CERN - Data Handling Division
DD/80/26

Horst von Eicken
September 1980

CERN LIBRARIES, GENEVA

MW RR QAN

CM-P00059829

M6 8MIL
a
Cross Macro Assembler

for the
Motorola M 68000

DD-ag

CONTENTS

INTRODUCTION

SYMBOLS and EXPRESSIONS
Symbols.
Expressions.
Absolute Addressing.

PSEUDO INSTRUCTIONS
Module Identification.
IDENT - Module Identification.
END - End of Module.
Section Control.
Absolute Section.
Relative Section.
G (general) Section.
R (relocatable) Section.
¢ (common) Section.
U (unique) Section.
Symbol Definition.
EQU - Equate Symbol Value.
SET - Set or reset symbol value.
Module Linkage.
ENTRY - Declare Entry Symbols.
EXTERN - Declare External Symbols.
Data Generation and Storage Reservation.
DC - Define Constant.
DS - Define Storage.
Conditional Assembly.
ENDIF - End of IF Range.
ELSE - Reverse Effects of IF.
IFEQ - Test Expression is Equal Zero.

IFNE - Test Expression is Not Equal Zero.

Source Stream Control.
INSERT - Insert Secondary Source.
Listing Control.
LIST - Select List Options.
NOLIST - Cancel Listing.
PAGE - Top of Page.
SPC - Space Betuween Source Lines.
TTL - Assembly Listing Title.
STTL - Assembly Listing Subtitle.
Object Code Control
BLONG - Use Tuo-Word Conditional Branch.

BSHORT - Use One-Word Conditional Branch.

FLONG - Force Absolute Long Address.
FSHORT - Force Absolute Short Address.
NOOBJ - Suppress CUFOM Output.

MACRO OPERATIONS
ENDM - End Macro Definition.
LOCAL - Local Symbols.
MACRO - Macro Heading.
MACRO CALLS
HOW TO USE THE ASSEMBLER
AVAILABILITY OF M68MIL

9-Sep-80

Paqge

-

w W NN

GOV ®IIJIoonolLEs & FF

—h e h b ah ek D mh ok h b b R ok) ek b ok D ed —d —d e
OO UIUVIVICIREEEWWNNDNENN == 2000

17
17
17
18
18

20

21

Cxoss Macro Assemblerx
for
Motorola 68000

INTRODUCTION

The Cross Macro Assembler described in this manual can be used to
translate assembler source programs for the Motorola 68000 microprocessor into
CUFOM, the CERN Universal Format for relocatable Object Modules. A linkage
editor subsequently allows the combination and linking of several such modules
into a new CUFOM module. A librarian permits the construction of CUFOM
libraries, which can be placed in the input to the linkage editor, either upon
request or automatically (if unresolved external references remain after all
input to the linkage editor is processed, an automatic library call <routine
retrieves the modules required to resolve the references). A pusher finally
translates a CUFOM module to the Motorola 's' format needed for down-line
loading from the host computer into the memory of the target machine.

The assembler is upward compatible with the M68000 Cross Macro Assemblerx
provided by Motorola. Additional pseudo instructions are provided to allow the
generation of relocatable object modules. The user is advised to wuse the
following Motorola publications:

M68000 Cross Macro Assembler Reference Manual
M68KXASM(D3), Third Edition, September 1979

MC68000 16-Bit Microprocessor, User's Manual
Preliminary, September 1, 1979

as a base for the use of this assembler. This manual will restrict itself to
the description of the extensions made to the definitions of the Motorola
cross assembler. For the readers' convenience this will be done in complete
chapters rather than by listing the explicit differences.

The main areas covered by this note are:
Expressions (generalized)
Pseudo-operations

Macro definitions
How to use the assembler, pusher,...

9-Sep-80 1

Cross Macro Assemblerx
for
Motorola 68000

SYMBOLS and EXPRESSIONS

Symbols.

Symbols <recognized by the assembler consist of one or more characters,
the first eight of which are significant. The first character must be
alphabetic (A through 2z), each remaining character may be a letter, a digit
(0 thzrough 9) or an undexscore (_).

Numbers recognized by the assembler include decimal, hexadecimal and
octal values. Decimal numbers are specified by a string of decimal digits (O

through 9); hexadecimal numbers are specified by a dollar sign ($),
folloued by a string of hexadecimal digits (0 through 9, A through F); octal
numbers are specified by a colon (:), followed by a string of octal digits

(0 thxrough 7).

