved
to succeed because of the ultra-violet problems with a renormalizable non-asympto-
tically free theory) would be to approach B from the large <p> direction with
A kept finite until B is reached (to avoid the non-renormalizable Yang-Mills
theory). To define a confining theory including scalars we should approach B
from the small <p> direction, To define the pure gauge theory we should approach
C. From this qualitative discussion it is clear that while the range of theories
defined by approaching B from below may have a limit into that defined at C
there is little hope that this is the case for a Higgs theory defined by approaching
B from above, This argument applies as long as we are forced to define the conti-
nuum Higgs theory from the critical point which is at A = © in terms of the bare
parameters of the original Lagrangian £'. The only possibility to avoid it is
if there is a fixed-point at X = O which can define a continuum theory, or in

other words if the theory is asymptotically free in )\ as well as in g,

As we have already discussed for this we must remove one triplet of scalars,

add 16 flavours of fermions and s¢ arrive at QCDMB. We can then consider the

possibility of taking a limit of the form L from QCD into QCD,. Let us

MB M

first consider whether the states formed by the relevant local and non-local ope-
rators can connect smoothly as previously. For this purpose we again initially
ignore the fermions and consider £!' = -EG +"EH where now 'EH is given by

(2.4). In (2,15)-(2.17) we set PL=Ps 0y = P53 =0, = 0 and take

V(P =5 N -

(2.25)
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The "Higgs régime" is now p2 + +o, 30 that

2z "(1
<P> = — oo
By (2.26)
If we take {2 to be unity so that B is Hermitian we can write
‘e = boed A ‘
) = 2 N =
B. “ ¢ )8 (2.27)
where the Ai are the usual Hermitian SU{(3) matrices, then since
Lauh] =0 £=1,2,% (2.28)
= t =4 .7
' £ (2.29}
= L .
3 €= ¥ (2.30)

perturbation theory in the Higgs régime gives three massless vectors, four with a
mass2 = g2 <p>2 while a fifth acquires a ma332 = % g2 <p>2. However, although
the operators Bi defined by (2.16) are gauge invariant with respect to the ori-
ginal SU{(3) transformations ocn A (since such a transformation simply redefines
£ by left multiplication of the corresponding gauge transformation) there is a new
SU(2) gauge invariance when @2 = 0, Equation (2.15) leaves Q(x) undefined up
to right multiplication by an 3U(2) matrix in the plane orthogonal to p. This
arbitrariness means that the theory defined by L now has an 3SU({2) local gauge
1 g2 3

invariance. B™, BY, are the gauge fields corresponding to this invariance and

Bq,...,BT form two {(massive) vector doublets BL, B2 under these transformations.

B8 is a singlet.

The perturbative states will not now be the true states even in the "Higgs
régime” but rather we expect that there will be confinement of the SU(2) symmetry.
We anticipate therefore that the appropriate operators for discussing the states of
the theory will be open SU(2) strings with the doublets BL and Ba at the end,

that is

Bi(fx,) P exp [ -9 é,;tﬁk 6.«] ‘3?("0
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together with the singlet local operators
g 7 )
2
E%o. (é‘ 3 (c,( (2.32)

If the Higgs régime is again smoothly connected to the confinement régime of
parameter space (staying on a lattice for the moment) and there is no phase-transi-
tion then the operators (2,28) and (2.29) must create states which can analytically
connect with those created by the operators of the "unbroken" theory defined by
<p>2 ~ 0 in (2,26). These are again oriented open strings of the form {2,18) with
the Higgs triplet operator @ at one end and @* at the other end.

The process by which the operators (2.31) and (2.32) create the oriented strings
of the unbroken theory is a bit more difficult to describe than the corresponding
process when two triplets of Higgs are simultaneously involved. The essential point
is again that we must contract the Q's out of operators using the unitarity rela-
tion

Fa
a .5)- =] (2.33)

leaving operators defined only in terms of the A fields. E?his is the reverse of
the process described by (2.19)—(2.20):] Now, however, we must combine the strings
(2.31) and the local operators (2.32) in a complicated fashion, which is best des-
¢ribed pictorially,

In Fig, 2.4 we have illustrated the integral (2.31)} (on a lattice) by repre-

senting the fields Bl, 82, B3

short lines. The SU(2) singlet field B8 is represented by a star. If we add

by circles and the massive vector fields B3 by

operators as indicated in Fig. 2.5 (considering the same lattice line throughout}
then the unitarity of the Q matrices allows them to be removed on either side of
the lattice point where- B8 is located. The result is the introduction of the A
Field at one lattice point. This process has to be repeated over and over to
convert a complete non-oriented SU(2) string to an oriented 3U(3) string.

Note that since

By = ﬂ; ('Io's Yo A’“)s,, ﬂ-k%

.

(2.34)
we must, in the above process, choose whether to combine ng or 9k3 with the
relevant Q or components on one neighbouring lattice point. This choice

introduces a (local) SU(3) orientation of the string. Thus we can think of the
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SU{3) orientation appearing pointwise as the S8U{2) 1local singlet operator is
added to the existing SU{(2)} string by the process of Fig. 2.5.

We have now argued that the 3U(2) operators (2.31) and (2.32) can indeed
create the same states as the SU(3) operators (2.18) and so we claim that on a
lattice the results of Refs. 15), 16) apply and that there is no phase-~transition
in QCDMB. We would like to combine this argument with the asymptotic freedom of
the theory, as discussed earlier, and assume that QCDMB can be defined as a
continuum theory which in the limit L of {(2.24) goes smoothly into continuum
QCDM. Although the argument against this that we discussed when the theory is
defined through a phase-diagram of the form shown in Fig. 2.3, no longer applies,

further discussion of this assumption is necessary.

Since we expect the gauge-coupling g2 to grow faster than the Higgs cou-
pling A in the infra-red region it is reasonable that the trajectory shown in
Fig. 2.1 should apprecach or become parallel to the Xzw line as t =+ -,

Also the behaviour of perturbation theory when the limit L is taken at finite
momenta indicates that there should be a sequence of trajectories at t finite
approaching the X =« axis as illustrated in Fig. 2.6. The assumption we wish
to make is really that this sequence of trajectories all drop down as t » +x to
satisfy the asymptotic freedom constraint, We can then argue that QCDM ¢an be

reached as a limit through the sequence of trajectories shown in Fig. 2.6,

We finally consider how the mass of the singlet vector Bg must behave in
the limit we require. This will be central for our discussion of the beghaviour
of closed strings, and more specifically the Pomeron, in QCDMB. On the vertical
part of the limiting trajectory in Fig. 2.6, we must have % finite while
u2 > w, (Consequently <p> =+ = and since g ~ 0 we have a purely perturbative
situation in which Mgg-rw. This clearly is consistent with the departure of
this part of the theory to t = 4+ in the limit we consider. For g ~ O,

XA ~ « we still have an essentially perturbative situation with now <p> + 0 and

so Mg > 0. Since B°

must disappear from the physical spectrum to restore the
SU(3) symmetry we anticipate that either Mgs -0 or M%s + © as t + -» yhere
the physical mass is defined. Since asymptotic freedom implies Mgs must be expo-~
nentially small for finite t it seems very plausible that the symmetry can only
be completely restored if indeed Mgg + 0 also for t + -», and this is what we
shall take to be the case. It will be very important that in this case a descrip-

tion of the decoupling of this wvecteor is naturally provided by supercritical RFT.



- 23 -

We believe it is also significant that the decoupling of the 8% vector has
a natural description in a string picture. This is because as the confinement
régime is approached the vector lies on a Regge trajectory associated with a
closed string [?ather than the open strings (2.18)] . To see this, note that
process illustrated by Fig. 2.5 can be applied to closed SU{2} strings to show
that B8 provides the necessary degree of freedom for the orientation of 3U(3)
closed strings., However, until the SU(3) symmetry limit is reached such strings
can be thought of as essentially non-orientated but with lecal sections having an
orientation dependence [@f. our remarks after (2.34[]. We anticipate that such
strings will have signature properties similar to open strings and so have exchange
degenerate Regge trajectories with the vector B8, in particular, lying on the
odd-signature partner of an exchange-degenerate pair of trajectories. As the sym-
metric limit is reached and the cleosed strings become pure SU(3), they will also
become purely even signature with the odd-signature trajectories, in'particular that
on which B8 lies, necessarily decoupling. We hope that this argument will be seen

to acquire greater depth in succeeding sections,
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3. - DISPERSION RELATIONS AND MULTI-REGGE THEORY

In the remainder of the paper we shall need to make extensive use of the
multi~Regge theory developed in Ref. 3), applying it in particular to the high-
energy behaviour of theories with reggeized vectors. This formalism is not ge-
nerally well known and consequently it is not always appreciated that the use of
Reggeon field theorySO) to describe high=-energy behaviour can be based directly
on unitarity together with some global analyticity properties which can almost
certainly be traced back to the assumptions of axiomatic field theory. However,
it seems to us that to derive the high-energy behaviour of as difficult a theory
as QCD, it is absolutely essential to make the maximum use of these powerful
general results, We shall try, therefore, to summaprize the results here as briefly
as possible, We shall present and also develop them in a form which is most eco-

nomical for the purpose of this paper.

The starting peint for the formalism is the results on multiple discontinuity
formulae for multiparticle amplitudes derived by Stapp and co-workers in 8 ma-
trix theory23). These results show that many {unphysical) boundary values onto
the real axis of the analytically continued multiparticle S matrix have ana-
lyticity properties analogous to the physical S matrix., Remarkably these are
the only boundary values involved in multi-Regge asymptotic lLimits {physical or
unphysical)., As a consequence multiple dispersion relations (which are generalized
fixed-momentum transfer dispersion relations) can be shown to be valid asympto-
tically (that is up to non-leading powers of the asymptotic variables) which
involve only multiple normal threshold discontinuities3)’23). There are no con-
tributions from complex Landau singularities. The global analyticity needed to
write the dispersion relations cannot be derived from S matrix theory (except
as a maximal analyticity assumption !) but can very likely (certainly in the
simplest cases} be shown to follow from the primitive analyticity domainszA) of
axiomatic field theory when the external masses are spacelike., This, together
with an 8 matrix unitarity analysis showilng the absence of complex singularities
near the real axis, is essentially sufficient to derive the necessary mass-shell

results.

Each dispersion relation is associated with a particular tree diagram for
a nultiparticle amplitude, The tree diagram contains only three-point vertices
and is a purely kinematic concept to describe a set of (Toller) variables for an
amplitudeBl)’32). We call it a Toller diagram. First momentum conservation at

each vertex is used to allow four-momentum to flow through the diagram. Next a
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set of standard (Lorentz}) frames i1s defined at each vertex in which the momenta
entering the vertex take a standard form. Frames at adjacent vertices joined
by an internal line 1 can be related by a Lorentz transformation 8; in the
little group of the four-momenfum. Qi flowing along the line i. In this way
we can write for a general N point amplitude (which should be a helicity am-

plitude if the external particles have spin)

MN ("u,..-,ﬂh = ™M (w?f"')m:f’ G:'"’Q‘;'?"%”'" %"—s) (3.1)

This is illustrated in Fig. 3.1. Taking all the Qf spacelike the gi's can
be taken to be elements of 30(2,1) and parametrized as

a: = u(v)a(e)ul¥) (3.2)

where the u's are rotations and the a's are boosts, Writing z; = cosh Bi
the conventional multi-Regge limit is Zg * Py Vi vi, Qi fixed Vi. Corres-

pondingly the dispersion relation is written regarding M., as a function of the

N
; 2 .
z; with the Vs v{, Q7 kept fixed.

Some description of the full dispersion relation representation of MN is
given in Ref, 23) and we hope eventually to give a complete description in a
future publication., Fortunately, however, we shall not need the exact form of
the dispersion relation for the purposes of this paper, but instead we shall need
only the general structure which we describe in the following, The dispersion

relation enables us to write

M " — i MNS (+ subtraction terms) (3.3)
s

where each MNS is a dispersion integral of a spectral function pNS' Each NS
could be taken to be an (N-3)}-fold normal threshold multiple discontinuity con-
sistent with the (generalized) Steinmann relatiogsz3). However, for technical
reasons that we shall elaborate to some extent later, it is better to initially
group together certain multiple discontinuities into one spectral function., We
can then develop a diagrammatic formalism for counting and describing the analytic
and Regge properties of the MNS contributing to each dispersion relation. We
shall do this by means of two kinds of graphs, Hexagraphs, which are tree-like

diagrams which will describe the angular-momentum or Regge-type properties of
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each MNS and flow-graphs, which resemble particular Landau graphs and will be
used to describe analytic properties. To construct all theihexagraphs and flow-
graphs for a particular dispersion relation asscciated with a particular Toller
diagram we proceed as follows (the construction is illustrated in Figs 3.2 -~ 3.6).

N-3

Given one Toller diagram we first associate with it a set of 2 "planar

Toller diagrams", each one of which describes a particular scattering process

in which Qi < 0 Vi. The planar diagram is obtained by projecting the original
Toller diagram onto the plane of a page with the chosen incoming particles enter-
ing the diagram from the bottom direction of the page and the chosen outgoing
particles exiting towards the top. We then distinguish an 1 vertex where two
external particles enter and leave the tree diagram (connecting with an internal
line i), an i-j vertex where one external particle enters or leaves and an

i=-j-k vwvertex which is an internal vertex, where lines i, j and k meet,

A single Toller planar diagram generates a set of hexagraphs in which all
vertices are drawn with 120O angles. An 1 vertex is simply drawn with the i
line horizontal. An i-j vertex generates two vertices (each of which appears
in a distinct hexagraph) in one of which the 1 1line is horizeontal and one of
which the j 1line is horizontal, Finally an i-j-k vertex generates three
vertices in distinct hexagraphs in which the 1, j and k lines are respectively
horizontal. In this way one planar Toller diagram gives rise to

i 5%

20

+

hexagraphs, where nij(nijk) is the number of ij-{ijk-) vertices.

The set of hexagraphs is already in (1-1) correspondence with the spectral
compenents M

NS*
only certain normal threshold branch cuts and this 1s described by the flow-graphs

However, an essential feature of the MNS is that they have

which are constructed from the hexagraphs as follows. Each vertex of the hexa-
graph is replaced by a structure which we call a "polygraph!" and which is illus-
trated in Fig, 3.5. [For our purposes it will be more convenient to represent
an i-j~k vertex by the planar polygraph shown, and not the non-planar poly~-
graph of Ref, 3).] If the horizontal lines of the hexagraph are now contracted
and the remaining adjacent sides of the polygraphs are sewn together a unique

flow-graph results as shown in Fig. 3.6.
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The flow~graph represents the analytic structure of an MNS in that the
MNS has normal threshold cuts in all those invariant variables in which the flow-
graph regarded as a Feynman graph would have cuts. The set of such cuts can be
shown to be the complete set of asymptotic cuts. Each MNS can therefore be
defined as a dispersion integral of the sum of all {N-3) fold multiple normal
threshold discontinuities which correspond to a set of (N-3} distinct cuts through
the flow-graph, (With the gualification that there will be no contributiocn from
a set of cuts which are not asymptotically equivalent to a set of cuts allowed by
the generalized Steinmann relations.) The possible cuts associated with some
simple flow-graphs are illustrated in Fig. 3.7 (as well as a set of cuts that does
not contribute},

In summary then the dispersion relations provide the enormous simplification
of analytic structure that (asymptotically) an N point amplitude can be written
as a sum of terms ({3 x 2)N) each of which has much simpler analyticity pro-
perties than the complete MN‘ In fact it is possible to show within the axiomatic
field theory frameworkZQ) of Bros, Epstein and Glaser that the decomposition (3,3)
is closely related to the decomposition of a complete Green's function into a sum
of generalized retarded functions, [Actually we believe there are potentially
very many beautiful results that could be derived basing the "asymptotic dispersion®
relaticns, that we utilize here, directly on the axiomatic field theory formalism,
The Toller variables described above appear to be ideally suited to describe the
primitive analyticity domains of field theory and the boundary values needed for
the dispersion relations are just those reachable from the *cells™ of the axiomatic
formalism and hence describable by the generalized retarded functions. In the
distant future it may be that a complete (even rigorous !) formalism can be derived
this way. Unfortunately our present priorities demand that we do not dwell on

this subject here, it is certainly a long way from the purpose of this paper!]

For us the point of the decomposition (3.3) is that each Myg has a generalized
Sommerfeld=-Watson {SW) representation giving its Regge asymptotic behaviour. For=-
tunately this can be constructed knowing only which normal threshold cuts are
present in each MNS’ since this enables us to construct generalized Froissart-
Gribov (FQ) continuations of the relevant partial wave amplitudes into complex
angular momentum and helicity planes. This is why, as we noted earlier, we can
bypass the pﬁecise form of the dispersion relation, The construction of FG am-

plitudes is described in detail in Ref. 3} and here we simply quote the result,
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For each MNS we can introduce, via its hexagraph, an analytically continued
partial wave amplitude ay as follows. The hexagraph consists of internal ho-
rizontal and sloping lines and it will be useful to distinguish three kinds of'
horizontal lines,

a T line joins directly two vertices

a D _ line joins directly one vertex to one sloping line

a V_line joins directly two sloping lines.

The kinds of line are illustrated in Fig. 3.8 and the notation is explained in

Ref. 3). We next use the fact that some of the combinations of vy and vi

variables of (3.2} are redundant to associate each line of the hexagraph with a

group variable. Each horizontal line 1 we associate with the corresponding

;. Each sloping line j 1is attached tg{a ver?ex at which a horizontal line 1
1{vi-v;

J

enters and we associate with it uij = e where vi ang vj enter in

2
1=
constitute a complete set of group variables for describing amplitudes and the
3)

8; and gj as given by (3.2). The z, and uij {together with the Q
group theoretic partial wave analysis™’ of MNS is essentially a Fourier analysis

with respecﬁ to Uy and a Legendre (or Jacobi) polynomial projection with res-

pect to z,, Thus gn angular momentum li is associated with each horizontal line
of the hexagraph and a helicity nij with each sloping line, An FG continuation
to complex Qi and nij can be made with the constraint that for each D~ line
the angular momentum is kept differing by an integer from the helicity of the
sloping line to which it is attached, and for each V line the angular momentum
differs only by an integer from each of the helicities of the lines to which it

is attached, which als¢ therefore differ only by an integer.

The rules for writing a complete SW representation of each MNS are given
in Ref. 3). The representations are made particularly cumbersome by all the sums
over integer differences of angular momenta and helicities that are invelved.
Since we shall ultimately only be interested in Regge pole contributions to
many particle amplitudes in phase space regions of unitarity integrals where
Regge cuts are generated, we can in fact consider the following simplified kine-
matic situation which will also simplify the SW representations,

We consider the MNS in a generalized "helicity pole" limit which is defined
differently for each MNS and is defined from its hexagraph, Each 23 asso-
ciated with a T line is taken large and all the uij are taken large but with
the ratio of u's associated with sloping lines attached to the same V  line
kept fixed., We can then define generalized rapidity variables which absorb all
the kinematic singularities in the asymptotic prelation between the invariant
variables and the group variables and give us simple expressions for those in-

variants corresponding to cuts of the flow-graph representing the particular

Mys
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For each T 1line we simply define
exp 191 ~ 2; (3.4)

for each D line (j) whose attached sloping line connects to a vertex at which
a T 1line (i) enters we define (see Fig, 3.8 for notation)

1
expe [ 0;1 ~ (2.;‘..01'01;3 (3.5)

for each D 1line (j} whose attached sloping line connects to a vertex at which

a D line (i) enters we define

3

3
exp Yl ~ (24 S (3.6)
.] 2" ;1 (.21 lh) LAL)

for each V line (k) whose two attached sloping lines are connected to vertices

where T lines (i and j)} enter we define (again see Fig, 3.8)
exp [ vy] ~ Uc‘.k(zn_"") Un, {(3.7)

for each V line (k) with one attached sloping line attached to a vertex where
a D line (J) enters we define

\‘

exp [Cﬁh] ~ WU, (zh"")uk [ 3+| {3.8)

and finally for each V 1line (k) with attached sloping lines connected to
vertices with D lines {i and j) entering we define

expP fu,T ~ [3__4_;11] Uise (Zier1) Unes [ 1 (3.9)

The (flow-graph) cuts of an MNS are all in invariant variables asymptotically
{in the helicity pole limit) equivalent to invariants of the form
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Smam = (Rm x Rn)’L (3.10

where each of Rm and R, may be either external momenta Py Poy v Or the
internal momenta Ql’QZ"" . Rm and Rn can therefore be associated with lines
of the Toller diagram and there is a unique path through the tree diagram con-
necting them - passing along lines il’ i2 ves iv for example., The asymptotic

expression for S iz then
mn
Smm ~ exp [Ub“\+%iz+" %\:v-“ {3,11)

where the constant of proportionality is a function of the Qf and the masses

only, Note that (3.11) only holds for invariants corresponding to cuts through
the flow-graph.

