.....

CERN - DATA BANDLING DIVISION
' Dh/78/21
J. Montuelle
October 1978

CUFOM

The CERN Universal Format for Object Modules

D-ag

\§]

(S} 0w

o

5

5.

b

7.
7.

8.
8.

P,
9

CONTENTS
INTRODUCTION
WHY A NEW OBJECT FORMAT?
PRELIMINARY TECENICAL DISCUSSICN
OVERALL DESCRIPTION CF CUFOM ,
BASIC CONSTRUCTIONS
3l e for gk definistons
3 Expression . ..
COMMENTS
.1 €O (COmment) command
MODULE DELIMITERS

1 MB (Module Begin) command
2 ME (Module End) command

SECTIONING

1 SB ESectlon Begin) command
2 ST (Section Type) command .

SYMBOLIC NAME DECLARATION

. NI gName of Internal symbol) command
.2 NX (Name of eXternal symbol) command

10 LOADING COMMANDS

11

1
1

1

0
0

1

1 LD ELoaD) command
.2 EX (EXecute) command

10.2.1 Loading operations
EVALUATION OF GENERAL EXPRESSIONS

. AS (ASsignment) command . . .

12 CUFOM VARIABLES

13
14

15

1

\V]

I Y
onunuaivn

g,

1 Variables related to the linkage edition

1.1 I variables Elnternal symbol values) . -
1.2 X variables {(External symbol references)

—

Variables related to the loading

.1 L variables and U variables (Low and Upper 11m1ts)
.2 R variables ERelocatlon bases)

.E P variables (lcading Pointer) . e - ..

E variable (Execution starting address\

ke h
PPN

Variables related to the linkage edition and the loading

.3.1 S variables (section 3Size)

[ASTACIEENE = \C R VSN \S T\ GY AU Y A T A6 B AS 3 AN

—_

4,1 K variables gconstants) ..
4.2 W variables {(Werking reglsters)

THE GENERAL COMMAND
CHECKSUM . . + . . o . v o o v v s o 0 s s e e e e e
EXAMPLES .

Example 1
Example 2
Example
Example
Example 5

AN = WEL AN

Variables with a meaning dependent upon the target machine

.

N N S O G
Ul = b W o N OO0 O OWw WO 0 o0 =10 U1 o= oW o

15

1 INTRODUCTION

The function of a language translator (assembler or
compiler) is to convert a source file to an object file: a source
program is translated in an object module. 1In simple cases, such
generated code is directly processed by a loader to initialize
memory space before the program 11s executed by setting the

program counter with a starting address. Basically, object
modules consist of loading addresses and values which are to be
loaded. But, normally, this is improved by offering program

relocation, linkage edition and library facilities.

The program relocation allows programs to be
locaded in regions which are dynamically allocated. In
writing his source file, the programmer refers to data
and instructions by names or labels without knowing
their physical addresses. Object modules are generated
in such a way that the loader can perform the address
translation (the physical addresses are calculated
according to the loading addresses).,

The linkage editor processing allows the
programmer to divide his program into several parts.
Each part may be coded in the programming language best
suited to it. Before 1loading the resulting object
modules are combined and linked {the cross references
between parts are resolved).

Object modules stored in a library can be placed
in the input to the linkage editor, either upon request
or automatically (if unresolved external references
remain after all 1input to the 1linkage editor |is
processed, an automatic library call routine retrieves
the modules reguired to resolve the references). The
program which is devoted to the library management is
called the "librarian”.

To support all these facilities, object modules convey
information of different kinds. Thus an object module format
must be defined, This format specifies how to encode each
component of the information. As the computer manufacturers
include 1in their operating system their own loader, linkage
editor and library representation, they define the format which
is the most adapted to their own use.

Censequently, when a language translator is transported from
one type of computer to another, a sizeable part of the
translator must be modified. Roughly, we call the affected part
the <c¢ode generator and the stable part the syntactic analyser.
These two parts may communicate by function <call or by an
intermediate code file. The modification of the code generator

is necessary because the hardware (e.qg. instruction set, word
length, memory organization) is different. But, as the object
module format and the type of processing change, this

modification is generally a complete rewriting because even the
functionnal decomposition cannot be kept. If the translation and
the execution of all the programs are done on the same computer,
it is nevertheless the simplest solution.

2 WHY A NEW ORJECT FORMAT?

When developing software for an installation which offers a
limited range of service programs or a low avalilability (typical
example: microprocessors) it is interesting, if possible, to use

another installation which c¢an provide a larger computing
capacity (in speed, file space, number of —concurrent users,
editing flexibility, etc.). Cross—software is then implemented

on this computer (we call it the host). By this means, an cbject
module 1is constructed before its loading on the target machine.
The loading can he done:

- by the 1loader existing on the target machine. If the format
accepted by the loader is different to the one supported on the
host, a format transformer {generally on the heost) must be
called before the effective loading.