One or more characters enclosed by apostrophes t ") constitute a
character string. Charactexr strings are left-adjusted and =zero-filled (if
necessary), whether stored or used a immediate operands. Only strings of four
or feuwer characters may be used as immediate operands. (In order to specify
an apostrophe within a character string, two successive apostrophes must
appear where the single apostrophe is intended to appear.)

The assembler differenciates between absolute and relative symbols:
Absolute symbol:

1. The symbol is equated (EQU) or SET to an absolute value.

2. The symbol is defined in the absolute section of the program. The start
of an absolute section is defined eithex by an ORG pseudo instruction ox
by a SECTION pseudo instruction, the type of which is absolute.

Relative Symbol:

1. The symbol is equated (EQU) or SET to a relative symbol.

2. The symbol is defined in a relative section of the program. The
assembler recognizes the following relative sections:

general section,
relocatable section,
common section and
unique section.

The different section types are explained in the chapter on pseudo
instructions. The assembler will by default start each assembly in the
general section. The RORG pseudo instruction initiali=zes the general
section.

3. The symbol is defined using an EXTERN pseudo instruction.

2 9-Sep-80

Cross Macro Assemblex
for
Motorola 68000

Expressions.

An expression is a combination of symbols, constants, algebraic
operators, and parentheses. The expression is used to specify a value which is
to be used as an operand. Expressions follow the conventional rules of
algebra. There are no restrictions in the |use of operators between these
symbols. It may not be possible for the assembler to fully evaluate an
expression containing relative symbols. Such an expression is forwarded in the
CUFOM module and will finally be resolved by the loader (pusher).

Some pseudo instructions like EQU and SET houever need expressions, which
can be fully evaluated by the assembler. Such expressions are called "simple
expressions" and must fulfil the following rules:

1. Relative symbols or expressions cannot be multiplied, divided,
added, or operated on uwith the logical operators.

2. A zrelative symbol or expression may have an absolute value added
to or subtracted from it. The result is relative.

3. R relative symbol oxr expression may be subtracted from another
relative symbol or expression provided they are both defined in
the same section. The result is absolute. External symbols do not
belong to any specific section.

Absolute Addressing.

Since the M 68000 microprocessor allows two forms of absolute addressihg,

- short absolute address (16 bit address) -
- long absolute address (24 bit address) -

the assembler has to take a decision as to which form to assume whenever it
encounters a forward reference, i.e. a symbol which has not yet been defined.
By default it will use the long absolute address to ensure correct handling of
the symbol. For symbols that have already been defined, the problem does not
occur if they belong to the absolute section. The assembler will always
generate the appropriate short or long addressing foxrm, based upon the size of
the symbol's absolute address. For symbols defined in a relative section of
the module the problem is houwever exactly the same, since the assemblexr does
not know the <£final origin of the section and hence cannot make a safe
assumption as to the final address of the symbol. Tt will therefore always use
the 1long absolute address form. The pseudo instructions ORG, RORG, SECTION,
FSHORT and FLONG will allow the programmer to override the assembler defaults.

A similar problem exists for conditional branches. If a forward reference
is found in a conditional branch instruction, the assembler will wuse the
tuo-word form of +the instruction. Using the suffix .S for the branch
instruction the programmer can force the assemblexr to generate the one-word
form of the conditional bhranch instruction. The pseudo instructions BSHORT and
BLONG allow additional control.

9-Sep-80 3

Cross Macro Assembler
for
Motorola 68000

PSEUDO INSTRUCTIONS

Pseudo instructions discussed in this chapter are <classed according to
application as follous:

Module identification (IDENT and END)

section control (ORG, RORG and SECTION)

Symbol definition (ERU and SET)

Module linkage (ENTRY and EXTERN)

Data generation and storage reservation (DC and DS)
Conditional assembly (ELSE, ENDC, ENDIF, IFEQ and IFNE)
Source stream control (INSERT)

Listing control (LIST, NOLIST, PAGE, SPC, STTL and TTL)
Object code control (BLONG, BSHORT, FLONG, FSHORT, NOOBJ)

A later chapter describes the definition and use of MACRO's.

NOTE: The format description for the pseudo instructions uses symbols which
have the following syntactical meaning:

{ 1} Enclose optional fields of the pseudo instruction.

< > Enclose a symbol, called a syntactic variable.

Module TIdentification.

IDENT - Module Identification.

An IDENT pseudo instruction is the first statement of a module recognized
by the assembler. It defines the name to be given to the module and has the
follouwing foxrmat:

Location Opexration Variable Subfields
+ + +
IDENT <symbol>
<symbol> The symbol defines the name of the CUFON module.