In its helicity pole limit each MNS becomes independent of the angular
variables kept finite (the zj and the uik/uij) and becomes a function of
the rapidity variables only, which could actually be defined directly by (3.11).
The independence of the finite angular variables follows from the fact that the
leading term in the 3W representation is that in which all integer differences
of angular momenta and helicities are set to zero. Having absorbed all kinematic
singularities by (3.5)~(3.10)}, the SW representation can then be written in terms

of the rapidity variables only.

To write the SW representation we first conform with the usual RFT notation

by introducing energy variables Ei for each horizontal line of the hexagraph

as follows

for each T line we write E; = 1"QQ
for each D line we write E_.,'-’- | "QS = I- "¢ {3.12)
for each V 1line we write Er=1-2x = 1N = 1=

To include signature properties in the SW representation we add together all
MNS whose hexagraphs differ only by a twist of one part of the graph relative
to the other part about some horizontal line. We can then write (in the helicity

pole limit only)
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E,

— -9 E Z
Z Mys (3 £) = %— EFJE;@ Ay (EI!:') TH (5) (3.13)

where 1 denotes a signature label (Ti = *1) for each horizontal line of the
~ T

hexagraph, and Tﬁ(@) is a generalized signature factor, which plays a central

role in the following and can in principle be read off from the hexagraph by

rules which we now describe.

To give a complete discussion of signature factors we should take into
account the complication that distinct partial wave continuations are defined for
each possible ordering in which the helicities of a hexagraph can be taken complex3).
This complication is directly related to the signature properties of multipar-~
ticle amplitudes which form the core of the analysis of the latter half of the
paper, and so0 in principle we should analyze it fully. Hcwever, this would lead
to an impossibly cumbersome formalism and =o in this paper we shall consistently
bypass the general problem making only qualitative references to its implications,
and illustrating them in more detail when we come to the reggeon problem in
Section 5. For the moment we note only that the distinct partial wave amplitudes
associated with the helicity orderings allow us to separate the different combi-~
nations of cuts appearing in the same flow-graph., For example, consider the
simplest multiparticle hexagraph containing one internal T line, that of Fig, 3.9
which also shows the corresponding flow-graph. There are six possible combina-
tions of five cuts through the flow-graph as illustrated in Fig, 3,10. There
are four relevant helicities, that is the two pairs associated with each of the
pairs of sloping lines attached to the T 1line, - nij’ 0 and Nigy Dyp
with the notation of Fig. 3.9. The possible orderings are

. . (3.14)
My 2 M, NG+ M 2 Nie *Pim |, My

[\Y

Nm

that is six in all. So the number of possible crderings matches the possible
combinations of cuts., This is generally the case. To represent the complete
analytic structure of anT MNS’
and Tﬁ assoclated with each relevant helicity ordering, In

therefore, we should write (3,13) including a

~

H
general Tg would have a complicated structure dependent on the whole hexagraph

sum over the a

and not facterizing into substructures. If, however, we consider only pole con-

3)

tributions in each E- plane, then the factorization of Regge pole residues
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implies the equality of all the possible partial wave amplitudes. 1In this case
the complicated signature factors for different helicity orderings can be combined
to give a much simpler signature factor which does factorize for E; v 0, ¥ Ei'
Since Regge pole amplitudes will be the starting point for our construction of

reggeon diagrams such signature factors will be adegquate for cur purposes,

The above discussion partly describes the "technical reasons" alluded to
earlier for grouping several combinations of cuts into one flow-graph - that is
the helicity orderings which distinguish such combinations are irrelevant for
Regge pole amplitudes, There is also a more complicated reason, associated with
the writing of the initial dispersion relation in terms of discontinuities which
satisfy the generalized Steinmann relation323], but this we shall not discuss
at all hére. For Regge pole amplitudes, the following signature factor rules

are adequate,

For each V line we write a conventional signature factor

'..c'TTEk
Tv= Tn = e ~ Encl + (3.15)
For each D 1line, attached to other lines as indicated in Fig., 3.lla
..&TT(E‘;-E;—E;.)
= BT - ¥ T~ | |
Tp = GlTn - e ~ ALK Sl (3.16)
Sin T (E;-€-Ei) VE~o T (E:-E3-6)
For each T line attached to other lines as indicated in Fig, 3.11b
T~ £;+ En [ %% — + i
T yen —
VETO EyrEn- BBy T (E-E;-€x) |
(3.17)
Vs , ~ f . -
N R %Y~ + b
£, +€y - E,-E T (€ -E¢-Ey ) ]
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The two terms here reflect only the orderings of the helicity sums in (3.14).
Note that if all T's are negative so that E + Q0 gilves a particle pole, then

T - T —> —rv (3.18)

T e = % L EL D0
E:'nkk'?o E‘;' h

The above discussion implies clearly that the phase structure of the SW re-~
presentation reflects directly the cut structure of each MNS' This means that
in principle it should be straightforward to evaluate discontinuities (asympto-
tically) from the representation. In practice this is a complicated project which
requires initially identifying explicitly the correspondence between cuts and
helicity orderings referred to above. Since we are trying to avoid this problem
we shall not attempt to give a general formalism for discontinuities. Instead
we shall give only a subset of a potential general get of rules, which will be

sufficient for the purpose of this paper.

To illustrate the general procedure consider first a simple hexagraph with
only one possible combination of cuts through the flow-graph., It is straight-

forward to use (3.11) to write

"'T _ E‘: 19‘: z[t E"‘ sz E;
la e ~ 5,:‘3| 5.3, e e (3.19)

where Er t B,

specific choice of signs) and Sipjp r=1, 2, ... are the invariants associated

with the cuts through the flow-graph. Substituting (3.19) into (3.13) the dis-

continuity in S

r=1, 2 ,,, are sums over some subset of the E.'s (with some

ipip? say, can easily be evaluated. Applying this same pro-
cedure to more complicated hexagraphs, where we can still apply (3.19) unambi-
guously, we can derive the following subset of rules for discontinuities of Regge

pole amplitudes which will be sufficient for our purposes,

We associate a discontinuity with the path through the hexagraph associated
with the invariant involved, Then
3A if the path passes through a V line and exits from the graph at the
earliest opportunity, the discontinuity necessarily removes the pole

term in Tv
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3B if the path passes through a sequence of D lines after passing through
the minimum of additional lines the discontinuity removes the pole in the
TD associated with the D line attached to the vertex through which
the line exists

3C if the path passes through a T 1line only,'the discontinuity removes
both poles in the square brackets in (3.16),

Clearly if all signatures are positive and Ei v O Vi’ all the poles in
{(3.14) -~ (3.16) are absent anyway and taking a discontinuity leaves the W re-
presentation essentially unchanged. This can be regarded as the general basis

22)

for the well-known Abramovski, Gribov and Kanchelli cutting rules as we shall

explain shortly, When odd signatfure amplitudes are involved, however, taking a
discontinuity is clearly an important operation on the SW representation of an
MNS'

The final aspect of general multi-Regge theory that we require is the Regge-

cut discontinuity formulae3)’33)

that follow from "t channel'™ unitarity. The

FG amplitudes described earlier can be used to carry out a complete analysis of

the cross-channel unitarity equation for each MNS in each of its "t channels" -
that is each channel where one Qi is positive and is the fotal invariant energy.

Near all phase space boundaries, the full pultiparticle unitarity equations can

be diagonalized and continued into the complex angular momenta and helicity planes.
To analyze the 2N particle intermediate state in a channel which splits the
hexagraph H into two subgraphs Hl and H2 as illustrated in Fig. 3.12, we

use the hexagraph partial wave amplitudes shown. It will be important in the
following that it does not matter precisely how the initial 1 1line splits to
form the 2N particle state, This is because the associated flow-graphs actually
have the same cut structure. Consequently any MNS corresponding to a hexagraph
of the form shown has an FG continuation corresponding to an alternative hexagraph
of the same form. A general argument is given in Ref. 3) that only MNS'S cor-
responding to hexagraphs (flow-graphs) of this form can possibly generate (via

the unitarity equation) Regge singularities in the Qi channel.

The essential result of the t channel analysis, for our purposes, is that
if the theory contains a Regge pole with trajectory E = A(Qz), then there must

be an infinite sequence of Regge cuts with trajectories

3 - > -
Ep= D (&) = M8 () M2 (3.20
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If Regge poles with distinct trajectories are involved the corresponding trajec-—

tory formulae are more complicated. The conventional signature rule for Regge
th

cuts is that the signature T, of the M cut is
Mo,
., = 17
A iy (3.21)

where Ti i=1, ... M are the signatures of the Regge poles involved. It will

be central in the following that this rule does not hold in general in multi-
particle amplitudes, Before discussing this in detail we give the general dis-
continuity formulae for Regge cuts. These formulae are particularly simple if

we consider only the partial wave amplitudes aﬁ(E,;) which appear in (3.13).

That is we consider only amplitudes in which all helicities are set equal to the
angular momenta to which they are coupled, and normalize the amplitudes as implied
by (3.,13), (3.15) and (3.17). The cuts then appear in each E; plane 1 = 1L, 2 ..,
consistent with the signature rules which we shall discuss (and also group se-
lection rules which we shall discuss in later sections) and satisfy the following

discontinulty formulae - usually referred to as "Reggeon unitarity" -

dise g (E£) SJ/»" (0 €) § (E-A(E> - - A)
E.:’-AM(QD

{3.22)
’

x -T;?' R E ) R ( "gz,tﬁ)

£

10
)

QB>

Ty .21
where the Rﬁi'gﬁ are multiple residues of hexagraph partial wave amplitudes
1]

Ty »1' =

- \ - T S ey
a’s at the Regge poles E, = A(tl), vor By = A{tM) (after factorizing off
two particle/Regge pole residues). The primed variables refer to the internal
variables {as illustrated in Fig, 3,12}. The variables §1' Llﬁ 52, ;2,
ciated with the hexagraphs H1 and H2 réﬁpectively. The + and -~ super-

are asso-

scripts for Ei indicate that the amplitude should be evaluated above or below
its cut in the E.1 plane. The phase space integration implied by dpM is pest
described by introducing the usual RFT two-~dimensional transverse momentum3o)

(timelike if QE > 0) so that

-

£, = Ry

A

iy
1K

v 3 (3.23)

-2 5
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and we can write

Mz

Les)

™ 2
Gdlm (e, e = O Ly 87 (ke -

3= {3.24)
We shall distinguish two contributing factors to the signature factor
X
T;.. That is we write
i
| =7 = 2’ = 2
&t ue (3.25)

~Tt
where TI originates simply from the signature factor poles associated with

each internal Regge pole and has the form

T° - |

snfp [-aeD 2] s.-,.g[.zx(e;,)ﬁé,;'] (3.26)

~T! . . - . ;
Tyr. contains the signature factors from the analytic continuation of the ¢t
1

channel unitarity integral and to discuss this we must distinguish whether H
describes a four-particle amplitude (and is therefore the simplest hexagraph of
Fig. 3.13) or a higher multiparticle amplitude,

In fact the treatment of the unitarity integral that we have given in
Refs 3) and 34) is really only adequate for the four-particle case. In this
special case the only complex helicities involved are those associated with the
internal Regge poles generating the ﬁegge cut, As a result the helicity ordering
problem can be avoided (since only one ordering of the internal helicity variables
is relevant), Correspondingly the flow-graphs asscciated with either of the hexa-
graphs shown in Fig, 3.12 all have the form shown in Fig, 3.14 and so have only
one possible combination of cuts through them as shown. It then follows that
the "on energy-shell™ amplitudes in (3.22) (which can be regarded as generalized
"fixed pole residues") have a simple dispersion integral representation., That

is
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QHA iﬁ(t)) g Sols ds,, déf""lé::‘ MHi~(s,,--s~_D

Cou (3.27)

where as indicated the integrand is a multiple discontinuity of a rapidity space
Regge pole amplitude MHiA defined analogously to RHiA by factorizing off the
Regge pole contributions to the full hexagraph amplitudg. The invariant variables

Sl,...,SN_l
the hexagraph obtained by removing the Regge pole lines of Hi as illustrated

can be described as the cuts of the flow-graph corresponding to

in Fig. 3.15. The integration is over all combinations of right- and left-hand
cuts in Sl" SN 1 with a sign for each contribution which depends on the
signatures of aEIN .

When (3.21) is not satisfied it is always possible to find one of Sl,...,S

for which the signs allow the integration contour in (3.27) to be closed to zero

N-1

{provided that MHAl My is Regge~-behaved in that variable). Alsc 1t ls straight-
gec iy

forward to show from four (external) particle unitarity integrals that T can

UuTH
be written as a sum of terms each cone of which is a product of factors of the form

sin T (z'-2/-2.-1) {3.28)

for each combination of Regge trajectories {poles or cuts) with signatures T&
T
and T& in a channel with signature Ti and energy Ei' TﬁT_ then gives the
i
well-known sign rules for Regge cut discontinuities involving all possible com-

binations of odd and even signature Regge poles.

If one is interested only in Regge cuts in four-particle amplitudes, {3.,21) -
{3.28) give a complete basis for the development of a signature conserving RFT

30) for the Pomeron can be

formalism. In particular, the usual RFT formalism
regarded simply as constructing the most general solution of (3.22) for a single
even signature Pomeron pole, assuming only the existence of a triple Pomercn
vertex and that Pomeron amplitudes are non-singular as functions of transverse
momenta, The solution is constructed in the form of a Feynman graph loop ex-
pansion by replacing the "on energy-shell" integration of (3,22) by an off-shell

integration, that is we write
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§(E ) - - —8) > (e s S (B2 5 -
™
-

= E - ()

Energy is still conserved but a propagator is introduced for each Regge pole.

Energy conserving multi-Pomeron amplitudes are then constructed by starting with

a pole approximation for each hexagraph partial wave amplifude with "energy con-
servation” imposed on the vertices {(that is angular momenta for lines meeting at
a vertex are summed to one). Iterating (3.22) with the substitution (3.29) and
taking into account cross products of hexagraphs as illustrated in Fig. 3.16

we obtain the usual RFT Pomeron graphs, as illustrated in Fig. 3.17, in the rapi=-
dity (or "time") ordered form - that is the Rayleigh-Schrddinger form of the RFT
perturbation expansion. Finally the energy conserving Pomeron amplitudes are

coupled to external particles by couplings shown in Fig. 3.18.

As soon as the hexagraph H, for which (3.22) is written, involves more than
four external particles we meet the complication that the hexagraphs involved in
the unitarity integral contain at least one intermal T 1line, i.e., the i 1line
of Fig. 3.12. Consequently the assoclated flow-graphs have at least the structure
of those shown in Fig. 3.19, the simplest example of which is the graph of Fig. 3.9.
These are of course, typical graphs with many combinations of cuts for which the
helicity ordering problem must be faced if the unitarity integral is to be pro-
perly analyzed. Again we shall avoid the problem here, but there are several
qualitative features that we can say follow from the flow-graph complication and

which we shall see borne out in the reggeon analysis of Section 5.

The general form of the reggeon unitarity Eq. (3.22) will still hold but the
signature fi?tor %E;i will be more complicated although we cannot give a precise
form for TGTi without the detailed analysis. The simple dispersion represen-
tation (3.27} for RH1 and RHg will not hold since the different possible
combinations of cuts in the flow-graphs will give distinct contributions to the
RHi' In fact some combinations of cuts will appear as subtractions in such a dis-
persion relation, For example, the hexagraph of Fig, 3.9 appears in the analysis
of the two-Regge pole cut in the eight-particle amplitude as illustrated in
Fig., 3.20. The dispersion representation analogous to (3.27) would be an integral

over the invariant s, depicted in Fig. 3.21, However, this invariant cut does

1
not appear at all in the combinations (5) and {6) of cuts in Fig. 3.10.
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Consequently such combinations would appear as subtractions in such a relation.
Therefore we anticipate that these contributions will destroy contour closing ar-
guments and hence violate the signature rule {(3.21) in multiparticle amplitudes.
This is indeed what we shall find.

Multiparticle hexagraph amplitudes also involve independent external energies
{that is angular momenta) and this must be built into any loop expansion for the
multiparticle hexagraphs. The general form of the reggeon unitarity equation im-
plies that this can be done by first introducing energy non-conserving vertices at
the initial Regge pole approximation stage. [These will, of course, simply be the
vertices automatically present in multiparticle Regge pole amplitudes.] The
Pomeron loop expansion can, for example, then be built up using the same diagrams
as appear in energy conserving Pomeron amplitudes but always containing just the
number of energy non-conserving vertices to give the right number of exfernal
energy variables. These vertices actually have a unique location in the diagram
as we shall explain in Section 5. For this it is important that (helicity pole
limit) hexagraphs can simply be regarded as representing rapidity ordered inter-
actions, with the result that the multiparticle loop expansion also appears as a
Rayleigh-Schrédinger type perturbation expansion. A formalism of this kind for
the triple Pomeron amplitudes appearing in the one-particle inclusive cross-section
was derived directly from reggeon unitarity in Ref, 35) and confirmed by extensive

hybrid Feynman diagram calculations36).

In general, sighature non-conservation and energy non-conservation will go
together in multiparticle amplitudes, In particular the reggeon interactions
containing "nonsense-zeros" which we referred to in the Introduction and which
we utilize in Section 5 are simply signature non-conserving interactions which va-
nish when energy is conserved - to give consistency with the corresponding vanishing
of (3.27). Since signature factors play a relatively minor role for the even
signature Pomeron the signature properties of multiparticle hexagraph loops are
not very significant, However, they are present and in particular the energy
non-conserving four-Pomeron graph of Fig, 3.22 which appears in the eight-particle
amplitude and corresponds to the hexagraph shown, should not be expected to con-
serve zignature in the channel corresponding to the central T line, (That is

the graph will contribute to an amplitude with odd-signature for the T 1line,)

This iz because the coupling functions for the two=Pomeron cut in this channel
naturally have the cut structure of the (5) and (6) combinations in Fig. 3.10.
This is of no importance experimentally for the Pomeron but theoretically it is
significant when the graphs for the super critical Pomeron (similar to that of
Fig. 3.22) are interpreted as arising from a redefinition of the physical external
particle states of the theory.



- 40 -

Finally we note thalt {at least in the restricted kinematic region of the
helicity pole limit) we can apparently construct the complete hexagraph solution
of reggeon unitarity for the Pomeron (with a triple Pdmeron vertex) without
reference to s channel unitarity, Equivalently, we have not asked whether our
expressions for hexagraph amplitudes are consistent with the unitarity derived

23) which define them via the initial dispersion

multiple discontinuity formulae
relation. Actually, we can "derive" the unitarity relation {formally) to the
extent that the discontinuity properties of hexagraph amplitudes allow the fol-
lowing interpretation of the Pomercn graphs. Introducing a rapidity variable for
each vertex the graphs can be transformed to rapidity space and regarded as loops
formed from hexagraph amplitudes in rapidity space of the form (3,10}, The ra-
pidities of all energy conserving vertices are-integrated over to produce the
energy conservation. Knowing the discontinuity properties of hexagraphs a meaning
can be given to discontinuities dencted by any line passing along an internal

path of the graph., If such discontinuities are interpreted as terms in the s
channel unitarity equation as in the usual AGK formalism and as illustrated in
Fig. 3.23 we claim that we obtain uniquely the AGK cutting rules. Thus we obtain
the familiar (formal) solution of unitarity (also the multiple discontinuity for-
mulae for hexagraph amplitudes - although we shall not attempt to demonstrate

this property).

The above brief description illustrates how the usual RFT Pomeron formalism3o)
can in principle be derived completely from ocur general multi-Regge theory with
no appeal to any underlying models. We have not attempted a complete treatment
partly because we would need a more complete discussion of the helicity ordering
problem and the resulting discontinuity rules and partly because it would not be
appropriate for this paper. Our purpose here being to extract a comparable treat-
ment of interacting odd signature reggeons from the general formalism. For this
clearly the general hexagraph structure will be very important and the s -channel
unitarity properties "derived" for the Pomeron will have to be used to complement
the reggeon unitarity Eq. (3.22). Actually the results of Section 5 will illustrate
clearly that the derivation of the "AGK solution of s channel unitarity" for
the Pomeron from t channel unitarity is only possible because of the absence
of transverse momentum singularities in the formalism, which in turn is directly
related to the insensitivity of multiparticle hexagraphs to the process of taking

a discontinuity.