~- by a loader existing on the host if a direct access to the
target memory exists (DMA).

All programs running on the host and 1involved into the loading
step (e.qg. format transformer, loader on the host) are called
"pushers". Later on, we reserve the term "loader" for a loader
running on the target machine. Wwhen the residency of the loader
is of no importance, we will use the term "loading processor"”.
The program which transforms an object module from the target
format to the host one 1s called a puller (for example to
link—-edit a program with standard routines already provided by
the manufacturer of the target).

The object format used until the loading step is usually the
one defined by the manufacturer of the host machine, 1in order to
use facilities that are already present (e.qg. the 1linkage
editor, the structure of a code generator). Rut, as the
manufacturer's format is not adaptable (because it is defined for
another hardware architecture) the advantages of using it are not
so convincing.

For example if the host 1is an IBM 378 (with a 24
bit address} and the target is an INTEL 8a8¢
microprocessor (with a 16 bit address where the most
significant bits are in the second byte) a
pre-processor and a post-processor are needed for
proper processing by the IBM 1linkage editor (address
manipulation).

And if the architecture of the host and the target are very
different, the host linkage editor cannot be used because it is
too specific.

More complications arise if there are a wide range of host
and target computers for which the same set of "cross—-services"

must be offered (e.qg. the CERN microprocessor support). To
limit the c¢ost of implementing and maintaining a general
cross~system for a large combination of hosts and targets, this
software must be as portable as possible. First of all, the

service programs must be written in a high level language which
is availakle on all the hosts and which allows the greatest

- 3 ~

possible program portability (in our «case, this language is
BCPL). The next step is to define a standard format for all the
object modules. This standardization provides the following
advantages:

~ A host independency and a lower target dependency for the code
generators. A code generator 1s only modified when a new target
machine must be supported. This modification is only devoted
to the peculiarities of the target hardware; the object module
structure and encoding remain constant. It is even possible to

design a general code generator which 1s driven by tables
describing the target peculiarities.

- A linkage editor and a librarian which are host and target
independent.

-~ A standard set of services (e.qg. documentation, user
interface). A user who changes from one computer combination to
another must 1learn only those things which are logically host
or target dependent (no tricks are needed to make a specific
system to do what he wishes).

— A standard language which facilitates the implementation of
programs manipulating object madules (e.g. loaders,
"pushers") .

All these considerations have lead to the following proposal
for the CERN universal format for object modules (CUFOM) and a
standard set of "CUFOM processors" for manipulating these object
modules (i.e. the linkage editor, the "pushers” and "pullers").

3 PRELIMINARY TECHNICAL DISCUSSION

The most important design aim for CUFOM is the host-target
independence of the linkage editor. Thus the definition of CUFOM
and the description of the linkage editor processing cannot be
dissociated. The following chapters explain the syntactical and
semantical rules which must be obeyed for a correct 1linkage
edition of the object modules, New rules may be added to define
the format for object modules of a particular target machine,
For example a loading processor must define what is a load module
(by giving the subset of CUFOM it accepts). The module produced
by the linkage editor is another object module in CUFOM and can
be relinked with others (if some external references are still
unresolved) .

As for a given target machine, the code generators and the
loading processor may only use a subset of the CUFOM
possibilities, we shall try to point out what kind of subset may
be compatible with the linkage edition. Nevertheless the best
way for knowing if the output modules of the linkage editor fall
into the subset of the input ones, is to run Some tests.

4 OVERALL DESCRIPTION OF CUFOM

Object module files are text files: the unit of information
is the character. Data which are not by themselves character
strings (not a symbolic name, a CUFOM mnemonic or delimiter,
etc.) are represented by the hexadecimal notation of their
value.

For example, if the following bit pattern:
111410@21

is the binary representation of an instruction to load, it will
be represented by

ES

in the CUFOM text.If the characters are coded in ASCII, 1its
binary representation on the object module file would be:

Plage1e10e111aa1

As an object module is almost entirely composed of values to
lpad, 1its size in the CUFOM representation is double that of a
direct binary representation. But much portahility is retained
by keeping the data in character form. We know from experience
the problem of marrying a byte oriented machine like the IBM with
the CDC which uses a 6@ bit word. As the adopted representation
dees not favour a particular machine structure, it is easy to
encode or decode the information on any computer and this In a
standard way {(host independence). As interactive facilities are
usually text oriented, the text format allows easy reading, file
manipulation (e.g. transfering files through a network with
automatic character code translation) and, if necessary, editing
operations. Also the programming facilities for text handling
are better than that for binary.

An object module consists of a 1logical file containing a

number of commands. These commands are Iintroduced by a two
letter command word and are terminated by a full stop. Thus
ME<body>.

is & well formed command. The <hody> depends on the command type.
In the <case of the example, <body> is the empty string. This
command signals the end of the object module ("ME" is the
mnemonic for Module End).