END - End of Module.

An END pseudo instruction must be the last instruction of each module. It
causes the assembler to terminate all counters, conditional assembly, or macro
generation. It also causes the CUFOM module to be terminated. :

Location Operation Variable Subfields
+ + +
END {<txasym>}
<trasym> An optional symbol. If specified, it declares the module to

4 9-Sep-80

Cross Macro Assemblerx
for
Motorola 68000

be a main program and the symbol to be the transfer symbol
for the loader in the target machine. (Please note, that
MACSBUG does not honour the transfer symbol.) The symbol,
as well as being gquoted in the END pseudo instruction, must
be defined in the module, or an assembly exror will be
generated.

Section Control.

Section control pseudo instructions allow the programmer to divide a
source module into separately controlled regions of a program, providing him
with a means of changing origin and location counters. They establish a new
section or resume use of an already established section. The section in use is
the section into which code is subsequently assembled. A user may establish up
to 16 sections. By default the assembler will always start with the general
section. The assemblexr basically allows tuo types of section, namely:

Absolute Section.

The following pseudo instructions cause the assembler to establish or
resume assembly in the absolute section:

Location Operation Variable Subfields
+ + +
SECTION R, {<expression>}
SECTION.L A, {<expression>}
SECTION.S A, {<expression>}

or (for compatibility with the Motorola assembler)

Location Operation Variable Subfields
+ —— +
ORG {<expression>}
ORG.L {<expression>}
ORG.S {<expression>}
<expression> The optional expression may not <contain any forward
references and must evaluate to an absolute value. The

program countexr is changed to the value of the expression.
If an expression is not defined, the program counter will be
set to =zero unless an absolute section has already been
specified, in which case the program counter will resume
with its last value.

9-Sep-80 5

Cross Macro Assembler
for
Motoxola 68000

If the suffix (.S} is appended to the pseudo instruction, the assemblex
will assume that as of now any foruard reference can be achieved by using the
short absolute addressing form of the instruction(this might be dangerous if
the forward reference is to a symbol in a relative section). If no suffix or
the suffix {.L} is appended it will use the long absolute addressing form fox
forward references.

Relative Section.

In order to allow structuring of the relative section the assemblexr and
finally the linkage editor and pushex provide for different relocatable
sections within the relative section. Whenever a neuw section is established by
a SECTION pseudo instruction, the location counter will be set to zero. If the
suffix .8 is appended to the pseudo instruction establishing the section, the
assembler will assume, that this section will £inally be loaded into 1low
address memoxry so that direct addressing of the symbols defined in that
section may be accomplished through absolute short addresses. Whenever an
already established section 1is resumed by a SECTION pseudo, the location
counter will be reset to its last value.

Note: The suffix .S does not imply, that forward references in that section
will also be resolved with absolute short addresses. The pseudo
instruction FSHORT must be used for this purpose.

G (general) Section.
The section is relocatable and the linkage editor Jjoins all general

sections into a single one in the order in which they are processed. In a
module only one genexral section can be defined; but in different modules

G - sections may be named differently. The follouwing pseudo instructions
cause the assembler to establish or resume assembly in the G - section:
Location Opexration Variable Subfields

- + +
{<symbol>} SECTION{.S}

G

r (for compatibilty with the Motorola assembler)

I Location Operation Variable Subfields

+ + +

| RORG{.S}

<symhol> An optional symbol to define a name for the 6 - section.

By default the assembler will start generating code in
the general section assuming a blank name. The first
subsequent use of a SECTION pseudo instruction for the
general section might change the default name.

6 9-Sep-80

Cross Macro Assemblerx
for
Motorola 68000

Note: The general section is established by the assembler and it is
assumed that it will not necessarily be loaded in louw memoxy,
hence long absolute addresses are generated. The usex can

override this by using a SECTION.S pseudo for the general
section prior to any code generation for this section.

R (relocatable) Section.
The section is relocatable. If R - sections that have been processed

by the linkage editor have the same name, they are joined into a single one
(with that name) in +the oxder in which they were processed. Unnamed

R - sections are not joined. The following pseudo instruction causes the
assembler to establish or resume assembly in an R - section:

Location Operation | Variable Subfields
+ + +

{<symbol>} SECTION{.S} l R
<symbol> An optional symbol to define a name for the R - section.