Before discussing the general formalism for odd signature reggeons we first
briefly describe the existing perturbative Yang-Mills calculations, in order to

have a starting point for the abstract formalism.



- 4] -

4, - PERTURBATION THEORY CALCULATIONS - TINFRA-RED FINITENESS AND
PERTURBATIVE CONFINEMENT

There now exist many pertufbation theory calculations of Yang-Mills theories

37) almoest all calculations are done after

in the Regge limit. With scme exéeptions
The Higgs mechanism has been used to give all gauge vector mesons a mass. The most
general group-theorefic results are those recently obtained by Grisaru and
Schnitzer38). From the unitarity point of view these calculations are the most
elementary since only two-particle t channel unitarity En*equivalently lowest
{non-trivial) order perturbation theorj] is used. However, the conclusions drawn
from such analyses have always, in the past, been confirmed by more extensive
higher-order calculations. We therefore first state the conclusions of Grisaru

and Schnitzer.

The central result is that in an arbitrary, renormalizable non-Abelian gauge
theory with arbitrary scalar and fermion representation structure, if the Higgs
mechanism can be (and is) invoked to give all elementary vector mesons mass, then

all the vectors will lie on Regge trajectories if and only if the gauge group is

semi-simple - that is there are no proper Abelian subgroups. To lowest order in
the gauge coupling g the trajectory function (= 1-A in the notation of the
last section) for a vector meson Vi is given by the two-dimensional transverse

momentum integral :

a(q9)=1+9"(q- N)Z e 1 (Jh
T (}a P%.>(C$'k> M- ) (4,1)

where the ?ijl are the structure constants of the group in a basis which diago-

nalizes the vector-meson mass matrix. The sum over j and £ is therefore over
those two-particle vector states that couple directiy to Vi. This result holds
for any set of vector masses Mi given by an arbitrary symmetry breaking scheme.
However, for the particular case of QCDMB that we are interested in, the presence
of the three massless gluons associated with the unbroken 3U(2) symmetry will
give rise to infra-red divergences in many of the trajectory functions. This is
our first encounter with the infra-red divergences of transverse momentum integrals
which will concern us extensively in the rest of this section. For the moment we
carry on our description of existing perturbative calculations assuming all vectors

have masses.
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Having argued that all vector mesons lie on Regge trajectories the next
question is whether the high energy behaviour (Regge limit) of all amplitudes can
be described by the exchange of such "reggeons". We know from the general argu=-
ments of the last section that whenever gquantum numbers and signature rules allow
it there will be distinct Regge cuts associated with the t©- channel exchange of
any number of reggeons. There may, however, be additional Regge singularities not
directly associated with such exchanges. This has been investigated up to at least
tenth order in perturbation theory by many different calculations in the leading-
log approximation., The most general group séructure and symmetry breaking schemes
considered by Grisaru and Schnitzer have not been calculated but it 1s evident
from the nature of the results that the conclusions should be general., (This seems
to be the universal expectation of all authors.).

4-6) i that
the reggeized vector trajectories are the only high energy Regge singularities that

The somewhat remarkable result of the higher-order calculations

appear and up to the orders calculated all amplitudes can be described by the ex-
change of reggeons. The remaining question is therefore, what is the nature of the
Regge cut discontinuities, or in RFT language, how do the reggeons interact 7 The
anawer to this guestion in terms of the gradual appearance of an RFT description

of the reggeons can be presented in various ways.

The simplest {but least illuminating) presentation is probably that of Bronzan
and Sugar7). They write down the leading logarithmic results of Cheng and LoS)
[@n the case where an SU(2) gauge symmetry is broken to an SU(2)} global symme-

tey] in the form
. M
T; = tg %fk :Z @, (%‘) (gilvﬁ) (4.2)
— 7
= s ; (G (a*tas) (4.3)

Tas is 3"‘ % %2n () (‘51‘“‘)“ (4.4)

where To’ Tl and T2 are four-particle amplitudes with t channel "isospin"
0, 1 and 2, respectively. Bronzan and Sugar simply observe that the series for
T contains only the expansion of the Regge pcle behaviour given by the trajectory

1
of (4.1), and that the only signature conserving RFT diagrams that can contribute

to T0 and T2 are those shown in Fig. 4.1. These diagrams contain only two RFT
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couplings, that is those shown in Fig. 4.2, which must be highly over-determined
by the series for TO and T2. That these series can be completely reproduced by
the RFT diagrams therefore appears as a striking confirmation of the RFT formalism.

A much more illuminating description of the same result follows from the uni-

4)

tarity dispersion relation approach initiated by Lipatov and collaborators

further developed by Bartelsé). In this approach we observe that the weak coupling

and

leading logarithms can only come from the multi-Regge regions of phase space in

the unitarity integral. Also strictly TO and T2 are zero to leading order in
g2 for a fixed power of ga ens. The central result to understand the emergence
of RFT is then that for all m-n production amplitudes the leading logarithm re-
sult in the multi-Regge limit is that amplitudes that can exchange reggeons in
each t channel do so and all other amplitudes are zero., In addition there is a
bootstrap property, valid at the leading log level, which we shall refer to later.
Unitarity is satisfied identically in the sense illustrated in Fig. 4.3.

It follows then that the 'next-to-leading-log" results for T0 and T2 must
necessarily come from inserting the leading-log reggelzed production amplitudes in
the multi-Regge region of phase space in the unitarity integral., At finite order
this process can only possibly generate the two-reggeon RFT diagrams of Fig. 4.1.
Further the four-reggeon interaction of Fig. 4.2 is necessarily given by squaring
the two-reggeon/particle vertex and summing over particle states as illustrated

in Fig. 4.4. The resulting vertex has two terms

Vp (4,08 M) = Ry (g5 + Sp(a,8E M)

(4.5)
where R, is regular and has the form )
Ry = az(g-2mM>) + by M” 229", a=-q
L T %- I y BeT A9, AaF A (4.6)

The ar term arises directly from gluon particle intermediate states, while the
bI term arises from the Higgs scalars in the intermediate state sum and therefore
depends on the representation used for the scalars. SI is singular as a function
of the transverse momenta. It can be shown to arise from transversely polarized
f{in a t channel sense) vectors in the intermediate state sum. It has the

form :
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sp=-or [ (Rem)((aBY+r) + (WY (g-4>r1?)
2 e 8
(le- % )r ™

+ (e85 + (5835 o) (o))
(g-k-¥)+mMm*

{4.7)

where M2 is the common vector meson mass. In the next section we shall show
that the numerator zercs in (4.7} can be interpreted as "nonsense zeros" and this
will be a central feature in our generalization of the leading log results.

If the vertex V together with the reggeon propagator

I
-1

reR) = [ (era@)) (5-m)] o

is used to evaluate the RFT diagrams of Fig. 4.1 with the usual RFT prescription30)

to impose energy and momentum conservation at vertices and to integrate over trans-
verse momenta k and energies E then the (S-W or Mellin transforms of the)

series (4.2) and (4.4) are reproduced,

The above results are expected to generalize to any symmetry breaking scheme
with obvious minor changes when there are many vector mesons with different
masses. In particular they should apply to the initial problem we shall consider
that is QCDM with the SU(3) gauge symmetry completely broken by two triplets
of Higgs scalars. However, the thecory we really wish to study is QCDMB and for
this we must restore an SU{2) gauge symmetry. In addition to the trajectory
function divergence referred to earlier this produces further infra-red divergences
from the singularities in the reggeon interaction and the particle poles in the
reggeon propagators. Before studying the particular problem of QCDMB we review
what is known in general about the infra-red behaviour of reggeon diagrams,

4)

The main results come from the work of Fadin, Kuraev and Lipatov ' with some

6) and also Kwiecinski and Praszalowicz39). We consider

extensions due to Bartels
the 3SU(2) theory discussed above, in which the leading log reggeon diagrams

depend only on the vector meson mass M and are independent of the parameters of
the Higgs system, Consider first the trajectory function divergence. From (4,1)

we obtain
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2(9)

@g-
M=o (2-n)( (3-)*-m™)

(4.9)
~ =2 im [ * Y
[ % /M ] (4.10)
~ \wmfﬂ [;Oy g;d k'stﬁé).+'$ S}A h SZé{h) '
(3 k) 3 (4.11)

At first sight this divergence is sufficient, through (4.8), to send every
reggeon diagram to zero as M2 + 0. Equivalently in rapidity space factors of
the form

1
a(a) .
S ~ Lexp [-l-nS L %/m'"]

2

™ o (4,12)

are sufficient to send diagrams to zero. This "exponential damping" associated

with the reggeization of massive gluons is very closely related [és is c¢lear from
the explicit calculations of Ref, 12[] to the Sudakov form factor exponentiation
26}

originally proposed by Cornwall and Tiktopoulos as a confinement mechanism in

the zerco-mass limit. In fact (4.12) iﬁ responsible for the suppression of colour

as M2 + 0, but to show this we have to consider first the other sources of infra-
red divergence since they may cancel the trajectory divergence (and actually do so
in the colour-zero channel}, Note first that the coefficient of the 2&n M2
divergence of a{qz) is simply obtained by the rule that we replace in turn every
potentially singular pole factor in (4.9) by 62(5) and sum the resulting expres-
sions as in {4,11). This simple rule for infra-red divergences will be exploited

extensively in the following.

To exhibit the infra-red cancellation that takes place in the colour-zero
channel we first "undo" the reggeization by expanding Sa(qz) in powers of gz.
The gluon can then be treated as a fixed singularity with a propagator of the form
(4.8) with o = 1, and the reggeization effect represented by an interaction

written in the form
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V(g% 1) = dr [ SO [ iS5 o
Fo ()] 5 (g (F 4

+ (9,—‘\3)’(5-511')) la*+ O (4"37‘)]]
{4.13)

Now, when SI is inserted in integrations it will give divergences of precisely
the form {(4.13) [}n analogy with (4.11[] and there will be a cancellation provided

dI = aI/2. This is true only for I = 0, For I £ O dI dominates and the expo-
nentiation of the reggeization is sufficient to send all reggeon diagrams to zero.
Consequently we have suppression of colour in the sense that all amplitudes with

non-zero colour in the t channel vanish when M2 - 0.

Therefore if we write diagrams directly for elementary gluons with propagators

in which @« = 1 we can use the "infra-red finite" colour-zero interaction

Vo (a0 8) = Vo (a505,00) + e (956) s

There remains the potential divergences associated with the particle pole in the
propagator (4.8}, However, if we evaluate go as k~+ 0 with g, k' fixed then

Vo is zero and from (4.7) we obtain

. z T ! 1 ’
v, ';:_.,o "9 [" b g +2 9‘,’,& ¥ 2% ('—T't;‘_ﬂ"—‘ (4.15)
- K (2-k)

This linear zerc is sufficient to cancel the (kz)"l divergence from propagators

and leave only integrable (k2)'% singularities. Since the remaining singularity
of ﬁo as {(k-k') > 0 is similarly integrable it immediately follows that all
one-loop gluon diagrams are finite provided that all combinations of external
transverse momenta are non-zero. When the external momenta vanish the integrable
singularities may coincide and preduce logarithmic singularities. However, when
the cne-lcop diagrams are used to build up higher diagrams such logarithmic sin-

gularities cannot transform the basic integrable singularities to non-integrable
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singularities. Consequently multi-loop diagrams are alsc finite provided that all
combinations of external transverse momenta are non-zero. Since we are discussing
massless gluons, this is equivalent to saying all "off-mass-shell! gluon diagrams
are finite, [Note that the "mass-shell" is .5? = M2, whereas the "energy-shell"

is E = A = 1-a(kd) ]

In summary, the "off-mass-shell" finiteness of the gluon diagrams of Fig. 4.5
is due to two distinct cancellations. The first invelves the trajectory divergence
and the singular interaction and requires zero (t channel) colour. It is embodied
in (4.14), The second is a cancellation between the R, and S

I
and does not require zerc colour. It is embodied in (4.15).

1 terms in (4.,%),

The central question for our discussion of infra-red behaviour is, however,

the infra-red finiteness of on-mass-shell scattering amplitudes. As we emphasized

in the introduction we expect the infra-red divergences of such amplitudes to lead
us to stringlike external states in the infra-red limit we consider. It is vital
therefore that we investigate the mass-shell infra-red divergences of gluon ampli-
tudes systematically. This requires that we first set the external transverse mo-
menta, of the gluon diagrams that we are discussing, on-shell, before taking

M2 + 0, This implies that at all external gluon vertices the SI term will be

so that (4.15) will not hold. [VI will in fact reduce to
5 net A

missing from VI

(aI+bI) since the M factor is cancelled by scale factors for external rapidity
variables as we go on shell.:l Consequently, since the internal vertices are able
to cancel only the initial or final propagator divergences attached to external
vertices, but not both, the diagrams are divergent. Such mass-shell divergences
are clearly of a kind that may possibly be absorbed by a redefinition of the ex-
ternal states. This is the point of view adopted by several authors as we now

describe (afterwards we shall contest this point of wview).

We consider explicitly the work of Lipatov et al.A) and its development by

&)

Bartels (essentially the same point of view is, however, also implied in the

work of Cheng et al.g) 10)

and Yeung which derives equivalent results). It is
argued that we should consider the gluon diagrams coupled to external states by
couplings with similar zeros to those of the gluon interaction, In particular
quark bound states do have just this property. In this case all diagrams are
finite as M2 + 0 and the high energy behaviour of the "constructed" amplitudes
is obtained by summing all the massless gluon diagrams. The following "scale-
invariance" property of the gluon interaction then becomes central., The effect
of each transverse momentum integration with the interaction (4.14) is best re-
presented by absorbing the pole factors of the propagators symmetrically into a

kernel which we can write formally as
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K(a, %) [#(x 8)] =

V(g k)5 (x9)

|
E 2 2 R ¥
[(owy(aru)(9-KY(a+ kY 1™ .

(4.16)

Clearly K is scale=invariant in that

K(/\q,lhévf- K(%&> (4.17)

Further, the effective Hilbert-Schmidt norm for this kernel is

” K“Q ~ gdmﬂ,dql} K (9}1 )37 (4.18)

which has an ultra-viclet divergence because of {4.17), Consequently the integral
equation representing the sum of gluon diagrams of Fig. 4.1 is non-Fredholm and

4),7)

the solution has a fixed-cut in the E plane arising from the ultra-viclet

divergence. Of course, if (4.14) is finite K must be scale-invariant since
there is no scale left when M2 + 0. We can say therefore that the infra-red fi-
niteness of the colour-zero interaction and the fixed-cut in the E plane are

unavoidably related.

There are several criticisms of the above analysis if it is used to argue
that the ultra-viclet divergence of K is the dynamical mechanism generating the
Pomeron in massless Yang-Mills theories., Firstly since the fixed-cut resulting
from the diagrams of (4.1) violates the Froissart bound one must assume that sum-
ming higher-order diagrams will restore the Froissart bound, This is argued for
by Bartels in a recent paper6). Even so it remains a problem to argue that the
renormalization mass scale of the massless theory {(which should ultimately appear
in the ultra-violet region) can enter the formalism to allow the Pomeron to become
a q2 dependent singularity, while maintaining the ultra-violet divergence of the
theory as the dynamically dominant effect. On a more fundamental level the large
transverse momentum region of a Higgs theory with massive vectors, which is not
asymptotically free, is a region where perturbation theory is anticipated to be
completely unreliable, Specifically renormalization cogtributions to the Higgs

)

system will grow uncontrollably {the renormalon problem™ ' of a just renormalizable

theory) and it is an open problem at the moment whether the theory can be given a
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meaning in this region. In the language of Section 2 a continuum Higgs theory, if
it exists, must be defined from a fixed-point of the lattice theory which gives it
no chance to be related smoothly to the pure gauge asymptotically-free theory. A
property not evident from perturbation theory.

The lattice theory tells us that to relate the Higgs thecry to massless Yang-
Mills we must work with a lattice or equivalently a transverse momentum cut-off.
In fact it is clear from the Feynman diagram calculationsS) leading fo reggeon
diagrams that, since renormalizability plays a fundamental r8le in giving the finite
order perturbative transverse momentum cut-off, the growth of renormalization contri-
butions and the resulting ambiguity of the theory will manifest itself directly in
the large transverse momentum region of the reggeon diagrams. Consequently the
theory really is well-defined only with a transverse momentum cut-off and this eli-

minates the fixed-cut associated with (4.17} and (4.18).

4 further point of principle, closely related to our emphasis of the impor-
tance of the mass-shell singularities for determining the correct external states,
is that the choice of simple quark bound states as external states, while elimina-
ting infra-red divergences, does not remove all effects of the massless gluons.
That is the amplitudes produced still have a finite singularity at zero momentum
transfer and so cannot represent completely the high energy behaviour of a confi-
ning theory. As we argued in the introduction we believe the mass-shell infra-red
singularities must be investigated more completely before determining the correct

external states.

The leading mass-shell singularities of the reggeon diagrams which generate
the fixed-cut can actually be studied systematically by going to the double leading

log approximation. That is we keep only leading powers of log(q2/M2) as well as

log s. The work of Carruthers, Fishbane and Zachariasenlz)

7)

in this approximation

has been cast into our language by Bronzan and Sugar by calculating the diagrams

of Fig., 4.1 in the same approximation, The result 1is

k)= L e V(a0 ) (k. V( g, ky ) - o (d
) - [---7%

~ 'é',, D*n W'L/EIN (4.20)



- 50 -~

which demonstrates explicitly the infra-red finiteness and scale-invariance pro-
perties of K., To obtain gluon (or quark) scattering amplitudes we must calculate

the partial-wave amplitude

T, (€, ) = lim i (' [ k"]

Moo .
Neo (Z-M>) (56~ M7)
(4.21)
which in the same approximation we should take to be
] g g
- 2

v '

/] R [E+in 7% | (4.22)

This result displays two important features. First there is a remaining mass-

shell divergence at 5? = 0, but from this region we obtain
-

IS
- 2 |

E‘ a———— Ak‘
;o(’ﬁ() - 7 ) K imk (4.23)

o :
which is independent of E. Secondly the only singularity in E comes from the

region 5? ~ g? where the kernel K is finite and gives
1

o

9
(.
Eso ¢ [E* 9 -

1 {(4.24)

~ L |n E (4.25)

A

2

Consequently the large rapidity amplitude - which is determined by the E plane

singularities - is given by

N S
T, (E,Ins) ~ :
° i ™ 00 q/ lhs
ns - (4.26)
which is the result obtained in Ref. 12). So although each term in the sum (4.21)

is infra-red singular, in rapidity space the infra-red singularities sum (they

actually exponentiate] to give an infra-red finite answer.
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That the above features can be expected in general c¢an be seen by writing the
integral equation formalism of Refs., 4)-6) in the following form. We write

T, (£, %) =0(dk Rk E
( 7?) € ).!1(4"3)‘¢(@’ | ) o

where @ satisfies an integral eguation which we can write formally as

g=Kor Ko
E {4.28)

The {mass-shell) divergences of (4.27) arise from the regions where 5? >0 or

-

(3:5)2 + 0, but not both, Since such a region is not scale-invariant the infra-

red finiteness of K breaks down and K + «, Consequently from (4,28) we have

formally
¢ Lo "‘gKO
K ' (4.29)
and

T, ~ Seﬁe Ke ‘
)31(9;,-15)" K (4.30)

which is independent of E. <Clearly the above argument could egually well be
applied to the full two-gluon/two-particle amplitude @ which will satisfy (4.28)
with K defined as the full two-gluon irreducible kernel. Since we also expect
the full K to be infra-red finite but singular in non-scale invariant limits we
will obtain from (4.30} the general conclusion that the leading E dependence of
T for B~ 0 is eliminated from the potentially singular infra-red regions,

o
[Note that the infra-red singularity of {4.30) will also be softened by K.7|

We further expect the above analysis to extend te 2 general massless gluon
state. The key point was the breakdown of the infra-red finiteness of the off-
shell four-gluch vertex on-shell. The natural generalization would be to expect

off-mags-shell infra-red finite vertices for arbitrary numbers of gluons in which

the infra-red finiteness is guaranteed by Ward identities between different local
vertices (many results in this direction have already been derived by JaroszewiczaS)).

The off-shell finiteness will break down as some gluons are taken on-shell to
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define particle amplitudes. We will then have the gbove pattern repeated. For
the contribution to TO of the N gluon state (actually for reasons discussed

in Section 6, N will always be even) we will write, in analogy with (4.27)

Lhe A ko 1 @’N (3, %, -, 2 E)

T (£,97) = (Lo .
b ey, (-5 W) E (4.31)

where formally

1

Pn

b(om + 51!"%N
E 14.32)

KN is the full N gluon irreducible vertex and (4.32) sums the diagrams shown in
Fig., 4.6, The mass-shell infra-red divergences of (4.31) will arise from regions
where some subset of kl""’kN—l’-g - tk, g&o to zero, but not all since g # O,
We anticipate that KN will be infra-red finite and scale-invariant for non-zero
k's, but singular in such regions, The structure of (4.31) and (4,32) will there-
fore again, as in (4.30), remove the E dependence from the infra-red singular

regions.

The leading E dependent singularity of TO(E,Ee) will naturally arise
from {(4.28) or {4.,31) in a region of phase-space where the kernel ¥ is finite,
If this is to be an infra-red region it must be approachable in a scale-invariant
way. But this is impossible in (4.28) or (4.31) except if we take El""’EN—l’
q-Zk, all to zero simultaneously, which is only possible at gz = 0., For finite
g? therefore we conclude that the mass-shell infra-red singularities of elastic
amplitudes (including those diagrams that generate the fixed-cut} will sum to give
finite large rapidity amplitudes without a redefinition of the external states.
(The large rapidity amplitudes necessarily come from the leading E plane singu-
larities via the S-W transform and so the absence of infra-red divergences in the
contribution of such E plane singularities implies the finiteness of such ampli-
tudes.) FPFurther the resulting amplitudes have, in the leading log approximation
at least, no negative E singularity (that is no angular momentum plane singular-
ity above one) and so do not vioclate the Froissart bound at finite g?. A singu-
larity remains at _c12 = 0 J[as is evident from (4.26)] and so such amplitudes

still cannot represent a confining theory.
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To produce infra-red singularities which survive in the large rapidity
amplitudes and therefore force us to redefine the external states we must find
singularities which occur in regions of phase space where the kernels KN for
interacting massless gluons remain Finite because of their scale invariance.
This we shall do, in the limit that the 3U(2) gauge symmetry is restored to
give QCDMB, in Section 6.
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5, = MULTI-REGGE THEORY OF ODD SIGNATURE REGGEONS

From the point of view of the general multi-Regge theory of Section 3 it is
¢clear that the existing perturbative calculations in Yang-Mills theories have only
opposed an extremely small subset of the full reggeon structure which from the
general arguments must be present, We should like to use the general formalism
Lo reliably extrapolate the perturbative results to the complete structure, parti-
cularly the multiparticle amplitudes which we shall need in the following sections.
In the first instance, at least, we shall not ask for as much detail as appears
in the weak coupling perturbative calculations. Instead we would like a formalism
where the general features are sufficiently under control for us to discuss re-
liably the infra-red and critical limits, that will concern us, in a manner com-
parable with the usual Vcritical phencmenon" treatment of the Pomeron. As is
well-known the Pomeron formalism has the very attractive feature that we need to
know only the existence of an even signature Regge pole with intercept «{0} near

3}

unity and a finite, non-~singular triple Pomeron interaction., We can then Jus~
tify the neglect of non-singular higher order interactions and (in effect) use the
reggeon unitarity relations alone to predict the dominant scaling behaviour of

the diffraction peak in the limit «fC) - 1,

In analogy with the”Pomeron formalism, therefore, it is important to ask how
much of the structure found in the perturbative Yang-Mills calculations described
in the last section can we reproduce from the general formalism of Section 3,
knowing only the existence of odd signature reggeons, with a particular group
structure, together with low order non-singular interactions, At first sight it
would appear that the answer is very little, since we could not predict the sin-
gular four-reggeon interaction., Further from its derivation it is clear that
analogous but more complicated unitarity (or Feynman diasgram) calculations will
lead to singular interactions of arbitrarily high order. Not only would it be
anticipated that we could not predict the structure of such interactions but also
any approach based on an extrapolation of the form of low order interactions would

seem to be futile.

Fortunately we shall be able to argue in the following that the singularity
of the inferactions, and even the singularity of the trajectory function {(4.1),
can be viewed as an effect of formulating an RFT with only these interactions which
satisfy the signature conservation rules for four-particle amplitudes. As we
discussed in Section 3 we expect to find in multiparticle amplitudes, signature
non-conserving interactions which contain nonsense-zeros and so vanish in energy
{angular momentum) conserving amplitudes. We shall see in the following that the
effect of such interactions is to generate transverse momentum singularities in

the signature conserving interactions of four-particle amplitudes. Therefore we
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shall find that if we generate reggeon diagrams by a hexagraph loop formalism,
as we briefly outlined for the Pomeron in Section 3, we shall be able to¢ repro-
duce all of the perturbative results of the last section with non-singular reggeon

interactions.

Our starting point can be stated as follows. We begin with Yang-Mills multi-
Regge pole hexagraph amplitudes obtained by keeping only the Regge poles in each
E, plane in {3.10)} The (factorized) residue functions can in principle be com-
puted perturbatively by extending the calculations described in the last section
along the lines followed by Bartelsé). The group structure will manifest itself
in the tensor structure of the various multi-Regge pole couplings (the effects of
quarks on this structure will be important in Section 7) and the underiying gauge
invariance presumably implies that in the limit of zero reggeon masses all couplings

are relatedzB)

by Ward identities. For the moment we concentrate on details of
oup construction.that are independent of such relations and also of the group

involved.

In principle we would next like to simply iterate the reggeon hexagraphs
through the reggeon unitarity Eq. {3.22) and form hexagraph loops in such a2 way
that we count all possible contributions to the lcoops in the s channel unita-
rity equation (or the multiple discontinuity formulae for hexagraphs) compatible
with the discontinuity rules of Section 3, This would be the analogue of the
ACGK formalism for the Pomeron, While this may eventually be possible when the
full formalism is developed, at the moment it is simply too complicated. Instead
we concentrate on the most singular part in transverse momentum of each reggeon
loop. The discontinuity rules of Section 3 show that cutting a reggeon line always
removes some singular real part so the contributions we shall construct will in
general cut the minimum number of reggeons forming a particular loop. (The analogue
of the "multiperipheral® cut of the two reggeon diagram.} Such contributions
will allow us to make contact with the perturbative infra-red singularities and

be the most important in the following sections.

Before discussing the general iteration process we consider first the
construction of some simple reggeon diagrams involving the triple reggeon vertex,
We assume that this vertex has a nonsense-zero. That i1s every triple Regge

coupling in a hexagraph has & zero at

E.= N+ By, (B, = 1- 25 (5.1)

’
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where Ei is the energy of the horizontal line entering the vertex and uj and &
o are the trajectories associated with the remaining lines. We begin with

the simplest loop diagram of all shown in Fig, 5.1. Taking the multiperipheral
cut through the diagram implies that we are evaluating a particular partial cross-
section as illustrated. Fixing the rapidity differences (yl - y2) and (y3 - yq)
implies that we are fixing the masses of the produced particle states. In this
situation we can iIn principle apply the t c¢hannel analysis to the reggeon loop
(by inserting .t channel intermediate states into the reggeons) and deduce that
the phase-space integration is the normal two-reggeon integration, The diagram
also involves two discontinuities of triple Regge vertices which appear in six
particle hexagraphs (say} = or one particle inclusive cross-~sections as illus-
trated in Fig. 5,2. According to the discontinuity rule 3C, for the hexagraphs
involved, such a discontinuity simply removes the signature factor for the cut
reggeon line, Therefore, the only signature factors we must keep are those of

the two internal reggeons which are V lines and therefore have simple signature

factors
\ ~ 1
sinTAE) +~M> T (t-M") (5.2)

where M2 is the vector mass (which for the moment we take tc be common to all
vectors) and o' is the slope defined at t = M2 (which we also take to be
commen), Using the notation of Fig, 5.3 we write for the triple reggeon vertex

(using timelike transverse momenta)

R [Ea—x’(t{f-m‘) 4—4'()_31-941)1 (5.3)

l,ﬂ,

where r, will also carry group indices, which, for the moment, we suppress.
For each reggeon propagator (which we do not define to include the signature

factor pole) we write

r‘o = ; (5.4)
E-!—az’(b—m")

We take the transverse momentum cut-off to be A and to keep ro dimensionless
we scale the transverse momentum integration by o', The vertices and propaga-
tors of Fig. 5.1 are now determined by (5.3) and {5.4) and the discontinuity rules

and so we obtain for the full imaginary part
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We now integrate over the internal rapidities Yo and y3. The upper end points
give poles at El = E3 + E4 and E3 + Eh = E2 respectively. These poles pinch
to give a pole at El = E2 which can be used to perform the E
by closing the contour in the left-half plane., The result is

I(‘%’”’D = Yo g&fz e ~E (o) Sdih [Era/(nm e/ ( (o630
129{' IE‘&""{'(g‘—m‘) 3'2- ( )31—!“11]{(@"3-)1—1‘1‘]
lg)en

1 integration

(5.6)

X gd‘% |
EE,+ d'(g‘-m‘)—g { E,-E, + o {b‘_m‘)]

Performing the E3 integration gives a two~reggeon denominator which cancels
cone of the nonsense-zeros so that we can write

L(aa)= Cde e () e o0

where

FE) = Yo Sd"lz [E+a (igt) o (19 M7) |
T fere(am)] ) [E-m*3[ (4-63"-m"] (5.9)
Jilen
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As we discussed above the multiperipheral cut of Fig., 5.1, which we have
calculated here, can be distinguished from other possible cuts (shown in Fig. 5.4)
in that both internal propagators remain uncut and so both signature factor poles
remain, This implies that (5.8) is necessarily the dominant contribution to

the complete diagram near the two-particle threshold at ge " 4M2, which is

dominated by 52 4" M2, (q = 5)2 a, M2. There we can take

FE) ~ % E Ks @)" .
..n-‘zdt fE—d'(q,t-N‘)] ‘ (5.9)

where

K(’:.)(g:) _ da.:& _
(- M () - M*)

(5,10)
kY

EZVY

Considering the infinite series of diagrams shown in Fig. 5.5 all of which

contribute to the same (four-particle amplitude) imaginary part, we obtain a

simple renormalization of the reggeon propagator

-1 -
[ m,?l ~ B« at'(gf-m‘) + 'f_g; K‘(:)(q,z) (5.11)

e

which to O(rg) gives a pole at

2 a 2\.,0) .
E = -2 (g00) » 2 (£0) Ko ()

{5.12)

ey
fam T?—F*(g"M)K( ()

(5.13)

{2), 2y _ 4. {(2)
where K (g } = kig KA

function (4.1) we see that we reproduce the perturbative result precisely if we

(q2). So comparing with the perturbative trajectory

make the identification
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Yo~ 19 i (5.14)

which is just what we would expect to get for r, from direct calculation.

We can regard o' as originating from k2 > Ay s0 if we extend the per-
turbative calculation into that region to gggégg a'; we can essentially equate
{5.12) angd {5.13) although, of course, we have made it clear thatl we believe
perturbative calculations are meaningless for 52 > A. {In fact the perturbative
calculation is probably only reliable for q2 v 4M2 '} The point we wish to
emphasize is that the singularity in transverse momentum of (4.1} is repreoduced
by reggeon diagrams with a regular triple reggeon vertex. The reggeization
of the gluon near this threshold being directly due to the nconsense-zero of the
vertex. So although the Regge cut of the reggeon diagram is cancelled the same
region of phase space generates the transverse momentum singularity. It must
originate from the same region of phase space, otherwise we could not use the
helicity pole limit of hexagraph amplitudes to reproduce it, The leading log
results described in the last section do, as we noted, arise from the multi-Regge
region of phase space, so this 1s consistent with our results., (Actuaily the
reggeization of those gluons producing the transverse momentum threshold, in the
multi-Regge region, is not important, only that the discontinuity of a single
(t = channel) helicity amplitude - with maximal helicities - is isolated in this

region of phase space.)

Next we consider the triple reggeon diagram of Fig., 5.6 which, as we shall
see, gives a renoprmalization of the triple reggeon vertex. Since the diagram
gives a contribution to the triple reggeon hexagraph shown, we evaluate it as a
triple discontinuity with respect to the cuts 1, 2 and 3 shown. To obtain the
maximum degree of singularity in the transverse momenta we evaluate cut 3 as a
"multiperipheral cut™ of the reggeon loop. Again if we initially evaluate the
diagram with the rapidity differences Yo = Y1y Vg = ¥ and Yg = Y, finite
we can use t channel unitarity to determine that the phase space integration
is the usual reggeon phase space. According to the discentinuity rule 3B, cuts
1 and 2 remove the signature factors associated with reggeons d and b res-
pectively, while rule 3C gives that cut 3 removes the signature factors associated
with reggeons a and f, There are three external energies Ea’ Ed’ Ef and
there is no over-all energy conservation, This implies that there is no energy

conservation at one of the internal vertices, or equivalently that one of the
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internal rapidities is not integrated over. To determine which vertex we look

at the structure of the reggeon states as indicated by the vértical lines in

Fig. 5.7. It is clear that all states tc the left of the Y vertex are assoclated
with the Ea channel, while those to the right are associated with either E

or Ef. Therefore reggeon unitarity will still be satisfied in each channel gf
the Y3 vertex is energy non-conserving, or eguivalently we integrate over
rapidities Vs and Y, to reproduce energy conservation poles at the upper
end points as in our evaluation of Fig., 5.1, Using the energy conservation to

perform the Ee and EC integrations we obtain

ﬂ(: gdlz’ﬁolt’d AE; e'fa("""’n - Eq (5-93) - Eg (9c794)

X S A% (A6, LEa- 8y- Ac“.E\o' Af-'a"] [Eg-B.-bc] (5.15)
IR Y TN PR Y

oy -1
x YEQ"E\"QC.Z EE$'EL+Eb'A¢1

where

A= B ()=« (arm™) |, By= B(R), b= A ((5en)
AA:A(%;) > De= A (C‘s‘ﬂ'd)t) » A_; A ((ﬂq‘ﬁd)t) (5.16)

Performing the Eb integration by closing in the left-half plane and picking
up the pole at Eb = Ea - AC we obtain

'_Ea. = - E, -8 -E W, -t
> (dedEl e (o)~ Ed Cog=o2) - E¢ (5720)
(Eix'—tko;)(féii"'Zl-() (égs-—£l4;)

(5.17)

% u"(dtl’.‘. (E&-Qa-—ﬂc—AA)
n;"l&,\ sinTT B, simTl De

so the reggeon loop gives no Regge cuts but instead gives only a renormalization
of the triple reggeon vertex, introducing a transverse momentum singularity in

Qs = a, Note that if we evaluate the vertex appearing in the sguare brackets

in {%,17) on energy shell, that is set Ea = Ed + Ef and also take Ea = Aa,
Ed = Af, Ef = Af, then making the approximation (5.2) and keeping only the sin-

gular part of the transverse momentum lcop we obtain a renormalization of the

- gd'

triple reggeon vertex
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{5.18}

Clearly if we add this, together with the analogous diagram in which Ed > Ef

to the original {riple reggeon vertex (%$,3) we obtain

M2 =% [ E-Dp (%)~ By (Ltlz)] (5.19)

)

where

BE) = = L(800) + 0 (gher) K 7(5)
ﬁ'l

{5.20)

Comparing with (5,12) we see that the triple reggeon diagrams of Fig. 5.6 simply
renormalize the triple reggeon vertex by shifting the nonsense-zero to match the
shift of the trajectory produced by the diagrams of Fig. 5.5. That is the vertex
acquires the two-particle threshceld in each of its transverse momenta, Again
cur caliculation keeping only the multiperipheral contribution to.the 3 cut of

Fig. 5.6 is only accurate near this threshold.

Consider now the insertion of the diagrams of Fig. 5.6 into diagrams for
the elastic amplitude. In this case we necessarily integrate over Yq and so
keep only the energy conserving part of the diagrams. For example, the "renor-
malized propagatof" contains the diagram of Fig., 5.8 for which we consider the
cut shown. This can be evaluated by repeating (5.5) - (5.8) with one triple
reggeon vertex replaced by (5.18)., In this case there is only one nonsense zero
to cancel the two reggeon dencminator and the result for the partial wave ampli-
tude is a two loop transverse momentum integral multiplying the square of the

original Regge pole propagator, that is

03) z
o XK, (9 )
KT Te e (5] (5.21)
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[em 1D -3 (kb0 ]

Summing an infinite set of similar diagrams again renormalizes the propagator
pole and so introduces a three-particle thresheld into the trajectery function,
At first sight it alsc destroys the reggeization. However, we clearly must add
all the diagrams shown in Fig. 5.9, sc that the sum can be written in the renor=-
malized form illustrated in Fig, 5,10 with the full vertex (5.19) and trajectory
function (5.12}. The manipulations (5.5) = {5.12) can then be repeated to de-

monstrate that the reggeization persists.

Note that the sum of diagrams implied by Figs 5.9 and 5,10, .gives a trajec-
tory function with three and four-particle thresholds, but no Regge cut is generated,
even though signature conservation would allow a three reggeon cut in Fig. 5.8,
for example, The simplest diagram which actually generates a three reggeon cut
is that shown in Fig. 5.11, since there is no nonsense-zero capable of cancelling

the propagator associated with the central three reggeon state.

At this point it is straightforward to illustrate how signature is violated
in the multiparticle amplifudes but restored in elastic amplitudes. First we
note that there is no sighature conservation in the triple reggeon diagram of
Fig. 5.6, The obvious reason for this is that there is no energy conservation at
the Y vertex and so there is no over-all energy conservation. Hence we would
not expect any potential nonsense-zero to be operative. However, from (5,18} -
{5.20) we see that even when energy is conserved we must add the diagram of
Fig. 5.6 to other diagrams to produce a renormalized vertex before signature con-
servation operates in the full set of diagrams of Figs 5.9 and 5.10. Therefore
we should not be surprised that the diagram for the eight point function shown
in Fig. 5,12 gives no signature rule for the central two reggeon cut -~ the cut

will be exchange degenerate - even if there is energy conservation at the non-

conserving vertices VN (this is the diagram discussed for Pomerons in Section 3).
Even if the external reggeon lines are joined to form an energy conserving am-—
plitude as in Fig, 5.13 it is still necessary to add addiftional diagrams as il-

lustrated to obtain signature conservation.
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From this analysis we can immediately locate some more complicated multi-
particle vertices which will necessarily.involve signature non-conservation. The
vertex of Fig. 5.14 will be non=conserving because there is neo suitable vertex to
which it can be added to produce a renormalized nonsense~zerc. Similarly the
vertex of Fig., 5.15 will be non-conserving. These particular examples will suffice
for our later discussions although clearly they-are only a small subset of the
kinds of amplitudes which, from their analyticity properties, we anticipated in
Section 3, would lead to signature non-conservation., Although a general analysis
of such amplitudes is essential as we have emphasized, we shall, in the following,
simply generalize the above brief discussion of how the conservation is brought
about in particular sets of diagrams,

Consider now diagrams generated by a vertex coupling two reggeons to two
external particles in an even signature amplitude, This vertex could be the on-
shell limit of a local four reggeon coupling. We use the notation for this vertex
shown in Fig. 5.16 where we have also shown some of the even signature diagrams
the presence of the vertex generates. The multiperipheral cut of the single
reggeon loop diagram of Fig. 5.16 is easily evaluated. The four reggeon vertex
will be unchanged by cutting and so we will simply obtain the usual two reggeon
cut diagram with signature factors. That is for the partial wave amplitude we

obtain

L S £ N, |
[x2e 30 -k yim {{Era (2m®) 4—&’((9,-5)1—:‘11)} (5-23)

Jig*l<n

To evaluate the next diagram of Fig. 5.16 we must first evaluate the hexa-
graph loop of Fig. 5,17 which involves AO. Again this is a triple discontinuity
and we evaluate it analogously to Fig. 5.6 using the cuts shown. The only difw
ference from the evaluation of Fig. 5.6 will be that in the Ea channel there
will be no Regge pole, but instead the two reggeon propagator will not be cancelled
by a nonsense-zero. Consequently we obtain, by comparison with (5,17), the partial
wave amplitude

Moo (/A [Ec-0,-8,-BaT
(Eg -8 ))Eg - Og) ST, sm‘n‘&,{f"— QB'AC-] (5.24)
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Susbtituting this result for one facteor of AO in (5.23) to obtain Fig. 5,18
with the cut shown, and making analogous approximations to those made in obtaining
(2.22}, we are led to

)\’L T ozh 2, 7 2 ' 2 , 1 2 -|
. Y. Ald L [ (o)1) (grn-9)-mMY)]
A (5.25)

*[ w020 (k)11 )(E - i) - (o))

Again the approximations made imply that this result is only necessapily wvalid
near the transverse momentum singularity of the diagram. That is when all par-
ticle poles are close to their mass-shell, which in this case implies that we
should be near the three particle thresheld at q2 = 9M2. This is sufficient,
however, to make the major point we wish to emphasize since in this form (5.25)
compares exactly with the perturbative reggeon diagram of Fig., 4.2, with the