¢ (common) Section.
The section is relocatable. If C - sections processed by the linkage

editor have the same name, they are overlapped. Unnamed € - sections

(blank common) are also overlapped. A warning message is printed by the
linkage editor, if their sizes differ.

| Location

Operation Variable Subfields
+ + +
I {<symbol>} SECTION{.S} c
<symbol> An optional symbol to define a name for the C - section.
U (unique) Section.
The section is relocatable and must have a name. If other U - sections
processed by the 1linkage editor have the same name, an error message is

printed.

Operation I Variable Subfields
+ +

| Location

I <name> SECTION{.S} U

9-Sep-80 7

Cross Macro Assemblex
for
Motorola 68000

<symbol> A mandatory symbol to define the name of the U - section.

Symbol Definition.
EQU - Equate Symbol Value.

An EQU pseudo instruction permanently defines the symbol in the location
field as having the value and attributes indicated by the simple expression in

the variable field.

I Location
+

Operation Variable Subfields
+ +

l <symbol> EQU <expression>

<symbol> A location symbol following the naming rules must be
defined.

<expression> A simple expression with at most one relative symbol in the
final expression. Forward references are not alloued.

SET - Set or reset symbol value.

A SET pseudo instruction defines the symbol in the location field as
having the value and attributes indicated by the simple expression in the
variable field. AR subsequent SET using the same symbol redefines the symbol to
the new value and attributes.

| Location | Operation Variable Subfields

+ + +

' <symbol> I SET <expression>

<symbol> A location symbhol following the naming rules must be
defined.

<expression> A simple expression with at most one relative symbol in the

final expression. Forward references are not allowed.

Module Linkage.

The pseudo instructions ENTRY and EXTERN do not define symbols but either
declare symbols defined within a module as being available outside the module
or declare symbhols referred to in the module as being defined outside the

module.

9-Sep-80

Cross Macro Assembler
for
Motoxrola 68000

ENTRY - Declare Entry Symbols.

The ENTRY pseudo instruction specifies which of the symbolic addresses
defined in the module can be referred to by modules assembled independently;
ENTRY lists entry points to the current module.

Location l Opexration

Variable Subfields
+ + +
ENTRY <sym >,<sym >,...,<sym >
1 2 n
<sym > Linkage symbol. Each symbol must be defined in the module as
i nonexternal (cannot be listed on an EXTERN pseudo

instrxuction).

A 1list of all entry points declared in the module precedes the assembly
listing.

Note: If +the ENTRY pseudo declaring a symbol precedes the actual
definition of the symbol, the assembler will handle the symbol as
if it were going to be defined in the current section. With other

words, if the current section is declared to be loaded in lower
memory, abolute addresses for the symbols declared in the 1list of
the ENTRY pseudo instruction will be short addresses, else they are
long addresses. The user is therefore advised to wuse the ENTRY
pseudo within the section for which the entry symbols are to bhe

declared.
EXTERN - Declare External Symbols.

.The EXTERN pseudo instruction lists symbols that are defined as entry
points in - independently assembled modules for which references can appear in

the module being assembled.

Location Operation Variable Subfields
+ + +
EXTERN({.S} <sym >,<sym >,....,<sym >
1 2 n
<sym > Linkage symbol. These symbols must not be defined within the
i module.

The suffix .S, if appended to the EXTERN pseudo instruction, indicates to
the assembler, that all symbols contained in the variable field will be
finally 1located in lower memory and can be accessed using the absolute short
address form. A list of all external symbols declared in the module precedes

the assembly listing.

9-Sep-80

Cross Macro Assembler

for
Motorxrola 68000

Data Generation and Storagqe Reservation.

DC - Define Constant.

The function of the DC pseudo instruction is

memory.

The DC directive may have one operand,

Location Operation Variable Subfields
+ + +

{<symbol>} DC <opr >,<opr >,....,<opr >
1 2 n

{<symbol>} pc{.B} <opr >,<opr >,....,<opr >
1 2 n

{<symbol>} pC{.W} <opr >,<opr >,....,<opr >
1 2 n

{<symbol>} pCc{.L} <opr >,<opr >,....,<opr >
1 2 n

to define
or multiple operands which are

constant

separated by commas. The operand field may contain the actual value (decimal,
octal, hexadecimal, or character string). Alternatively, the operand may be a
symbol or expression. The constant is aligned on a word boundary if word
(.W) or long word (.L) is specified, or a byte boundary if byte (.B) is
specified.

The following rules apply to size specifications on character strings:

DC.B If an odd number of bytes (characters) are entered, the odd byte on
the right will be zero filled unless the next source statement is
another DC.B or DS.B. In this case the next DC.B or DS.B will start in
the odd byte on the right.