I in (4.7}, if
we again make the identification (5.14) and identify AO appropriately. Con-

internal four reggeon interaction given by the singular term 8

sequently our claims, that the transverse momentum singularities resuliing from
the singular part of the four reggeon interaction should really be viewed as
originating from triple reggeon diagrams, is borne out, Of course, we also have
to construct the full set of diagrams of Fig. 4.1 but such diagrams will arise
automatically from the general iteration procedure giving the complete class‘of

reggeon diagrams which we new outline,

We begin by noting that since hexagraphs are drawn in the plane of a page
with vertices joined by horizontal lines, if we assoclate a rapidity variable
with each vertex {defining the rapidity variables associated with horizontal lines
as differences of such rapidities) then there is an autcomatic rapidity ordering
of many of the vertices if we define rapidity as increasing from left to right
horizontally. When forming loops it will be important to resolve the remaining
rapidity ordering ambiguity precisely., With this in mind and alsc because in
the helicity peole limit hexagraph amplitudes depend on rapidity variables only
{not on the finite angular variables) it will be convenient to simplify the
hexagraph diagrams to the usual old-fashioned {(time ordered) perturbation theory
diagrams used in RFT. This can be done by removing the D- and V- horizontal
lines and joining smcothly the sloping lines attached to V- lines. This is
illustrated in Fig. 5.16. D; V- and T~ lines can still be distinguished by the

nature of the vertices they join as we shall describe below,
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By joining together the hexagraph trees in all topologically distinct ways
we form a set of loop diagrams, We then project this set of diagrams onto a
plane and look at the rapidity ordering {left to right) of all vertices, We count
as distinct diagrams, all possible orderings obtained from cne original loop
diagram and refer tc such rapidity ordered diagrams as hexagraph loops. Each
vertical line cutting a maximal set of internal lines which are g&i connected
to the same sets of external particles by all paths lying entirely to the right
or to the left of the vertical line, distinguishes an "intermediate state".
Defining the "channel" of the intermediate state by the external particles to
which the internal lines cut are linked, the evelution of channels with rapidity
maps the hexagraph loop diagram uniquely onto a hexagraph tree diagram., This is
illustrated in Fig. 5.20. We can easily enlarge the set of all diagrams by
allowing point vertices which couple any number of internal (and external) lines.
This will also generate all the non-singular parts of the perturbative reggeon
diagrams that the triple reggeon diagrams either do not produce or else produce
incorrectly,

The complete set of reggeon diagrams for a particular hexagraph can now be
constructed in E space as follows (we omit the rapidity space integrations in-
cluded in the siﬁple examples). First we construct the set of hexagraph loops
which maps uniquely onto the hexagraph tree by the above process, The hexagraph
tree corresponds to a particular multiple discontinuity (or more generally a sum
of multiple discontinuities)., If we consider again only the most singular part
in transverse momentum of each loop then it will be sufficient to denote dis-
continuities by a single path through a loop diagram., (That is we neglect all
discontinuities which are analogous to the doubly multiperipheral cut of Fig. 5.4
in that they pass through more than one reggeon in the same rapidity interval,)
Each hexagraph loop diagram for.a particular hexagraph tree is then written as
a sum of diagrams in which the multiple discontinuity (or discontinuities) asso-
ciated with the tree diagram is taken in all possible ways by paths through the
loop diagram. Again we keep only those diagrams in which the maximum number
of loops are cub “multiperipherally" by paths, or equivalently the maximum number
of lines are uncut by paths, Each diagram is then "broken open", to give a diagram
or diagrams, with a smaller number of loops, by breaking each uncut line., The

complete process is illustrated in Fig. 5.21.

If the resulting diagrams are tree diagrams (as in Fig. 5.21) the discon-
tinuities inwvolved can be computed by the rules of Section 3 and the full diagram
assembled as described below. If not the resulting diagrams must again be con-

sidered as multiple digcontinuities and the process repeated.
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To form a loop from tree amplitudes we write the amplitudes in terms of
reggeon propagators (5.4),"vertices containing nonsense-zeros or not, depending
on whether an odd or even number of reggeons are coupled, and signature factors
not removed by the discontinuities taken. The loop is then formed by first im=-
posing transverse momentum conservation at each vertex and integrating over the
remaining loop momentum. Secondly energy conservation is imposed at all vertices,
except those where the vertex produces a change in the intermediate state channels

propagating in rapidity - these are energy non-conserving vertices, There will

initially be distinct energy integrations for each internal line of the loop,
some of which can clearly be performed using energy conservation at vertices.
However, the internal energy integrations will not necessarily reduce £to a single
energy loop integration because of the non-conserving vertices. The full ampli-
tude corresponding to the loop can be formed by using the SW transform to recons-
titute it from (the sum of} its multiple discontinuity(ies}.

Having formed one loop from tree diagrams the loop amplitude can be treated
as the tree diagram on to which it maps in order to form a new loop., The needed
discontinuities of the first loop being taken using the SW transform. Proceeding
in this way general multiloop diagrams can be built up. The diagrams can be written
with the internal energies integrated over, or alternatively these integrations
can be performed by picking up the poles of some reggeon propagators. Adding
diagrams which differ only by the rapidity ordering of some interactions will
then allow us to write the complefe set of reggeon diagrams for a particular
hexagraph as a set of "Rayleigh-Schridinger" diagrams with "energy denominators"

for each intermediate state, but with distinct energies for each channel,

As in the simple examples, many energy denominators will be cancelled by
nonsense-zeros, leaving only transverse momentum singularities as evidence of
the original reggeon states., The following rules describe this process in a large
class of energy conserving diagrams

5A  An energy denominator of a multi reggeon state is cancelled whenever there

is at least one nonsense-zero capable of cancelling either the full de-

nominator or the energy denominator of any substate,

5B The signature factor of a V line remains, that of a D-line is can-

celled and that of a T line is replaced by the corresponding zero,

This last rule applies also to generaligzations of V, T and D lines defined

as follows



- 67 -

a T 1line joins two nonsense vertices with no additional production of reggeons
at the earlier vertex and no additional absorption of reggeons at the final
vertex.

a D line joins two vertices only one of which has the property of the T

line vertices.

a V line joins two vertices, neither of which has this property.

The above rules clearly reproduce all the reggeon diagrams of Fig., 4,1 as
desired. Rule 5B does not apply directly to any diagrams which give only renor-
malization of vertices appearing in simpler diagrams after SA is applied. Rather
5B applies only to sums of diagrams in which all trajectory functions and vertices

are renormalized in the same way (that is one-loop, two-loop, etc.).

Rule 5A applies also in maltiparticle amplitudes. However, 5B applies straight-
. forwardly only within energy conserving subparts of the multiparticle diagrams.
The cancellation of signature factors and production of zeros leading to 5B is
a consequence both of taking discontinuities and of the presence of nonsense-
zeroes, Therefore we can expect a modification of these rules where the break-
down of signature conservation is associated with the absence of nonsense-zeroes.
To illustrate this we note that the rules‘gg and 5B can be easily understood for
the subset of diagrams of Fig., 4.1 involving only T and V lines by taking
the discontinuity shown in Fig. 5.22, which cuts every loop multiperipherally,
This discontinuity removes all T 1line signature factors leaving simply a non-
sense-zero for each vertex, For each T line we can associate one vertex zero
with the removal of the adjacent three reggeon propagator leaving the second

vertex zero to provide the zero of 5B,

Consider now the diagram of Fig. 5.23 where two vertices of the form of
Fig. 5.15 are coupled, In this case the three reggeon propagators shown will be
cancelled but the nonsense-zeros of the T line vertices are the only zeros
available to do this. In contrast fto the elastic amplitude case illustrated
in Fig. 5.23 the (external) states adjacent to the three reggeon states produce
no zeros. Hence the zeros of the T line vertices are totally absorbed
by the cancellation of the propagators for the three reggeon states. Consequently
while the discontinuity procedure involved in defining the diagram will still
remove the T line signature factor, there will be no zero.

Perhaps the most logical procedure at this point would be to investigate
rules of the above form comprehensively and at the same time look for a detailed

formalism which would easily reproduce diagrams without the full labour of the’
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above iteration process - particularly for adding diagrams which differ only by
the cuts through them. Unfortunately the general formalism of Section 3 with
the helicity ordering problem properly treated is essential for this., Alter-
natively we could try to write a simple RFT Lagrangian to reproduce the signature
conserving elastic amplitudes since this would bypass the helicity ordering pro-
blem. In fact although our results show that elastic amplitudes (like all others)
can be reproduced by a set of rapidity ordered old-fashioned perturbation theory
diagrams containing non-singular reggeon interactions it seems unlikely that the
complicated nonsense-zero:signature factor structure could be reproduced by a
simple Feynman diagram Lagrangian formalism containing only such interactions

{in contrast to the energy conserving Pomeron amplitudes briefly described in
Section 3)., It may well be that if we insist on writing an RFT Lagrangian to
reproduce elastic amplitudes, then this can only be done with the signature con-

serving singular interactions -formulated by other authors,

At first sight it even appears that our formalism could break the signature
conservation rules in elastic amplitudes. Consider the diagram shown in Fig. 5.24
which we would generate in an even signature amplitude. The two reggeon states
marked will, of course, appear but so also will the three reggeon state marked
since there are no nonsense-Zeros able to cancel it (all other states will in
fact be cancelled by nonsense-zeros). The resolution of this apparent signature
non-conservation involves the bootstrap equation illustrated in Fig, 4.3. This
tells us that signature conservation in elastic amplitudes can sometimes appear
only after summing an infinite set of diagrams. Our discussion of analyticity
properties of amplitudes in Section 3 tells us that a nonsense-zero should indeed
cancel the three reggeon cut of Fig. 5.24 but choosing a simple form for the
initial vertices that we iterate to produce reggeon diagrams may in this and many
other cases require an infinite sum to produce the zero. In this case the boot-
strap equation tells us that the infinite sum of Fig. 5.25 will be sufficient to

produce the zero.

Such cancellations are also important in multiparticle amplitudes for ensur-
ing that signature non-conservation does not occur within energy conserving sub-
parts of multiparticle reggeon diagrams. On the other hand, for the signature non-
conservation illustrated in Figs 5.14 and 5.15, to be not cancelled by such sums,
it is essential that transitions of states propagating past an energy non-con-

serving vertex are involved.
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Qur reason for not pursuing the detailed questions posed above is that we
believe the most importaant and exciting question to bhe asked within the above
férmalism, is how the infra-red singularity analysis of perturbation theory,
discussed in the last section, generalizes, both to the restoration of an SU{(2}
symmetry which is a subgroup of a larger broken symmetry, as in QCDMB, and also
to multiparticle amplitudes. This we shall discuss in the next section. We would
clearly prefer the above rules to be more completely formulated. However, we
shall be able to go quite far by applying the rules {and their violation} where
we believe them, The most important result of this section is perhaps that the
complete set of reggeon diagrams for all hexagraph amplitudes can be generated
by an iteration process which begins with only the set of all possible 22235
reggeon interactions which, taken on-shell, also give the particle reggecn couplings.
We shall assume only that these interactions satisfy group selection rules and

25)

that they are related in zero mass limits (by Ward identities ) in such a way

that the infra-red finiteness results of perturbation theory generalize,
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6. - THE INFRA-RED LIMIT DEFINING QCDMB

We now consider the specific problem of the reggeon diagrams describing the
high-energy behaviour of spontaneously broken QCD in which the Higgs mechanism
is applied using two complex triplets of scalars. In this Section we ignore the
quarks and so the Lagrangian can be written as in (2,17}, with V{(p) possessing
a non-trivial minimum which gives expectation values to @lfzpl) and 62(502’93’94)'
These expectation values give two mass scales Mf and Mg for the massive vectors
originating from the Higgs mechanism, Although giving few details, we shall im-
plicitly construct reggeon diagrams by the general formalism of the previous Sec-
tion. Since we are interested in infra-red divergences only, we can eliminate any

ultra-violet problems by imposing a transverse momentum cut-off,

The form (2.17} for the Lagrangian hides a global SU(2) symmetry that re.-
mains in the theory after the Higgs mechanism is applied. The symmetry results
from the choice of an S8U(2) direction implied by placing the Py component of
@ along the two-axis in (2.,1%). This global symmetry plays a central role in
the following. Firstly, the massive vectors form 3U(2) representations. 1In
the notation of Section 2, BY,B%,B° form an SU(2) triplet with mass M.
84-B7 form two SU(2) multiplets BE and B2 with a mass which, as implied
by (2.29), goes to Ml as M2 - 0, 88 is an 3U{2) singlet whose mass similarly
goes to 2/ 3 Ml as M2 % 0, In addition, we can define a charge conjugation trans-
formation which will classify SU(2) singlets. To exploit the underlying SU{(3)
synmetry we parametrize the Bi in terms of SU({(3) generators as in (2.27).

The charge conjugation operation can then be defined on the vectors by
3

CBYC' = CLb Aup]Cla-b A =-B,,

{6.1)

which implies

-

- *

[ ; . .
B - -B iz 1,3, 6,8 B = 3 {22,877
(6.2)

So all vector fields (and the associated reggeons} carry positive or negative charge
parity. The transformation is easily extended to Higgs fields as complex conjug-
ation, so0 that (when £ = 1) in (2,15) Py * Pys P Dpy P * Py and Py ¥ Oy

In the limit that the 3U(3) gauge symmetry is restored, C becomes the

usual colour charge conjugation operationqo). It plays a central role in the
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following. MNote tha@ the 3U{(2) singlets we can form, which are eigenstates of
C, .are the following

€ 0 .o
S, = Sy BB €3 =123 (6.3)

S. = Ein BLB.’ B“ $3, R=123 (6.4)
So= $y., BB ws-us567 (6.5)
S, = dg.s & g° ~s = 4567 (6.6)

S = 8’ 6.7)

where the f and d symbols are the usual 3SU(3) tensors. From (6.2) we have

cs.c'=+S

™~
o~
]

»
£

“'I *
Cs;C -T'--'S_; >=%,6 6.8)

After the Higgs symmetry breaking, all eight vectors will lie on Regge traj-
ectories which are given in the leading log approximation by (4.1). We introduce
a diagrammatic notétion which will distinguish the vectors in reggeon diagrams.

As illustrated in Fig. 6.1, we use a dotted line for the triplet Bl, BZ, B3, a
golid line for the two doublets Bé and Bg, and a wavy line for the singlet B8.
The triple gluon coupling in £ can be represented diagrammatically as in Fig, 6.2.
The global SU(2) symmetry implies that the full triple reggeon couplings must
have the same structure, provided that charge parity is conserved by the vertices.
Since it is conserved (with or without quarks), only even numbers of d tensors
are generated by gluon or Higgs loops. Consequently, the triple reggeon couplings
have the structure of Fig, 6.2.
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The leading log trajectory functions of (4.1), or in the language of ﬁhe
last Section, the one reggeon loop renormalization of the trajectory, can be re-
presented as in Fig. 6.3. From this figure we see immediately that if we let
Mg + 0, so0 that Bl, Bz, B3 become massless, then in the one=loop approximation
the B8 trajectory function remains infra-red finite. From Section 4 we also
know that the other trajectory function divergences can be absorbed intc effective
finite interactions as illustrated in Fig. 6.4. It is straightforward to check
that the divergent parts of the diagrams of Fig. 6.4 cancel only when the (£

channel) 8U0{(2}) colour is zero.

For our purposes, it will be convenient to separate the singular loop diagram
in the BT trajectory function into a singular and finite part by noting that the

relevant loop integral is

[ )-mMIlk-M11 (6.9)

L | (9+AN@ X9 -A+T&)

Qja‘ (Gf'fA—W)(Q?-A-Sa) (6.10)

where

Q= Y Qf—- (Mt'm'z)l][ ’q:—' (M'*M'J‘-S (6.11)

and

T

k8
A=mM -M, (6.12)

. 2 . .
The logarithmic divergence of (6.9) as M, +~ 0 arises in (6.10) from the
factor (q2 ~ A - /Q) in the logarithm, while the divergence as Mi + 0 arises
from the (q2 + A - ¥/Q) factor. We shall separate these divergences by writing

@) )
T K 2

K® - K

{6.13)
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where
K@-) I [ 9+ N+OQ ] 6.14)
: FAY-Y gt+ & -Ta |
s
—_— - fn { % ]
2 L
M,>0 2(9-107) ™,
(6.15)
and Kée) is defined by +A -+ = A 1in (6.14)., We represent the same split in the

trajectory function formally by Fig. 6.5. We then absorb only the Kl factor

into the interaction, replacing the diagrams of Figs. 6.3 by the complete set of
finite trajectories of Fig. 6.6, The SU(2) invariant interaction will still be
infra~red finite, however the trajectory for the Bk and Bg doublets will now be

:'3 (9};) ,:‘::,a " E{' (9;‘“ M:&)[K‘m(“?,”:) * Km(m:) %M:’)] (6.16)

ant

~> - 39" |, [i] w29 (KD M)
Py 2t

v
(6.17)
so that
(&) P (6.18)

&-»o

S0 if we absorb only the infra-red divergent part of the trajectory into the
effective interaction, we have an effective trajectory which implies that near
q2 = 0 we can ignore the high-energy behaviour associated with the doublet traj-
ectories, although they do still generate SU(2) singlet particle states with
mass ‘v Mf. If we assume that this is the correct way to organize the M; + 0
limit, we will have an adequate description, for our purposes, of the confined

status of the doublet vectors as the SU{2) gauge symmetry is restored.
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We are now in a position to analyse the infra-red singularities as Mg + 0
by extrapolating the results of Section 4. <Consider first the set of energy-
.conserving reggeon amplitudes obtained by drawing all possible diagrams involving
the reggeons of Fig. 6.1 with the triple reggeon. interactions of Fig. 6.2. The
infra-red finiteness results of Section 4 will generalize if we organize the dia-
grams as follows. We write the diagrams in terms of the infra-red finite traj-

*)

ectories of Fig. 6.6 (that the massless gluon ° lies on a finite slope trajectory
will not change the infra-red analysis). As we made clear, there are two kinds
of cancellation central in the infra-red analysis. The first kind, analogous to
(4.14), is already described in Fig. 6.4. The second cancellation (4.15) will be
obtained by adding the necessary local four-reggeon interactions (which we assume
here are correctly determined by the gauge-invariance of the theory}. The complete
set of SU(2) colour-zero, infra-red finite, energy-conserving, four-reggeon
interactions will therefore be those given by Fig. 6.7 in which are embodied all
the infra-red cancellations, together with all those.generated by finite triple
and quartic reggeon interactions amongst the massive reggeons, With this set of
interactions, and the infra-red finite trajeetories, we will obtain a complet set

of colour=-zero, infra-red finite, "off-shellM, energy-conserving reggeon diagrams.

Consider next the coupling of the energy-conserving diagrams to particles to
define elastic amplitudes., In principle, there could be couplings to external
particles of all combinations of even and odd numbers of reggeons carrying SU(2}
celour-zere which would appear respectively in even and odd signature amplitudes.
However, to 1oweet order {(or in.the SU(3) limit) for all couplings and exactly
for couplings involving just gluons, the couplings arise from the t channel ex-
change of a gauge-invariant vector. Consequently, in elastic scattering, s chan-

41)

nel helicities are conserved 1 . This implies there is no parity transformation

from the initial to the final state. In this case, the signature of a t ~channel

reggeon state must coincide with its charge parity {more generally signature

involves TCP). From (6.3) = (6.8) we see that all colour singlet combinations of
gluons (that is Bl, 82, B3 have even charge parity. Consequently, amplitudes
involving only colour-zero combinations of gluons must all have even signature,

and so contain an even number of gluons, All additional allowed couplings must
have the correct combination of signzture (determined by an odd or even number of
reggeons) and charge parity [determined by (6.3) = (6.8)] for the coupled reggeons,
Allowed couplings are illustrated in Fig. 6.8, [Since we are ultimately interested

in restoration of the S8U(3) symmetry, we need only such couplings.] Actually,

*)

We consistently refer to massless gauge vector particles as “gluons™, The
context should make it clear whether Ygluons" are alse considered as reggeons
in the following.
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the results of Refs. 39) and 43) imply that not all allowed couplings are present,
in particular, the even signature combination of two doublet vectors or two singlet

vectors seems to be absent. ]ﬁhis is almost certainly important for the comparison

with super-critical RFT although at present we have nho géneral explanation for it.j

We can, of coupse, regard the two-particle/many reggeon couplings as just
on-shell limits of local two-reggeon/many reggeon couplings. We therefore en-
large the reggeon diagram framework to its most general structure by first allowing
all signature-conserving local couplings of arbitrary numbers of reggeons in
colour-zero combinations having identical signature and charge parity. We also
allow signature non-conserving couplings which conserve charge parity and carry
nonsense-zZeros as described in the last Section, We assume that all couplings
of non-zero colour reggeon states are either removed by the infra-red limit, or
are absorbed into infra-red. finite, but non-local signature conserving interactions
as generalizations of Fig. 6.7. It seems safe to assume that with this general
set of couplings we can produce all the mass-ghell infra-red singular part of
QCDMB elastic amplitudes. If, in addition, we allow diagrams with the same
vertices, but at some of which there is no energy conservation, then, as discussed
in the last Section, we can also reproduce all the infra-red singular part of the
multiparticle amplitudes. The question now 1s how does the mass-shell singularity
analysis of Section 4 generalize to this full set of QCDMB amplitudes?

As we discussed in Section 4, the central element in the analysis of mass-
shell infra-red singularities is that when some reggeons of a reggeon coupling
involving non-local contributions are taken on-ghell, the cancellation (4.15)
between local and non-local couplings breaks down. This is because the non-local
part decouﬁles in the mass-shell limit. This situation clearly generalizes so
that we will have mass-shell singularities whenever some number of gluons couples
to an external state, carrying finite transverse momentum,as illustrated in Fig. 6.9.
Suppese first there are no accompanying massive reggeons in the gluon state, then
not all gluons can carry zero transverse momentum, Consequently, their self-
interaction will be described by a singular kernel which will remove the infra-~
red singularity as a generalization of {4.19)-(4.32}, as illustrated in Fig. 6.10,.

Next suppose that there are accompanying massive reggeons., The existence
of the external particle coupling implies that the reggeons plus gluons have the
correct charge-conjugation to allow a local self-interaction. Summing the dia-
grams with this self-interaction, as illustrated in Fig. 6.11, leads to an infra-
xed finite result of the form

g‘m/l +T San

(6.19)
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where 3d is the divergent phase-space and I is the self-interaction, Since
there exists one set of diagrams in which the divergence cancels, we assume that
it is cancelled in the complete set of diagrams.

To avoid the above arguments, we need to find a combination of reggeons

and gluons with a charge conjugation which prevehts their self-interaction and in
which the gluons all carry zero transverse momentum so that the scale-invariance
of the gluon self-interactioh will allow some infra-red singularity to remain
after the interaction. The simplest possibility is the combination of a singlet
reggeon with a triplet of gluons as illustrated in Fig. 6.12. This carries neg-~
ative charge conjugation (from the reggeon), but is an even signature combination.
However, this property which prevents the interaction between the reggeon and the
gluons, also prevents the coupling to a local external particle_state. Therefore,
the combination of Fig. 6.12 does not appear in elastic amplitudes. In fact, our

present analysis implies that all colour-zero elastic amplitudes will actually be

infra-red finite (at large rapidity).

To find the potentially infra-red singular combination of Fig., 6.12 we must
g0 to a multiparticle amplitude, The simplest amplitude which does not violate
any of the above constraints is that shown in Fig. 6.13., Since this diagram is
our prototype for the generation of the Pomeron in QCD,,_., we shall discuss it
in some detail. First we note that it is a hexagraph loop diagram whose esseﬁtial
structure is that shown in Fig. 6.14, and so is just of the kind that we have an-
ticipated from the previous Sections will not obey the elastic signature rules,
and will, in fact, give an exchange degenerate four-reggeon cut in the central

t channel. This central state involves an integration over three transverse

momenta E&’ 53. Interacticns of the scale-invariant kernel K(El, k,, 53)

k
—~21?
illustrated in Fig. 6.15 will cancel the infra-red divergences from the regions

t ‘ 7. n
ki ~o0  i=21,2,% ke, ey ~ o G,3)=0,690.69 .20

and we will be left only with the divergence as

6.21
R ka~ ks > e 0.2

Since the kernel Kik;, k.,

invariance property, this divergence will occur in the same way in all the inter-

53) will be finite in this limit due to its scale

acting diagrams. Therefore, the leading divergence (in the sense that the minimum
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number of gluons is involved) is the non-interacting diagram of Fig. 6.13, If
we simply cut out the region of phase-space (6.20), keeping only the divergence
from (6.21), then since the reggeon plus gluons propagator gives

! b
E~B8.08)- D, (8 - ,(6) - By (lg- b ,)) 7 E- F-8,(5)  (6.22)

and the gluon signature factors combine to give an over-all logarithmic divergence

(6.23)

Ahdked R ka .\,g&
ky ke by k

we obtain from Fig, 6,13

~ b N: @ (E';E""u Y, ﬁ/z) l ﬁ (E‘i,E:n %3, QM-) (6.24)
N:"-W E - As(ﬂ")

where B contains a two reggeon transverse momentum loop and propagator, and also

contains all the ambiguity associated with the removal of the phase-space (6.20),
There is no signature factor because the reggeon line of Fig, 6.13 is a generalized
T line as defined in the last Section. There will also be no T line zero since

the couplings are non-energy conserving and their nonsense zeros are not operative.

The obvious {and unambiguous) feature of (6.24) is the occurrence of the Regge
pole propagator to give an exchange degenerate singularity. That is, the exchange
degenerate Regge cut in Fig, 6.13 becomes a Regge pole in the limit MS + 0,

[Note that it is important that the region of phase-space (6.21) is that from which
the Regge cut is generated, whereas (6.20) is not. Since the Regge cut gives the
leading asymptotic behaviour of Fig, 6.13 for Mg # 0, 1if the infra-red divergence
from the regions of phase-space of (6.20) survived, the high-energy behaviour of
the reggeon diagrams could not have a smooth limit as Mg + 0, and the whole
approach of this paper would be unlikely to succeed.] As we have anticipated, the
Lo Mg singularity can, in principle, be absorbed into a definition of the residue
functions and consequently into a redefinition of the external states.

We believe it is significant that we can interpret this redefinition of the
external states as a "¢closed string" renormalization of the logal vector states.
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We do this as follows. Interpreting Fig. 6.13 as a high-energy scattering pro-~
cess with g? spacelike, but "gi,..,gi taken timelike, the "initial" (C = +1)
local vector states scatter into (C = =1) local vector states accompanied by a
"flux" of zero colour gluons in the transverse momentum configuration of (6.21).
In the conjugate (transverse) co-ordinate space, multiple gluon states with trans-
verse momenta uniformly taken to zero will be conjugate to states with the same
gluons initially randomiy placed and then uniformly moved out to infinity. When
an infinite number of gluons is involved in this process (as will soon be the case),
this is just the configuration of gluons that we would expect to appear as the
large distance limit (in reality, the zero transverse momentum limit) of a "¢losed
string" (tube) of flux surrounding the massive vector sztate as in Fig. 6.16. In
Section 8 we will argue that the charge conjugation property of the "flux-tubes"
we are producing is consistent with their qualitative identification as "“approx-
imate™ Wilson loops of flux.

Since the flux tube is also exchanged between the scattering vector states,
our initial picture of the QCDMB Pomeron is as a singlet reggeized vector B8
propagating inside a large SU(2) flux tube which gives it an even signature
component. MNote, however, that this Pomeron is odd under the charge conjugation
operation of (6.1)., Assuming that it couples to physical particle/antiparticle
t - channel states with even signature (implying even angular momentum), then such
physical states must also be odd under colour charge conjugation., The vacuum
quantum numbers of the Pomeron therefore suggest the physical interpretation of
this result that the QCD vacuum is odd under colour charge conjugation, We

shall return to this point in the next Section when discussing chiral symmetry

"breaking.

Of course, it is consistent with our general aims that we are not concerned
with obtaining a precise description of the physical states which are formed by
the process of restoring the SU(Z) symmetry. We need only to be confident that
they are truly confined hadron-like states fo be sure that we are identifying the
correct "physical” Pomeron, Nevertheless, we can argue that our approximate ident-
ification of the states as above, and in the following, together with their con-
fining properties, is actually a demonstration of confinement as the SU(2) sym-

metry 1ls restored.

We do, however, wish to describe the Pomercn precisely and here we exploit
the fact that all the ambiguity in identifying the infra-red divergent part of
Fig. 6.13 can be absorbed by the residue functions of (6.22). The Pomeron prop-

agator is unambigucusly
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)] _ l
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and we can extract this from the reggeon plus gluon state of Fig., 6,12 by the

simple prescription of writing for each massless gluon

Ty 2 .
e 5 Catkes $H()
k? - (6.24)
Since 30(5?) = 0, the massless gluons then automatically contribute zero energy
to the energy denominator which simply becomes {(6.23). |

We now look for additional diagrams that will be singular, for analogous
reasons, to that of Fig. 6.13. Clearly, we can simply add even numbers of gluons,
in colour singlet combinations, produced and absorbed at the same points as the
triplet in Fig. 6.13. The total number of gluons will again have disparate sig-
nature and charge conjugation and so be prevented from interacting with the reggeon.
However, any even number, colour-zerc subset will have a local interaction with
the reggeon, producing diagrams which will sum %o cancel the additional diverg-
ehce associated with this subset in the original diagram as in {(6.19}, and illus-
trated in Fig. 6.17. Therefore, only the single divergence produced as the trans-
verse momentum of all gluons goes uniformly to zero is present in such diagrams,
there is no enhancement of the degree of singularity. As a result, the effect of
these diagrams is to add gluons to the surrounding flux tube of Fig. 6.16., Since
vertices with the same external particles and reggeons, but diff'erent numbers of

gluons, will be related25)

by Ward identities as a consequence of gauge invariance,
the effect of the additional gluons in the flux tube will be simply to produce

what we shall call a gauge-invariant flux tube, containing (after adding all sim-

ilar diagrams) an infinite number of massless gluons. The description of the re-
sulting Pomeron will still be as in (6.23) and (6.24).

To find diagrams with additional degrees of divergence, we have to exploit a

fundamental property of the energy non-conserving vertices., All the cancellations,

which we are assuming exist as generalizations of (4.15), are between signature=-
conserving local and non-local vertices; the non-local vertices arising from the
cancellation of a signature-violating reggeon intermediate state by a nonsense

zero. In multiparticle amplitudes the existence of the energy non-conservation

vertices allows non-local vertices which also arise from the cancellatien of a
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reggeon state by a nonsense zero, but which (over-all) are signature nen-conserving

(or, as in the next Section, charge conjugation non-conserving)., For such non-
local vertices, local vertices cannot possibly exist to provide infra-red cancel-
lations. A potential non-local vertex of this kind is illustrated in Fig. 6.18,
Both local vertices in the Figure are charge conjugation preserving, but while
the top vertex is signature conserving, the bottom is non-conserving. The con-~
sequent nonsense zerc leads to the cancellation of the reggeon intermediate state
involving the exchanged reggeon. EIn elastic amplitudes, the resulting non-local
vertex combines with other vertices as discussed in the last Section and is elim-

inated, ]

Since the exchanged reggeon is actually taken on mass-shell in defining
the non-local vertex, the top local vertex effectively becomes an on mass-shell
vertex coupling directly to massless gluons which will have no zero to cancel the

gluon infra-red divergence. The only pesgibility for cancellation would be the
existence of a local vertex of the form shown in Fig. 6.19. Since such a vertex
would be signature non-conserving and itself have a nonsense zero, it could not

cancel the non-vanishing vertex produced by Fig. 6,18,

Vertices of the form of Fig. 6.18 can only occur accompanying energy non-
conservation vertices as in Fig. 6.20. The presence of the energy non~conserving
vertex means that we again have the situation of Fig. 5.14 where signature rules
break down. According to the construction process outlined in the last Section,
the main loop of Fig. 6.20 is constructed as an integral over the energy E illus-~
trated in Fig. 6.21. This figure shows that singularities in the right-half E
plane come either from the massless gluon channel or from the exchanged reggeon
channel (E-EC in Fig. 6.21). The second possibility corresponds to the rapidity-
ordering of Fig. 6.22 and gives only an energy non-conserving vertex for produc-
tion of the three reggeon state as indicated, The rapidity ordering which inter-
ests us is that cbtained by picking up the massless gluon in the E integration.
The infra-red divergence of this contribution, which is not cancelled by inter=-
actions, will again be that in which the transverse momenta of all the gluons are
taken uniformly to zero, at which point the gluon state has E = 0. Consequently,
if the resulting logarithmic mass divergence is absorbed intc the external state
as before, the residue will be a singular reggeon transition as illusirated in
Fig. 6.23, with the vertex V given by

: \/= A(E“’, k-o, l:") Vi (6.25)
A(k*)

2
where VL is the original local vertex (with nonsense-zero removed), A{k™)

originates from the signature factor of the exchanged reggeon, and A is the
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amplitude for production by zero colour, zero energy, zero momentum transfer, gluons,
of the combination of produced and exchanged reggeons. On dimensional grounds alone
Wwe must have A4 ~ Mi,
Fig. 6.13, the pair of gluons could be replaced by any colour zerc, even signature

as is easily checked on examples, As in our discussion of

combination. Summing all such diagrams will again produce a "gauge-invariant"
flux tube.

Generalizing this last discussion, we will generate additional infra-red
divergences in all diagrams having the general form illustrated in Fig. 6.24,
Tﬁe hatched lines can be replaced by any combination of reggeons that is consistent
with the local vertices shown, In all such diagrams, we shall obtain the correct
form for the propagating reggeon states, after removing infra-red divergences, if
we make the replacement. (6.24) for each massless gluon and if each massless colour
singlet which produces or absorbs massive reggeons is initially allowed to carry
separate energy, which is then set to zero. That is, for each such (even sig-

nature} colour singlet we effectively write

gAE S (€) gam,s 6 () (6.26)

Consequently, we have "vacuum production and absorption" of all even signature
combinations of massive reggeons exactly as in super-critical RFTlg). Clearly,

this production and absorption can include the combination of reggeons and gluons
that we would identify as twc Pomerons (by the vertex illustrated in Fig. 6.25).

As above, we add together all diagrams of the form of Fig, 6.24, but differing

only by the number of gluons involved in one or more of the even signature vacuum
production or absorption combinations, Ward identities for the vertices involved25)
imply then that each vacuum production or absorption involves an independent "gauge-
invariant" large transverse flux tube producing an additional logarithmic diverg-
ence factor to be absorbed into the definition of the external states.

From our infra-red analysis of QCDMB, we can so far tentatively conclude
that

6.1) the Pomeron is a Regge pole, exchange degenerate with the singlet reggeon
trajectory - both trajectories have C = -1.

6.2) there is vacuum production and absorption of even signature states of
reggeons and Pomerons which vanishes as Mi + 0, or as the SU(3) sym-
metry is restored,

Since these are essentially the defining features of super critical RFT as we
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have defined it in previous paperslg), we feel ¢onfident that a precise comparison
can be made, However, there is so far a missing. element which we shall discuss
further in the next Section, and that is the triple Pomeron vertex, For this,
quarks are essential, and we defer all discussion of quarks until the next Sec-
tion., We shall also indicate that all the external states can be treated symmet-
rically in terms of the production and absorption of massless gluons, once gquarks
are included., This is not the case for Fig. 6.24 and clearly indicates that we

do not yet have a satisfactory definition of external states - a minimum require-

ment being that there is elastic scattering! .
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7. - QUARKS, ASYMPTOTIC FREEDOM, CHIRAL SYMMETRY BREAKING
AND THE CRITICAL LIMIT

This section is devoted to those parts of our arguments that depend strongly
on the presence of quarks in QCDMB. As we shall see the quarks are an essential
dynamical ingredient in the whole argument that the limit QCDMB,+ QCDM gives the
critical Pomeron. Nevertheless some work is needed to adequately incorporate

44),45)

fermion reggeons into our multi-Regge formalism and this must be done before

the arguments outlined below can be made more precise.

We consider first the significance of asymptotic freedom for our constructions,
As we discussed in Section 2 it is necessary to saturate asymptoftically free QCD
with quarks in order to break the gauge symmetry to SU(2) and retain asymptotic
freedom. On general grounds it is likely that asymptotic freedom is esg?ntial to

even define a four-dimensional continuum theory (the renormalon problem”’ being one
of many ways of seeing the probably insuperable difficulty of constructing a just-
renormalizable, non-asymptotically free theory, outside of perturbation theory}.
Since we want the mass of the singlet vector B8 to be a well-defined S matrix
concept (independent of any cut-off) defining precisely the critical limit for the

Pomeron, as we shall discuss shortly, we need To define QCD as a continuum

theory. For this reason alcne it is probably essential forMEs to have asymptotic
freedom, However, as we implied in the Introduction we would alsc like to see spe-
cifically that asymptotic freedom provides sufficient transverse momentum cut-off
to eliminate the possibility of fixed singularities in the angular momentum plane
such as the fixed-cut of the leading logarithm diagrams discussed in 3Section 4.
E@ctually it has recently been shown46) that the fixed cut suffers from precisely
the ambiguity that we expect of a just-renormalizable theory in the ultra-violet
region, that is its presence or absence depends on the method of regularization
employed - it is absent when dimensional regularization is used, The importance

of asymptotic freedom is, of course, that it eliminates this ambiguity{]

In fact it is almost orthogonal to the construction of the theory by reggeon
unitarity to try to construct the theory perturbatively at large transverse momentum.,
The unitarity and dispersion relation formalism really only makes sense at low
transverse momentum {strictly when all reggeons are on-shell), It is therefore
reliable precisely when all the arguments made are of an infra-red or critical
phenomenon kind where a transverse momentum cut-off can as well be kept throughout,
It suffices then to know that the parameter which defines a critical limit {for us
this will be the singlet mass) is a well-defined physical (3 matrix) concept and

there is no need to analyze the theory in detail away from the infra-red region.
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Nevertheless it is interesting to ask whether asymptotic freedom can be used to
define a reggeon theory periurbatively {and convergently) at large transverse mo-
mentum, which smoothly joins with our infra-red analysis. This would in principle
provide a mechanism to see the connection between perturbaticon theory and the
confining (flux-tube) Pomercon which emerges from our analysis without the symme-
try breaking that we have used.

Bronzan and SugarT)

have discussed how to apply the renormalization group to
the transverse momentum dependence of the high energy formalism and so introduce
the running coupling constant as a function of transverse momentum, This work

shows that the full gluon kernels K, of Section 4 will satisfy

N

KN(%: Y& :E) :::)w pecturbative ("5(%)9 %—I: b—"-) (7.1)
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where A 1is the rencrmalization group scale. This logarithmic damping is suffi-
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cient to break the ultra=-violet scale invariance of the K giving ultra-violet

)
convergence and eliminating the possibility of a fixed cutﬁ (The infra-red scale
invariance which we have exploited in previous sections will be unaltered.) However,
the Bronzan and Sugar analysis also shows that if the perturbative kernels are used
for all values of Ei’ then the renormalization group transformation simply re-

places the ultra-viclet divergence by an infra-red divergence.

Since we have learnt how the infra-red divergences of reggeon diagrams are
absorbed into external states leaving infra-red finite results we should now be
able to adapt the Bronzan and Sugar formalism to show that asymptotic freedom does
indeed provide sufficient damping to remove the transverse momentum cut-off in our
formalism. In the last section we stated that we had cut off the transverse mo-
mentum in all diagrams without specifying precisely how this was to be done. It
is important that all of the massless gluons in the diagrams we kept (and which
we shall describe a little more fully shortly) carried zerc transverse momentum
50 that no (ambiguous) relic of the full cut~off remains in the 3U(2) sector of
the theory. The remaining part of the theory is precisely that which can be cut
off by asymptotic freedom {when we have sixteen flavours of quarks).