DC.W If an odd number of bytes (characters) are entered, the 1last word
will be zero filled on the right to force an even byte count.
DC.L If 1less than a multiple of four bytes are entered, the last long word

will be zero filled on the right to a multiple of fouxr bytes.

DS - Define Storage.

The DS pseudo instruction
contents of the memory reserved are not initialized in any way.
must evaluate to an absolute value.

10

used to

Location Operation Variable Subfields
+ + +

{<symbol>} DS <expression>

{<symbol>} DS{.B} {expression>

{<symbol>} DS{.W} <expression>

{<symbol>} DS{.L} <expression>

reserve

memoxy

locations. The
The expression

Forward references are not allowed.

9-Sep-80

Cross Macro Assembler
for
Motorola 68000

Conditional Assembly.

The pseudo instructions IFEQ and IFNE permit optional assembly ox

skipping of source code. Immediately following the test instruction are
instructions that are assembled when the tested condition is true and skipped
when the condition is false. Skipping 1is terminated either by a source

statement count on the IF instruction, or by an ENDIF, an ELSE, or an END.

The statement c¢ount, when used, is decremented for instruction lines
only; comment lines (identified by * in column one) are not counted.
Determining the IF range uwith a statement count produces slightly faster
assembly than using the ENDIF.

The result of an IF test is determined by the value of the expression in
pass one of the assembler; the value of a relative symbol is relative to the
origin of the section in which it was defined. The value of an external symbol
is zero if the symbol was declared as external. If the symbol was defined
relative to a declared external, the value is the relative value. IF's may be
nested up to ten levels deep.

ENDIF - End of IF Range.

An ENDIF pseudo instruction (or ENDC for compatibility with the Motorola
assemblerxr) cause skipping to terminate and assembly to resume. When the
sequence containing the ENDIF is being assembled, or 1is controlled by a
statement c¢ount, the ENDIF has no effect other than to be included in the
count.

Skipped instructions such as macro references are not expanded. Thus, any
ENDIF that would have resulted from an expansion is not detected.

Location Operation l Variable Subfields
+ + +
{<if name>} ENDIF l
<if name> <if name>, an optional symbol, defines the name of an IFE®,

IFNE, or ELSE sequence; or blank

Skipping of a sequence initiated by an IFEQ, IFNE, or ELSE that is
assigned a name is terminated by an ENDIF specifying the same name. Skipping
of a sequence initiated by an unnamed IFEQ, IFNE, or ELSE is terminated by an
unnamed ENDIF. '

ELSE - Reverse Effects of IF.

Through the ELSE instruction, the assembler provides the facility to
reverse the effects of an IF test within the IF range. An ELSE detected during
skipping causes assembly to resume at the instruction following the ELSE. An
ELSE detected while a sequence is being assembled initiates sKkipping of source
code following the ELSE. SKkipping continues until eithex an END oxr an ENDIF
for the sequence is detected.

9-Sep-80 ' 11

Cross Macro Assembler
for
Motorola 68000

I Location Operation Variable Subfields

+ + +

! {<if name>} ELSE

<if name> <if name>, an optional symbol, defines the name of an IFE®,

IFNE, or ENDIF sequence; or blank

An ELSE specifying the sequence by name terminates skipping of a sequence
initiated by an IFEQ or IFNE with the same name. An unnamed ELSE terminates
skipping of a sequence initiated by an unnamed IFEQ or IFNE. Skipped
instructions such as macro references are not expanded; any ELSE that would
have resulted from the expansion is not detected.

IFEQ - Test Expression is Equal Zero.
IFNE - Test Expression is Not Equal Zexo.

The IFE® and IFNE pseudo instructions test the value of the eXpression
and assemble instruction in the IF range when the condition is satisfied.

Location Operation Variable Subfields
+ + +
{<if name>} IFEQ <expression>{,<line count>}
{<if name>} IFNE <expression>{,<line count>}
<if name> <if name>, an optional symbol, defines the name of the IFE®

or IFNE sequence; or blank

<expression> A simple expression without forward reference. If the
expression is erroneous, an error message is printed and
assembly continues with the next instruction.

<line count> Optional absolute value specifying an integer count of the
number of statements to be sKipped.

The <line count>, if specified, takes precedence over an <if name>, if
specified at all.

Source Stream Control.
INSERT - Insert Secondary Source.

The INSERT pseudo instruction provides a means of obtaining source
statements from a file other than that being used for input. The assembler

transfers the text from this file and assembles it before taking the next
statement from the interrupted source of statements.