Next we come to the problem of finding the triple Pomeron vertex in QCDMB'
If the Pomeron is composed (in a first approximation, of course) of a reggeon

plus gluons as in Fig. 6.12, then we need a vertex of the form of Fig. 7.la, or,
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since any even number of gluons is essentially equivalent, at least a vertex of
the form of Fig. 7.lb. However, such vertices do not conserve charge parity and
50 certainly cannot be constructed from the triple reggeon vertices of Fig. 6.2.
Equivalently we require a coupling constructed from anh odd number of SU(3) 4
tensors, A d tensor would allow the additional triple reggeon tensor couplings
shown in Fig. 7.2. The simplest tensor structure for the vertices of Fig. 7.1
would then be that shown in Fig, 7.3,

The charge conjugation transformation can be extended to quarks as usual with
the result that the QCDMB Lagrangian is still invariant under the transformation.
Since the B fields carry definite charge conjugation it follows from the path-
integral representation for their Green's functions that these Green's functions
must conserve charge conjugation, (In particular even in the presence of quarks
the full triple gluon vertex must have the tensor structure of Fig. 6.2.) This
implies we must look for the Pomercn interaction diagrams within charge conjugation
conserving multi-gluon amplitudes (this is clearly related to and potentially in
conflict with our asymmetric treatment of the external states in the previous
section}, An additional requirement is that we want to identify the Pomeron with
an internal T line reggeon (plus gluons) but we do not want a T line zero
{¢f. rule 5B}. Therefore the T line must be connected back to external energy
non-conserving vertices. Thirdly we want to couple the positive charge parity
gluon triplets into the vertex using quarks {to produce the transformation of
charge parity) in an essential way. However, the triplet needs to couple essen-
tially like an axial vector in that it carries odd signature but positive charge-
parity. This implies it does not couple to on-shell quarks for the same reasons
that we have noted earlier for the absence of local couplings for the triplet
(helicity is preserved in elastic scattering). It must therefore couple to off-
shell (that is reggeized) quarks only and therefore must couple in a nonsense
state, For infra-red finiteness, the reggeized quarks must alsc propagate in
colour-zero combinations. Finally we also want the quark loops involved to

produce a d tensor coupling.

Although this is a large list of requirements they are clearly inter-related
and we anticipate they have a simultaneous solution. The simplest possible cou-
pling seems to us to be that shown in Fig. 7.4. where we have used a double solid
line to indicate a (reggeized) quark. The nonsense couplings shown firstly allow
the gluon ‘triplets to couple and secondly allow the reggeons to be T lines which
because of the coupling of the gluon triplets back to the external states will
carry no T line zero (analogously to the diagram of Fig. 5.23). Also since we

have a guark-loop with an odd number of "axial vectors" coupling we should
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generate a d tensor coupling in analcgy with the familiar axial vector anomaly -
the tensor structure of Eig. 7.3a seems the most likely. Clearly only a more
complete analysis including reggeized quarks in our formalism can properly deter-
mine whether the diagram of Fig, 7.4 will indeed contribute to the triple Pomeron
vertex, TFor the moment we assume that it does although our following discussion

will generalize to a more complicated vertex.

Firstly we note that the gluon triplets absorbed by the quark loop must be
accompanied by additional triplets (to couple locally to external states) which
must be absorbed somewhere, In fact the most obviocus possibility for this absorp-
tion is at the initial and final vertices so that the external states can be
symmetrized {with respect to charge conjugation) as we require., In this case our
triple Pomercon diagrams will now have the structure illustrated in Fig. 7.5, where
we have used a single dotted line to indicate a gluon triplet, Every single
Pomercon state is accompanied by an odd number of ("axial vector"} gluon triplets
while each two Pomeron state is accompanied by an even number, The exact number
is immaterial as Fig. 7.5 implies., The triplet coupling intc the quark-locp has
the form of the signature violating non-local vertex of 5.15 which we concluded
in the previous section would generate additicnal infra-red divergences. We anti-
cipate therefore that there will be an additional logarithmic divergence for each
such coupling and that adding diagrams with additional gluons, but the same degree
of divergence, will simply convert each combination of gluons involved into a
gauge-invariant transverse flux-tube as for the vacuum production diagrams of the
last section. The distinction between the "flux tubes™ involved in the triple
Pomeron interactions and those involved in the vacuum production and absorption
is that the former involves a potentially odd-signature (or "axial-vector") combi-
nation of gluons while the latter involves only even-signature combinations of
gluons. We can briefly summarize the final flux tube interpretation of the QCDMB
Pomercon and the physical states coupling to the one-Pomeron exchange diagrams

as follows.

Firstly the physical states (that we have found so far) are colour-zero combi-
nations of a finite rnumber of massive reggeized gluons {or quarks) surrounded by
a superposition of large transverse "closed strings" or "flux tubes" defined
strictly as gauge-invariant combinations of neon-interacting zero transverse momenta
gluons, which we refer to picturesquely as a thick flux tube, The thick flux-tube
has three essential properties, the first two of which are properties (6,1) and
(6.2) of the previous section, The third property is that the flux tube is able
to interact with massive reggeons to produce an effective triple Pomeron inter-

action and in addition allows pairs of ( = -1 states to couple to the Pomeron.
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This "picturesque" picture of the QCDMB Pomeron is illustrated in Fig. 7.6,
where we have alsc shown the equivalent super-critical Pomeron diagram. (We
should emphasize perhaps that since we calculate only S matrix elements in our
formalism we clearly have no authentic space-time picture of the states or the

Pomeron. )

At this point it seems extremely likely to us that a precise comparison of
the Pomeron in QCDMB and the super-critical Pomeron can be made. However, to
make the comparison diagram by diagram it will be necessary to go through the
malti~-Regge and infra-red analysis of previous sections in complete detail. As
we remarked in the Introduction we also intend to publish a complete derivation
of the super-critical RFT formalism direct from Reggeon unitarity which we have
derived but so far left unpublished (since we believed there would be more inte-
rest in the subject if the connection with QCD was first made apparent in this
paper). In the next section we shall summarize the general arguments for the
connection of the critical Pomeron with QCDM, which we also believe are very
striking.

Let us accept, for the moment, that the high energy behaviour of QCDMB is
indeed described by the super-critical Pomeron RFT formalism that we have des-
cribed in previous papers, In this case we have an exchange degenerate Pomeron,

a triple (and higher) Pomeron vertex and there is vacuum production and absorpticn
of Pomerons leading to effective singular Pomeron interactions., (The formalism is
illustrated in Fig. 7.7, where we have reverted to the conventicnal notation of a
wavy line for the Pomeron.) The odd signature component of the Pomeron couples

to the even-signature component only through diagrams involving vacuum production
and absorption, The c¢ritical limit in which the Pomeron intercept goes to one
also involves the vanishing of vacuum production so that while the intercept of
the exchange degenerate odd-sighature trajectory also goes to one it completely

decouples from the Pomeron and presumably also from all physical states.

o Clearly if this is the behaviour of QCDMB as we take the mass of the singlet
B vector to zero it will be completely consistent that this limit should give
pure OCDM. We will then be left with the critical Pomeron as the only physical
manifestation of all exchanged gluons. Our flux-tube picture of the Pomeron gives
a very attractive picture of the critical limit which we briefly described in
Section 2 and which is illustrated in Fig. 7.8. In the ¢ritical limit infinitely
many massive (becoming massless) reggeons share the available transverse momentum
and so move towards large transverse distance to be absorbed into the "thick"

flux tube and define an SU(3) symmetrix flux tube. Since this flux tube will
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have the symmetry under rotation (in transverse space) of the familiar dual model
closed string it is natural to expect it to be purely even signature, as the cri-
tical limit requires. Also as we remarked in Section 2 it is likely to give exchange

degenerate trajectories before the S8SU{3) symmetry is restored.

The physical states of QCDM must now be c¢olour-zerc combinations of quarks
surrounded by a Pomeron flux tube carrying negative charge parity, These states
will still allow the physical charge conjugation operation to be defined in terms
of the quark content of the state and particle-antiparticle transformations c¢an
still be defined in terms of quark-antiquark transformations., The negative
colour charge conjugation of the surrounding flux tube can clearly be simply re-
garded as a property of the "vacuum" - although, of course, the vacuum never appears
in the S matrix and cannot be given a meaning from it. The only manifestation of
the flux tube "vacuum" will indeed be in the nature of the Pomeron and also, we be-

lieve, in the Nambu-Goldstone realization of chiral symmetry.

We can briefly present our reasons for believing that the Pomeron is respon-
sible for chiral symmetry breaking as follows. Our rough understanding of the
physical states of the theory implies that they contain (in the high energy linit)
an infinite number of masszless, zero momentum gluons, Effectively there is an
expectation value for some multigluon operators. Lorentz invariance, of course,
does not allow a finite energy expectation value for a single gluon field, but

47),48) expectation values for multiple gluon operators.

many people have suggested
ParisiAg) has also argued that the origin of such expectation values is in the
divergences of sums of gluon diagrams which are large in the infra-red region

{the infra-red renormalcons of QCD}). We believe that the high energy limit forces
the relevant infra-red divergences into finite-order diagrams which we have effect-
ively regularized by the addition and subsequent removal of Higgs scalars genera-
ting the infra-red divergences we have discussed. Therefore the origin of the
effective expectation values for gluon operators is really the same in our form-
alism as the renormalon origin suggested by Parisi. If the vacuum should also be
interpreted as containing infinite numbers of zero momentum gluons then clearly

50} Jlthough to discuss

we expect expectation values for quark mass operators
this we again need the reggeized quark formalism, In the critical limit, more-
over, all even signature combinations of gluons effectively vanish from the phy-
sical states, since their only effect is in the vacuum production and absorption

of Pomerons. Therefore at the critical point the physical states {coupling to

one Pomeron exchange} can be described as containing only an infinite number of
zero-momentum Maxial! vectors (the even signature gluons which decouple are a combi-~
natibn of ordinary vectors). Thus suggesting that the degeéneracy of the vacuum can

be entirely described by axial vector currents, as we would like,



-89 =

More concretely perhaps, the removal of the odd-signature component of the
Pomeron as the critical limit is reached should correspond to a reduction in the
physical state spectrum. 3Specifying the signature of a Regge pole is essential-
ly32)’42) specifying the behaviour under a TCP transformation of the t channel
states to which it couples. Since we have already sgpecified the colour charge
conjugation of the Pomeron, if we also constrain the signature properties of states
we are by implication restricting the parity spectrum of particle-antiparticle
states. Therefore it is plausible that the decoupling of the odd-signature com-
ponent of the Pomeron in the critical limit is associated with the decoupling of
potential parity doublet states from the physical state spectrum,.

Actually there have been many hints in the past that the Pomeron is closely
related to chiral symmetry. A particular result strongly supporting the last argu-

ment above was derived shortly after the discovery of the c¢ritical Pomeronzo)’EI).

1t was shown45)

that the critical Pomeron has the following very attractive pro-
perty. When allowed to interact, through the diagrams of Fig. 7.9, with a fermion
reggeon which has a linear trajectory and possesses the parity doublets therefore re-
guired by McDowell symmetry, the critical Pomeron produces an output "renormalized®
approximately linear trajectory with the parity doublet states hidden on unphysical

sheets (in the angular momentum plane) of the multi-Pomeron/Reggeon cuts.,

The conventional picture of a Nambu-Goldstone realization of chiral symmetry
is, of course, that the unwanted axial states are hidden on the unphysical sheet

of some "order parameter"sl)

and thus could in principle be recovered by analytic
continuation in this parameter. The difficulty in QCD has been to locate such an
order parameter, all attempts so far having failed. We would like to suggest
therefore that it is in the parameters of the Pomeron that we should look for the
Yorder parameter"™. The parity doublets of hadron Regge trajectories are, we be-
lieve, hidden on unphysical sheets of the multi-Pomeron/Reggeon cuts., The connection
between the critical Pomeron and chiral symmetric limits gets closer as we inves-

tigate the Pomeron further.

~First we note that the signature factors of reggeized quarks will also pro-
duce transverse momentum singularities as any quark mass goes to zero in analogy
with the gluon singularities of previous sections., In particular, since the triple
Pomeron vertex containa a quark loop it will be singular as the quark mass goes to
zero, The dimensions of the conventionally defined triple Pomeron vertex ro are

(mas;s)'-l but a consideration of diagrams such as Fig. 7.4 suggests

1
To ~ [m;] (7.3)
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{(which is in agreement with the old phencmenological result that the triple Pomeron
coupling is approximately given by a pion transverse momentum loop). Equation (7.3)
therefore suggests that the chiral symmetric and infinite triple Pomeron limits
should coincide in QCDMB. However, if the Pomeron intercept is away from the
cpritical point the infinite coupling limit is unlikely to exist, If the Pomeron

is critical, or rather the infinite coupling limit is taken along the critical sur-
face, the result is simply to bring the critical asymptotic diffraction peak given
by the Pomeron propagator down to finite energies, giving a sensible limit. There-
fore we are led to the conclusion that the requirement that the chiral symmetric

limit be finite may, in QCDM be equivalent to requiring that the Pomeron be

B?
critical.

We noted in Section 2 that Banks and Rabinovicil®’

anticipate that the pre-
sence of massless fermions will, in general, invalidate the analytic connection
between the Higgs and confinement régime and they expect a chiral phase transition,
This may explain why our formalism defined from the Higgs régime with massive quarks
{so that we have only gluon infra-red divergences to handle) may not give a sensible
chiral 1imit before we take the critical limit into QCDM. The implication would be
that in QCDMB we have the number of states to formally give parity doublets in

the chiral symmetric limit but there will be a phase transition preventing us taking
this limit, At the critical point the Regge trajectories on which the extra-states
lie, move on to unphysical sheets of Pomeron cuts, thus allowing the chiral limit

to be taken, This would then imply that when the Pomeron is sub-critical, which

as we shall discuss, will include confining QCD with a small number of flavours,

the symmetric limit can be taken but the symmetry will be realized in the Nambu-

Goldstone form.

If the Pomeron is responsible for the Nambu-Goldstone realization of chiral
symmetry in QCD as we are suggesting then we have a very attractive picture of
confinement as follows., For most of the discussion in this paper the "short dis-
tance states" which are surrounded by a large, thick flux tube, may be either local
combinations of colour zero quarks, or quarks with shori "open strings" of flux
between them. However, the open string is presumably what produces the conven-
tional confinement with hadrons lying on approximately linear trajectories, It
is attractive to suppose that the linear trajectories form parity doublets with
chiral syometry unbroken, Surrounding such states with a negative colour charge

parity, even signature, flux tube forming the Pomeron removes the parity doublets,

as described for fermions and the critical Pomeron in Ref, 45), If the Pomeron
is sub-critical we would also expect the removal of the parity doublets but in
this case we would expect considerable deformation of the linear trajectory by

the Pomeron.
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Finally we come te the requirement that we must saturate QCD with quarks to
strictly obtain the critical Pomeron. We would first like to discuss why this is
reasonable on general grounds. First we note that if the parameters of a theory
containing a single Pomeron Regge pole are varied so that the intercept approaches
the critical point, the effect on the diffraction peak at finite energy will be to
spread the peak in momentum transfer, signalling the increasing importance of multi-
Pomeron cuts. Therefore as the c¢ritical point is approached we expect the theory
to fall off more and more slowly at large transverse momentum. If the large trans-
verse momentum region is described by asymptotically free QCD, then the fall-off
will indeed be slowest when the theory is saturated with quarks. A4 complementary
argument based on low transverse momentum is that increasing the number of flavours
¢learly increases the number of hadronic states and so raises the appropriatesz)
multiperipherally defined "bare Pomercn intercept”, At the same time the triple
Pomeron vertex will be dominated by the low mass hadrons, as discussed above, and
so will change little. Therefore it again follows that adding quarks to the theory

necessarily moves the QCD Pomeron closer to the critical point.

We can reproduce the same result from the following (potentially) more
formal argument, If we complete the infra-red analysis of the QCDMB with a
transverse momentum cut-off and a small number of quarks as we have outlined in
this and the previous section and match it with super-critical RFT, we should be
able to find a cut-off dependent definition of the singlet (88) mass such that
taking the zero mass limit will give us simultaneously the critical Pemeron and
pure QCD with a transverse momentum cut-off. This implies that the cut-off is
necessarily a "relevant parameter” in defining the critical limit. (It is only
when we have sixteen flavours that we can take the cut~off away before taking the
critical limit and hence define the c¢ritical limit in terms of the physical S
matrix mass cf Be). Equivalently this implies that for any number of quarks in
QCD we can find a transverse momentum cut-off which gives the critical Pomeron.
Raising the cut-off will then move the theory off the critical surface. For small

triple Pomeron coupling o the bare critical intercept is given by53)

(7T.4)

o »

~ 3

AOC I'ﬂ ["ro no
o, 4

where aé is the slope (defined at low transverse momentum) and Ao is the

transverse momentum cut-off, This implies that if the theory is on the critical

surface and we increase AO only, then we go sub-critical, sc that, as above,

we conclude that continuum QCD with less than sixteen flavours contains an even

signature Pomeron with intercept less than one.
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From the above discussion it is clear that sub-asymptotic QCD with a small
number of flavours may well simulate the critical Pomeron since it is only at very
large transverse momentum (where not all events are measured anyway) that the
theory differs significantly. However, if cross-sections continue to rise at
higher and higher energies (at cosmic ray energies, for example} and as increa-
singly large transverse momentum analyses are made then there must exist addi-
tional flavours of quarks (or conceivably non-colour triplet quarks, as discussed

in Section 2},
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8, = HIGHER GRQUPS, WILSON LOOPS AND THE AGK CUTTING RULES

If SU(3) gauge theory is as intimately connected with the RFT critical
Pomeron as we have implied in previous sections then we are immediately led to
ask, what is so special about SU(3) ? We hope that this section will give the

reader an adequate answer to this question in particular.

Consider repeating the foregoing analysis for SU(4) or more generally SU(NH).

18)

The results of Cheng, Eichten and Li state that by adding N-2 <fundamental
representations of Higgs scalars, we can use the Higgs mechanism to break the
gauge symmetry down to SU{2) and retain asymptotic freedom for the complete
theory, Again, however, the theory must contain close to the maximum number of
fermions allowed by asymptotic freedom, even if the symmetry breaking is less than
the maximum allowed. <Consider, for example, an 3U(4) theory with the gauge
symmetry broken down to SU(3) only, In this case only one quartet of scalars

is added and (2.8} holds for the corresponding coupling constant, except that

A= 8= -2i8 .-us C=3322 .99
e’ g41*  Zam ' 32.46T*  agew® (8.1

and now (for quartet quarks}

b= 1 | 4 _2 pn, - L

The stability condition B2 > 4AC where B = B' + bo now gives

(s-32T2b)" > 16.99 (6.

~ L€ -%2 b, > kO
(8.4)

2 2> 37k, - [13_2._2_@_4 _.L]
Y 2 3 ¢
(8.5)
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The different values of NF give
£s{nN.c2l=t = -20]:2 £ ~14]< Y |
= iN; 7.11 2, % >[N_F-2o]--‘—’,‘_ ;‘[NFH]-T (8.6)

s0 the first critical point for SU(4) is reached at Nf = 20, one less flavour
than the maximum allowed for asymptotic freedom of the pure gauge theory. To
consider adding more representations of scalars it is neccessary to discuss a

more complicated set of stability equations which have been studied, on a computer
only, by Cheng, Eichten and Lile). As we stated above, they conclude that two
representations of scalars, but no more can added, allowing the gauge symmetry

to be broken to 8U(2). Presumably because it was too complicated, they did not deter-
mine whether both representations can be added at Nf = 20 or only at Nf = 21,
It will be attractive, but not essential, in the following to assume that the
gauge symmetry can be broken to SU(3) at Nf = 20 and to 3SU{2) at Nf =21,
so that there are in effect two critical points. Similarly in 3U(5) the sym~
metry can be broken to 3U(4} at four flavours less than the maximum, and alto-
gether the symmetry can again be broken only to 3U(2), It is attractive to
assume there are three critical points distinguished by the number of flavours,

and so on.

Consider first 3U(4} broken to 3SU(2) so that we can build up the high
energy behaviour of the theory as we did for QCDMB. The regular SU(4) repre-

sentation for the gluons generators has the form

e i G 2 -

2 —o ]
SU('-I') = SU\(’&)II E’(gu@) ‘ .

so that instead of the one singlet vector B8 in QCDMB we will have a quartet

of reggeized massive vectors which are singlets under the remaining SU(Z2) gauge
symmetry. This quartet will form exchange degenerate vacuum trajectories by
combining with zero transverse momentum SU(2) gauge gluons. Suppose we first
restore the SU(3) symmetry shown in (8.7). One of the guartet trajectories
will be part of an SU(3) octet and will go to zero mass, giving the critical
Pomeron as in QCDMB. Two of the other vacuum trajectories will combine with

doublet trajectories under the SU(2) symmetry to form confined SU(3) triplets.
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There will remain a massive reggeized vector which 1s a singlet under the SU{3}

gauge group. Knowing from the work of Abarbanel and Sugarsq}

that a vector boson
trajectory can be left essentlally unperturbed by the critical Pomeron we have

no reason to doubt that this singlet trajectory can be taken smoothly to unit
intercept, We alsc have no a priori reason to expect it to decouple from either
the Pomercn or the physical spectrum. We conjecture therefore that the critical
phenomenon as SU(2) gauge symmebry is restored to 38U(4) involves an odd si-
gnature trajectory contributing to the Pomeron in addition to an even signature
trajectory. This is the case for Nf = 2l. For Nf = 20 the symmetry can be
broken only to SU{23) by adding only one quartet of Higegs scalars. Therefore
only one gauge vector trajectory can be brought into the spectrum by the Higgs
mechanism, implying that the even signature Pomercon is still critical but that the

odd signature component now has intercept less than one,

We can generalize this structure to higher gauge groups and similarly cons-
truct the critical behaviour by breaking the gauge symmetry initially to SU(2).
We will conclude that when the asymptotic freedom constraint on the number of
quarks is saturated there will be a critical phenomenon invelving many Pomeron
trajectories of both signatures, 1In fact the above analysis would suggest that
there will be (N=2) such trajectories in SU(N}). As the number of guarks is
reduced these will move successively away from unit intercept (at each "critical®
value of the number of flavours), with the even signature critical Pomeron pre-
sumably the last to go. This picture becomes particularly attractive when we

interpret it in terms of the Wilson flux loop structure of the gauge theories
ianvolved,

It is part of the popular wisdom on the emergence of a stringlike picture

for hadrons in gauge theoriesz)’ss)"sg)

that closed strings (or tubes) of elec-
tric flux will be created by non-local operators which are functionals of the
gauge fields, Good approximations as bare versions of such non-local operators

are thought to be the familiar Wilson loops.

where, as in Section 2, Tr denotes a trace of the group matrices involved around

the space time loop C {around which the string lies) and P refers to path

55)

ordering., The most ambitiocus hope (so far unrealized of course) is that the

theory can be reformulated in terms of the operators @(C), The dual string
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model would then suggest that the Pomeron could be related in a first approximation
to the t channel propagator for closed strings, which in the gauge theory

language would be an object of the form.

<perer> =Cuupldedes « 22

55) over the fields @ defined on loop space and

where this is a functional integral
gG is some Gaussian approximation to the gauge theory Lagrangian expressed in
terms of @(C), We would like therefore to be able to relate our results on the

Pomeron in different theories to the structure of the @(C) in such theories.

We can make this connection heuristically as follows., We know from all the
perturbation theory calculations of vector theories that the t channel exchange

of vectors at high energy gives always a result of the form

N

AGH) ~ 550 [lns] (8.10)
< oo

where the factor of s results from the vector nature of the exchange. The
logarithms, of course, sum to change the power while f(t) describes the pro-
pagation in the reduced two-dimensional transverse momentum space of the ¢t
channel state exchanged, Let us ignore the possible intercept shift for the mo-
ment and as a first approximation look at the s f£(t) part of the amplitude,
Let us assume that in such a first approximation the amplitude resulting from
{8.9) has the form

A<¢€¢r),¢(¢-)> ;—;m > <¢ (c’i‘f>;¢(cv—)> {8.11)

where the factor of $ results from the exchange of a (very complicated) function
of vector fields and ClT and C2T are projections of C1 and C2 into trans-
verse space so that < > is a projection of the propagator (8.9) onto the trans-
verse space, or at least has analogous properties., Since the transverse space
is Euclidean we can use some simple properties of (8,8) in Euclidean space to

make some conclusions about the amplitudes that can arise from (8.11),
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Suppose that we are considering a scattering amplitude of the form shown
in Fig. 8.la where we have shown only the quark content of the external states,
They may be connected by open strings, surrounded by flux tubes as discussed in
previous sections, etc. For the moment all that interests us 1s that the quarks
must couple onto a t—channel closed string which then propagates as illustrated

in Fig. 8.1b, According to 't Hooftl4)

, glven a gauge group and a particular closed
non-orientated curve C we should distinguish various operators defined on C by
their commutation relations with analogous operators which create magnetic flux
lcops. The consequence is that in SU{(2) we can associate only one operator

with C, whereas in SU(3) we can distinguish two operators which can be asso-

ciated with an orientation of C.

The orientation dependence of @(C) arising from (8.8) can be thought of as
associated with the order in which group matrices are multiplied around the loop.
It can be shown (for a unitary group, at least) that reversing the direction of
multiplication simply complex conjugates ®{(C). However, since all 3SU(2) ma-
trices have a real trace it follows from the definition (8.8) that

é(c) = ;f”(c) in GU(Q) (8.12)

which is why @(C) cannot be given an orientation dependence. In SU(3) we can
have a complex trace. It is most important in the following that since @¥%(C)
is obtained by reversing the path order in (8,8} it can also be obtained by the

charge conjugation operation of Scction 6. That is

B> > B

Abe™Pga , dr > -dx

(8.13)

implying that the real part of ¢ is even under charge conjugation while the

imaginary part is odd .

In SU{4}) we can distinguish not only $ and @% but also a third operator
associated with encircling € twice, which is real, and so on. In 3U(N) the
distinct operators, being associated with the elements of the centre of the group
ZN’ are (N-1) in number, These results are, of course, well known but we
summarize them in Fig, 8.2, We now wish to consider the implications of these
results for the propagators of the form (8.11).
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Consider an elastic amplitude at zerc momentum transfer and consider the
signatured amplitudes formed by adding or subiracting the amplitude for the pro-
cess in which one pair of particles is crossed as in Fig. 8.3. Kinematically we
will have s + -5 and since particles are simply changed to antiparticles all

quarks will be changed to antiquarks and vice versa. Therefore we will calculate

AT = s <P T Fc) , L(Cdp (8.14)

where @ is simply obtained from @ by changing gquarks to antiquarks in the
coupling to the external states, But this is just the charge conjugation or as
discussed above the complex conjugation operation. So the even signature ampli-

tude will be given by {an integral with respect to Cl and 02 of’)

A~ s < Be, - B , Blend (8.15)

which, since charge conjugation is preserved

= § implem), Im @) (8.26)

which is the odd charge parity propagator, . Similarly the odd signature amplitude

is given by the even charge parity propagator

A ~ S <Redlec),Re B(c:r)) (8.17)

Clearly this result matches exactly with our conclusion in previous sections
that the Pomeron carries odd charge parity in QCD. In fact (8.11) should pro-
bably be viewed simply as a heuristic explanation of the detailed infra-red
analysis of previous sections., Since @ has no imaginary part in SU(2}, (8,15)
implies directly that SU(2) can have no even signature amplitude proportional
to s, and hence no rising cross-section. In fact straightforward analogy with
the dual string model would lead us to believe that the one non-orientated loop
amplitude will (because of its symmetry under rotation through m) be entirely
even signature in 3SU(2} so that AT will also be zero, In the language of

the infra-red analysis of this paper we would say that the infra-red singularities
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defining the external states in SU{2) do not occur in the leading power of S
contributions from pure gluon diagrams. They either occur in diagrams involving
reggeized quark exchange or in lower powers of s in the pure gluon diagrams,
In either case there will be no amplitude increasing with energy and therefore

ne rising cross-section in SU(2).

We conclude therefore that to obtain a rising cross-section (or even an
approximately constant cross-section} in a confining gauge theory we must have
at least 3U(3) for the gauge group. If we move onto SU(4) then the double
loop of Fig., 8.2, although real, has no reason to be purely even signature, [in
particular it is not symmetric under rotation through 180°, unlike the simple
SU{2) loop] and therefore will in general contribute to A~ through (8.17},
As we increase the complexity of the group we increase the possible multiloop
operators which ¢an contribute to both A" and A", 1In fact combining our
understanding in Section 2 that the singlet vector B8 in QCDMB gives the
necessary orientation to 8SU(2} strings to convert them to SU(3) strings, with
the analysis of the first part of this section, we are led to the following. As
the size of the gauge group grows, the increasing complexity of the Pomeron spec-
frum that we expect from our general infra-red analysis will be in one-to-one
correspondence with the increasing complexity of contributions to A" and A~
that can be made via (8.15) and (8,17) by the multiloop operators. We therefore
obtain a rather beautiful interpretation of the sequence of critical points

reached as we come close to saturating the theory with quarks,

In a general gauge theory with a small number of fermions there will be
separate vacuum trajectories associated with each of the distinet 't Hooft loop
operators illustrated in Fig, 8,2. We anticipate that their intercepts will de-
crease as their complexity grows. As we increase the number of fermions, close
to the maximum allowed number, we reach the first critical point where the
simple orientated loop becomes critical., At this point a smell variaticn of the
parameters will break the loop down into a non-orientated loop plus a local
reggeized vector,. At the next critical point (reached by simply adding quarks) the
double loop becomes critical alse and a small parameter variation can break both
critical loops dewn to non-orientated loops plus four local reggeized vectors.

At the next critical point the three loop trajectory becomes critical, and so on,
until we saturate the theory with quarks, At which point all possible loop tra-
jectories are critical, Whether such a phencmenon is compatible with unitarity
may be a deeper question, In any case we note that none of this rich structure
will be seen in the 1/N expansion of the theory keeping the number of guarks
finite, Only the simple orientated locp trajectory will appear as the leading

{non-critical) vacuum trajectory., For small groups with small numbers of fermions
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there is no reason for the non-leading multiloop trajectories to be down by a
power of s, This being the case it seems that if the Pomeron is to contain only
a single even signature Regge pole, with intercept close to or at one, then SU{3)

gauge theory is the unique choice {amongst the unitary groups at least).

Having seen that SU{3) is picked out as the unique {unitary) group with
the structure to generate a simple even signature Pomercn, the remaining question
is, perhaps, if QCDMB is described by super critical RFT, how does the RFT for-
malism know about the group structure involved in the gauge theory, The answer
is at first sight surprising, since it depends on the AGK cutting rules, which
would appear to have little to do with a gauge group. However, as we shall explain,
this is really not the case once the gauge theory is confining and we are con-
cerned with closed string structures which really depend only on the centre of

the group, as 't Hooft has emphasizedlq).

We can briefly describe the emergence of the group structure in RFT as follows
{although more details will be given in our paper on super critical RFT). The
AGK cutting rules are incorporated in the Pomeron RFT by introducing three ("non-
relativistic") Pomeron fields - § , ¥, ﬁc are creation operators and Y, Y~

wc are destruction operators - with the three Green's function
+ o+ - - -
er ey K¢, ¢, ¥, ¢ (8.18)

describing the physical amplitude respectively, above its (invariant) energy cut,
below its energy cut and with the discontinuity taken. The AGK cutting rules

include the equality

+ .7 _ - . _ —
<‘P,¢*>—<1P,9V>— lW¥,¥.7 (8.19)
which is produced in perturbation theory by the "cut RFT" Lagrangian

Lo rin (B0 B0 -i% (Gut 670)
(8.20)

P (et ) F 2 (AU U GE)

RICAT B TLARSICAAASAAD

[+
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This Lagrangian also produces immediately
+ T - + 5 - -
L@ = <KP, P D= .- =0 (8.21)

which is important, since all such Green's functions would be unphysical. gc does,
however, give some non-zero non-physical multiple Green's functions., To express
the AGK cutting rules in terms of a symmetry we must therefore look for a symmetry
of the physical Green's functions and not the Lagrangian 'gc. In fact we can
perform global SU(3) transformations on the complex fields P = ($+,@_,$c),

P = (¢+,¢_,¢C) by transforming V¥ as an -SU{3) triplet and ¥ as a complex
conjugate triplet. The Green's functions (8.19) and {8,21) therefore in principle
transform as a 3* ® 3 representation of this SU{3). Although ‘QC is not ine
variant under this transformation it can be shown that the Green's functions are
and so in fact form a singlet under SU(3)}. In fact we believe, although we have
not checked it completely, that the statement of the AGK cutting rules is equi-
valent to the statement that physical Pomeron Green's functions are invariant

under SU(3) transformations,

In the supercritical phase a linear combination of $+, $~, $C ( and the
same combination of ¢+, Uy wc) acquires an expectation value. Consequently
the global symmetry of the Greens functions is reduced to 3U{2) and the matrix
of Green's function has the structuré

2 = X {8,22)

with the additional non-diageonal Green's functions transforming under a 3* @ 3
representation of the original 8U(3). Consequently the new set of .Green's func-
tions has all the right symmetry properties to be identified with those derived
from SU(3) gauge theory, with the Higgs mechanism applied to break the gauge
symmetry from SU(3) to 3U(2). In fact it was by determining which must be

the physical Greens functions in (8,22) that we first discovered that there

was an odd sighature reggeon coupling pairwise to the Pomeron in the super-
critical phaselg). This gives us confidence that all the numbers (resulting from
the symmetry breaking patterns) will match nicely when we finally compare QCDMB
and supercritical RFT precisely.
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Nevertheless the connection between the SU{3} global symmetry derived from
the AGK cutting rules, and SU(3) gauge theory may still seem bizarre., Let us,
however, look at the origin of the AGK cutting rules in the usual phenomenological

22},60)

language which can be adapted to a string picture of the Pomeron, We pro-

ceed as follows.

1} Consider events with close to the average multiplicity <n> and describe

them by a multiperipheral approximation as illustrated in Fig. 8.3,
2) Form the unitarity sum to define the "bare Pomeron", as in Fig. 8.4.

3) Consider events with close to twice the average multiplicity and similarly

describe them by a double multipheral approximation as in Fig. 8.5.

4) The AGK cutting rules now tell us that these events are totally counted
by the two Pomeron graph as illustrated in Fig. 8.6.

5) Similarly events with 3 <n> multiplicity are counted by three Pomerons,
etc, and fluctuations of multiplicity on the rapidity plot are repre.-
sented by Pomeron interaction graphs as illustrated in Fig. 8.7.

Repeating this description in a string theory we obtain

1} the average multiplicity events are represented by cutting a t channel
closed string in the s channel, as illustrated in Fig, 8.8,

2) A closed string bare Pomeron is formed from the unitarity sum as in
Fig. 8.9.

3) Events with twice the average multipliticity are counted by two cut closed
atrings, for simplicity we represent the unitarity sum by the t channel

projection in Fig,., 8.10,

It is clear from our previous discussion that if we consider SU{4) closed strings,
then at this point there is a second possibility corresponding to forming a double
loop which we can illustrate roughly as in Fig, 8.11, It is rather simple there-
fore to see that in this case events with twice the average multiplicity will not
be counted completely by the double Pomeron graph if the bare Pomeron iz defined
from the average multiplicity events. Instead such events will generate a new
{from our previous discussion) odd signature trajectory representing the double

loop.

This effect immediately breaks the AGK cufting rules and so we see that
these rules uniquely represent the situation when a simple 3U(3) closed string
structure becomes critical, Actually it is clear that in the string context

the cutting rules really describe the way strings can be cut and sewn together
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by unitarity so that they essentially carry the same information on the topolo-
gical structure of the gauge group as is carried by the centre of the gauge group.
Therefore it may well be that it is only the centre of the SU(3} group defined
above from the AGK rules that we should think of as identified with the centre

of the gauge group, The centre tells us the topological structure of the strings
involved, and therefore how unitarity is satisfied at high energy by such strings.
Finally we note that the arguments above generalize to an SU(N) group to tell us
that new trajectories will be generated by events with up to (N-2)} times the
average multiplicity. Presumably there exists a multi~Pomeron theory with cutting
rules to describe the situation when all such trajectories become simultaneously
¢ritical. However, one may seriously doubt whether this is consistent with uni-

tarity.
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A possible coupling constant trajectory,

Possible open strings.

Phase diagram for a non-Abelian lattice gauge theory with fun-

damental representation scalars.

Representation of a lattice line integral.

Addition of operators.

A sequence of trajectories defining. the limit L.

A Toller diagram,

A planar Toller diagram from Fig. 3.1.

Vertices generating hexagraphs.

Some hexagraphs associated with the planar Toller diagram of
Fig. 3.2.

Insertion of "polygraphs" in hexagraphs,

Transformaticn of a hexagraph tc a flow-~graph,

Cuts of scme simple flow-graphs,

T, D and V 1lines.

A hexagraph containing a T line and its flow-graph.

The six combinations of five cuts through the flow-graph of Fig.

Notation for signature factors.

Hexagraph analysis of a t channel intermediate state,
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The simplest hexagraph.

Flow-graphs involved in the unitarity integral for the hexagraph
of Fig. 3.13.

The flow-graph for a fixed pole residue,

A cross product of hexagraphs,

The correspondence between Pomeron graphs and hexagraph loops.

Two~particle / multi-Pomeron couplings.,

Filow-graphs involved in multi (external) particle unitarity in-

tegrals,

The two Regge=pole cut in the eight particle amplitude.

The fixed pole residue hexagraph involved in Fig. 3.20.

A four Pomeron graph in the eight particle amplitude,

An illustration of the AGK cutting rules,

The leading log reggeon diagrams.

The vertices appearing in Fig. 4.1,

The unitarity bootstrap.

The intermediate state sum giving the four reggeon vertex,

Infra-red finite, off mass-shell gluon diagrams,

Diagrams summed by the integral equation with an N gluon

irreducible kernel.

The simplest hexagraph loop together with its multiperipheral

cut.
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The discontinuity of the six point function giving the triple

reggeon vertex.

AGK cuts of Fig. 5.1.

Notation for the three reggeon vertex,

Reggeon diagrams summed fo renormalize the propagator,

A hexagraph loop diagram for the three reggeon vertex,

Notation for the diagram of Fig. 5.6 including the reggeon inter-
mediate states.

A hexagraph loop diagram for the elastic amplitude.

A sum of hexagraph loop diagrams.

The sum of Fig. 5.9 expressed in terms of renormalized quantities.

A loop diagram containing a three reggeon cut.

A simple diagram violating signature rules.

Signature conservation satisfied in elastic amplitudes by the

summation of diagrams.

A further breakdown of signature conservation,

A similar failure of signature rules to that of Fig. 5.14.

Hexagraph loops coupling through a four reggeon vertex,

A multiparticle hexagraph loop involving the four reggeon vertex.

and the associated hexagraph tree diagram.

An ‘elastic loop diagram containing Fig. 5.17.

The simplification of hexagraph diagrams,
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The mapping of a hexagraph loop diagram onto a tree diagram by

the evolution of intermediate states,
The constructicn of a general hexagraph loop diagram.

A subset of the hexagraph loop diagrams giving the reggeon diagrams
of Fig. 4.1.

A T line with no zero,

Pogsible signature violation in an elastic amplitude,
Summation Sf diagrams to restore signature conservation.
Notation for reggeons,

Triple reggeon vertices,

The one loop trajectory functions.

Infra=-red cancellations.

Separation of the trajectory function for a doublet reggeon.
Infra-red finite one loop trajectory functions,

Infra-red finite gluon and reggeon interactions.

Allowed couplings to external particles.

General amplitude involving mass-shell gluon singularities,
Summation of gluon self-interactions when K is singular,
Summation of diagrams with a reggeon-gluon interaction.

A combination of gluons and singlet reggeon whose charge parity

and signature forbids a local interaction.

The simplest hexagraph lcop diagram containing the combination
of Fig., 6.12.
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Fig. 6,14 The hexagraph tree diagram for Fig. 6.13 and the essential struc-

ture of the central loop.

Fig. 6.15 : Gluon self-interactions in diagrams with the same structure as
Fig., 6.13.

Fig, 6,16 : The "external state™ arising from Fig, 6.13 in transverse co-ordinate
space.

Fig. 6.17 : Interaction of the singlet reggeon with an even signature com-

bination of gluons.

Fig. 6.18 : A signature non-conserving, non-local vertex.
Fig. 6.19 : A signature non-conserving local vertex,
Fig., 6.20 The non-~local signature non-conserving vertex in conjunction with

an energy non-conserving vertex.

Fig, 6.21 : Notation for the diagram of Fig. 6.20.

Fig, 6.22 : 4 rapidity ordering giving a simple production wertex,

Fig, 6.23 : Rapidity ordering giving a singular vertex.

Fig., 6.24 : A general diagram with infre-red singularities giving wvacuum
production and absorption.

Fig, €.25 : Vacuum production of Pomerons.

Fig, 7.1 : General structure for a triple Pomeron vertex.

Fig, 7.2

o

d tensor triple reggeon vertices,

Fig. 7.3 3 Possible tensors for the triple Pomeron vertex.

Fig., 7.4 : A possible triple Pomeron vertex.
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The zero momentum triplet structure of Pomeron interaction dia-

grams,

Illustration of the "flux tube" Pomeron interactions,
Diagrammatic representation of the supercritical RFT formalism,
The flux tube picture of the critical limit.

Pomeron interactions with a reggeized fefmion,

Colour zero external quark amplitude.

The strﬁcture of electric flux closed strings in the unitary

groups.

A multiperipheral representation of average multiplicity events,
The unitarity sum defining the "bare Pomeron".

Multiperipheral representation of double multiplicity events,
The AGK counting of double multiplicity events,

Multiplicity fluctuations represented by Pomeron interactions.
String representation of average multiplicity events,

The bare Pomeron in the string picture.

The two Pomeron graph from double multiplicity events.

The SU(4) two loop trajectory from double multiplicity events,
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