12 9-Sep-80

Cross Macro Assembler
for
Motorola 68000

I Location Operation | Variable Subfields

There are no parametexrs for the INSERT pseudo instruction. The file to bhe
used is specified when the assembler is called. The file will be <rewound
before using it. .

:
h

INSERT l

— i —

Listing Control,

The pseudo instructions described in this section permit extensive
control of the assembly listing format.

LIST - Select List Options.

~The LIST pseudo instruction controls . the content and format of the
assembler listing. Use of the LIST pseudo instruction is optional. If not
specified in a module, or if specified without parameters, the assembler will
produce an output according to the default for each possible option.

- Location Operation Variable Subfields
LIST. | t<op >,<0p >,....,<0p >}
1 2 n
<op > Optional parameter. R list option or a list option prefixed
i by a minus sign. The unprefixed option selects the option;

the prefixed option cancels it. Ooptions are separated by
commas and terminated by a blank.

DC When DC is selected, the source 1line of the DC
pseudo instruction and its expansion are listed,
otherwise only the source line will be listed.
-DC is the default. '

IF When IF is selected, the source lines of the IFE®Q,
IFNE, ELSE, or ENDIF pseudo instructions and the
skipped source statements in the 1IF range are
listed, otheruise the pseudo instructions are
listed, but not the skipped source statements.

-IF is the default.

MACRO When MACRO is selected, the source line of the macro
reference and the fully expanded macro body are
listed, otherwise only the source line of the
outermost macro reference of possibly nested macro
calls is listed.

-MACRO is the default.

9-Sep-80 13

Cross Macro Assemblex
for
Motoxrola 68000

XOPC When XOPC is selected, the assembler will 1list the
use of all opcodes in the cross reference list.
-X0PC is the default.

XPSE When XPSE is selected, the assembler will list the
use of all pseudo instruction in the cross reference
list.

-XPSE is the default.

XREG When XREG is selected, the assemblexr will list the
use of all registers in the cross reference list.
—-XREG is the default.

NOLIST - Cancel Listing.

The NOLIST pseudo instruction suppresses the printing of the assembly
listing until a LIST pseudo instruction is encountered.

Location I Operation Variable Subfields

+ + +

I NOLIST

PAGE - Top of Page.

The PAGE pseudo instruction advances printexr paper to a new page before
printing. Then page headings are printed and listing continues. The PAGE
pseudo instruction does not appear on the program listing.

Location l Operation

Variable Subfields
+ +
I PAGE
'SPC - Space Between Source Lines.

The SPC pseudo instruction causes the assembler to output <count> blank
lines to the assembly listing. The SPC pseudo instruction does not appear on
the program listing.

Location l Operation

Variable Subfields
+ + +
| SPC <count>
<count> An absolute value.

14 9-Sep-80

Cross Macro Assembler
for
Motoxrola 68000

TTL - Assembly Listing Title.
STTL - Assembly Listing Subtitle.

The TTL and STTL pseudo instructions allow the programmer to print a
title and a subtitle on the top of each page of the listing. To this effect
the assemblexr maintains internally two text strings which are set to blank at
the beginning of pass one. In pass two, whenever a new page is started, these
two text strings togethexr with other information are printed in the page
header. Specifying a title or subtitle merely means, that the contents of the
corresponding internal text string is changed to the one specified with the
TTL orxr STTL pseudo instruction. It does not imply an automatic start of a new
page. The first specified title is in addition kept in a third intexrnal text
string and is <copied into the title text string at the start of pass tuwo.
Neither the TTL noxr the STTL pseudo instruction are listed in the assembly
listing.

Location Operation Variable Subfields
TTL '<text>'
STTL "<text>'
<text> <text> specifies the text to be used as title oxr subtitle.

Please note, that the text must be enclosed in apostrophes
and cannot contain more than 60 characters.

Object Code Control

The pseudo instructions BLONG, BSHORT, FLONG, or FSHORT allow the
programmexr to influence the assembler's choice whenever foruard references are
encountered, be it for absolute addresses or relative branching instructions.

BLONG - Use Two-Word Conditional Branch.
BSHORT - Use One-Woxd Conditional Branch.

Location Operation Variable Subfields
+ +
BLONG
BSHORT

+

The two pseudo instructions BLONG and BSHORT allow the programmexr to
influence the assembler whenever it is assembling a c¢onditional branch
instruction the label of which contains a forward referxence. By default the
assembler will wuse the two-word instruction form allowing a larger relative
address range. After a BSHORT pseudo instruction the assembler will generate
the one-word relative branch instruction, wunless the suffix .L has been
appended to that branch instruction. The occurrence of a BLONG pseudo
instruction forces the two-word relative branch instruction to be generated,
unless the suffix .S has been appended to that branch instruction.

9-Sep-80 15

Crxoss Macro Assembler
for
Motorola 68000

FLONG - Force Absolute Long Addxess.
FSHORT - Force Absolute Short Address.

Operation l Variable Subfields

I Location

The two pseudo instrxuctions FLONG and FSHORT allouw the programmer to
influence the assembler uwhenever it is assembling an absolute address the
label of which contains a foruward reference. By default the assemblerx will use
the long absolute address form. After an FSHORT pseudo instruction the
assembler will generate the absolute short address form. The occurence of a
FLONG pseudo instruction forces the absolute long address form to be
generated.

+

FLONG
FSHORT

Note: The selected option, long ox short absolute addresses, is only valid
until the next occurence of a FLONG, FSHORT or SECTION pseudo
instrxuction. The latter will reset it to the default, namely long
absolute addresses.

NOOBJ - Suppress CUFOM Output.

The pseudo instruction NOOBJ suppresses the generation of a CUFOM module.

Variable Subfields

Location

16 9-Sep-80

Cxross Macro Assembler
for
Motorola 68000

MACRO OPERATIONS

A macro definition is a sequence of source statements that are saved and
then assembled whenever needed through a macro call. A macro call consists of
the occurrence of the macro name in the operation field of a statement. It
usually includes parameters to be substituted for formal parameters in the
macro code sequence so that code generated can vary uith each assembly of the
definition.

Use of a macro requires two steps, definition of the macro, and calling
of the definition.

A definition consists of three parts: heading, body, and terminator.
Heading - A macro definition is headed by a MACRO pseudo instruction

stating the name of the macro. The heading optionally includes
a LOCAL pseudo instruction indentifying symbols local to the

definition.
Body The body begins with the first statement in a definition that
is not a LOCAL pseudo instruction or a comment line. The body

consists of a series of symbolic instructions. Rll instructions
other than END or another MACRO definition are legal within a
definition. The assembler recognizes substitutable arguments in
all fields of the source line. The macro argument \0 however
can only be used in the operation field for referring to the
data size subparameter in an opcode or pseudo instruction. The
arguments \1 through \9 can appear anyuwhere in a source line.
Ten is the maximum number of arguments that can be handled by
any macro definition. Macro calls may be nested up to ten
levels deep.

Terminator An ENDM pseudo instruction terminates a macro definition.

ENDM - End Macro Definition.
I Location l Operation Variable Subfields
+

| : | ENDM

An ENDM pseudo instruction terminates the macro definition.

LOCAL - Local Symbols.

The LOCAL pseudo instruction, which lists symbols local to the definition
optionally follows the MACRO pseudo instruction.

9-Sep-80 17

Cross Macro Assembler
for
Motorola 68000

I Location

Operation Variable Subfields
+ + +
LOCAL <sym >,<sym >,....,<sym >
1 2 10
<sym > List of local symbols. Symbols must be separated by commas.
i A blank terminates the 1list. The maximum number of local

symbols is 10.

A symbol in the 1list is considered local to the macro; that is, it is
known only within the macro definition. On each expansion of the macro, the
assembler creates a neu symbol for each local symbol and substitutes it for
each occurrence of the local symbol in the definition. Thus invented symbols
replace LOCAL-named symbols wherever they appear in a macro definition in a
manner similar to the way substitutable parameters are replaced.

MACRO - Macro Heading.

A MACRO pseudo instruction tells the assembler to place the instructions
forming the body of the macro in a table of macro definitions for assembly
upon call, and to place the macro name in the symbol table.

I Location Operation I Variable Subfields

+ + +
| <m name> MACRO |
<m name> <m name>, a mandatory symbol, defines the name of the macro.

MACRO CALLS

A macro headed by a MACRO pseudo instruction <c¢an be called by an
instruction in the following format:

18 9-Sep-80

Cross Macro Assembler
for
Motorola 68000

Location Operation Variable Subfields
+ + +
{<symbol>} <m name> <p >,<p >,....,<p >
1 2 i
{<symbol>} <m name>{.S} <p >,<p >,....,<p >
1 2 i
{<symbol>} <m name>{.B} <p >,<p >,....,<p >
1 2 i
{<symbol>} <m name>{.W} <p >,<p >,....,<p >
1 2 i
{<symbol>} <m name>{.L} <p >,<p >,....,<p >
1 2 i
<symbol> An optional location symbol.

Name of a previously defined macro.
<m name>
<p > Parameter list composed of strings of characters. Parameters
i are separated by commas and terminated by a blank. Two
consecutive commas constitute a null parameter. An explicit
zero, if desired, must be entered.

If null parameters are interspersed with legal parameters, the <correct
positions must be established with commas. When the list terminates before the
last possible parametexr, all remaining parameters a considered null.

When the first character of a parameter is a left angular bracket (<),
the assemblexr considers all the characters between it and the matching =right
angular bracket (>) as an embedded parameter. The assemblexr removes the
outer pair of angular brackets before substituting the enclosed character
string in a line. Embedded parenthetical items must be properly pairxed. A
parenthetical item can contain blanks and commas.

9-Sep-80 19

Crxross Macro Assemblex
for
Motorola 68000

HOW TO USE THE ASSEMBLER

The assembler has been designed as a two pass assembler and is written in
PASCAL. Currently it is installed on the IBM computers in the computer centzre
and can be called using the follouwing command line undexr WYLBUR:

EXEC FROM #MICASM PUB

The EXEC program will ask the usexr for his options and will produce the
necessary set of Job Control Language statements to assemble a source program
and to produce a CUFOM module.

CUFOM modules generated by the assemblexr can now be linked togethexr using
the target independent CUFOM linkage editor by typing:

EXEC FROM #MICLINK PUB

This EXEC program will prompt the user for the names of the data sets which
contain the CUFOM modules to be linked. It also allows the definition of a
CUFOM library from which to satisify undefined externals. Such a CUFOM library
can be generated using the EXEC program:

EXEC FROM #MICLIB PUB

If the user nouw wants to produce information ready for down-line loading,
he will have to type:

EXEC FROM #MICPUSH PUB

This EXEC program will request the name of the data set containing the CUFOM
module to be pushed and will offer the user default origins for all the
relative sections contained in the module. These defaults can be overridden by
the user. If an absolute section exrists in the module, the default origin for
the first relative section is the address of the memory word immediately
follouing the 1last load address of the absolute section. If there is no
absolute section in the module, address zero is offered as origin. 1All other
default origins are calculated using the origin and length of the preceding
relative section. Thus a compact load can be achieved.

Should you experience any problenms, encounter errors or want to suggest
improvements for the softuware described above, please contact:

Hoxrst von Eicken
DPD-Division

C ERN

1211 GENEVA 23
Switzerland

Tel. (022) 83 23 63

20 9-Sep-80

r

Cross Macro Assembler
for
Motoxrola 68000

Availability of M68MIL
Program Availability and Charging

M68MIL is part of the CERN Program Library and may be used freely inside
CERN. Universities, national laboratorxies and other non-profit
organizations in Member States may receive M68MIL and its documentation
freely and without charge, subject only to a limitation on the number of
copies to be sent to any one institution free of charge.

Other organizations (commercial firms) are expected to pay a small fee to
cover our immediate expenses in supplying the desired material. This fee
is 150.-— SFrs. for M68MIL and includes the cost of a magnetic tape.

Univexrsities and other non-profit organizations in non Member States
normally pay a small fee as in the preceding paragraph, but the fee is
waived in the case of laboratories collaborating on CERN experiments or
engaged in a reciprocal exchange agreement with CERN.

CERN reserves the <right to chaxge a higher fee, up to the full cost of
developing the programs, or to refuse any request which it deems to be
not in the interest of the Organization.

The source is available in card image form at 80 chars per card in either
EBCDIC or ASCII on 9-track tape at densities of either 800, 1600 oxr 6250
bpi. Please specify which of the above you require and in addition the
number of cards per physical block (default=10).

conditions of Use

Programs and documentation are provided solely for the use of the
organization to which they are distributed and may not be redistributed
to any third party without the express agreement of CERN.

The material cannot be sold.

CERN should be given credit in all references, library documentation, and
publications based on the programs.

CERN undertakes no obligation for maintenance of the programs, nor
responsibility for their correctness, and accepts no liability whatsoever
resulting from the use of its programs. Although uwe do not "support” the
programs in a commercial sense, we will answer questions concerning ‘the
implementation or wusage of the programs and we welcome suggestions for
improvements.

Requests for M68MIL should be addressed to:
The Program Librarian
Data Handling Division
CERN
CH 1211 GENEVA 23

SWITZERLAND

9-Sep-80 APPENDIX: Availability of M68MIL 21