The length {(in characters) of a CUFOM command is variable
and there is no limitation for that length. To map CUFOM logical
files on physical files (with a 1limited 1line size), a single
command can occupy several successive lines. This may occurs for

the LD (load), EX (execute), AS (assign) and US (use) commands.
The other CUFOM commands can be represented on a single line
(with a sufficient length such as 72 characters). If such a

command does not end with the current 1line, the "continuation
sign" (:) must be the last character of the line (before the "end

of line" character).

e.qg. LD<partl of the body>:
<part?2 of the body>:
<last part of the body>.

There 1s no fixed column number for receiving the "continuation
sign"™. A command must be split logically. 1In a LD command the
"continuation sign" separates two elementary values {e.qg.
instructions, addresses). In the three other commands, it may be
used to split an expression or a parameter list on two lines. 1In
such cases, it follows a comma sign {(,) or a semicolon sign (;}.
Finally, in a EX command, it may separates two <EX—item> (see
sect. 18.2}).

When possible it 1s better to replace a multiple 1line
command by several single line commands. Thus the command of the
previous example, 1if it was not followed by an EX command , is
equivalent to:

LD<partl of the bohy>.
LD<part?2 of the body>.
LB<last part of the body>.

5 BASIC CONSTRUCTIONS

5.1 Notation used for syntax definitions

The meta-language used for the syntax definitions is derived
from the Backus-Naur Form.

Repetitive concatenation of objects are indicated by the
notation:

()3
< <object> >

()i

where i and] are respectively the minimum and the maximum number
of repetions allowed. Jj may be an arbitrary (undefined) 1limit
denoted by n. 1 may be @, indicating that the <object> may be
omitted. If i =@ and § = 1, the notation {<object>} will be
used.

In CUFOM, the spaces are not used as delimiters. Thus the
spaces which may appear in syntax definitions are only there for
readability and must by ignored. But the space character can be
used in a <char string> as can any other <character>.

5.2 Elementary syntactic objects

CUFOM vuses a small number of data types to provide standard
means of expressing constructions. There are the follows:

<hexdigit> ::=P111213141516[718[9|A|BICIDIEI[F
()n

<hexnumber> ::=< <hexdigit> >
()1

<nonhexletter> ::=C|H|II|JIKI|ILIMIN|OIP|IQ|R|S|TIU|VIW|X|YI|Z

<letter> ¢+:=A|B|C|D|E|F|<nonhexletter>
<alphanum> ::=<letter>|<hexdigit>
() n
<identifier> ::=< <alphanum> >
{)1
<{character> = any character of the host computer set

<string length>::=<hexdigit><hexdigit>

{)n
<char string> ::=<string length>< <character> >
()@
Where the hexadecimal value of <string length> must be equal
to n; n must be less than 256.
e.g. 142 STRING WITH SPACES

<CUFOM variable name> ::=<nonhexletter>{<hexnumber>}
It is a name which references an internal variable of a CUFOM
processor (see sect. 12).

<diadic operator> ::=+|~-]*|/|>I1<|&]|\
with the respective meaning: plus,minus,times,divide,shift
rigth,shift left,and,or.

<monadic operator>::=!
with the meaning: indirect (!E refers to the content of the
storage cell whose address is given by the value of E}.

5.3 Expression

Expressions are written in the reverse Polish form.
Expressions are evaluated when the values of their operands are
Known (it is generally at loading time). The binary

representation of each operand must fit into a word of the
computer where the evalution is done.

<expression>::=<hexnumber>
| <CUFOM variable name>
e<function call>
|<expression>,<monadic operator>
|<expression>,<expression>,<diadic operator>

{function call>::=<identifier> { (<parm list>) }

When a function call appears in an expression, it causes the
computation to be performed on the values given 1in the <parm
list> (if any) according to the function definition. The
resulting quantity which must be a word value is put on the
evaluation stack. No standard function is provided with CUFOM:
the function definitions are target dependent.

(}n
<{parm list> ::=<parameter>< ;<parameter> >

{ } @
{parameter> ::=<expression>|"<char string>

e.g. R3,MAX (K4:KAR) ,30,*,+
is evaluated as R3 + (MAX(K4,¥6) * 38)

An expression may be classified as being absoclute or
relocatable. A relocatable expression is affected by program
relocation whereas an absolute expression 1is not. When an

expression must be absolute, <absolute expression> is used in the
syntax definitions.

We distinguish <l-expression> from the general <expression>

to define what kind of expression must be on the left part of an
"assignment command".

{l-expression>::=<CUFOM wvariable name>
| <expression>,!

The value of <expression> on the last line must be an address
within the target memory.

e.g. I5 references the 5th I variable
FF,! references the target memory location with
address 255
L3,4,+,! references the 4th location of the region

where section 3 will be loaded.

6 COMMENTS

CUFCM is an intermediate language which is usually not seen
by the user. But even 1if object modules are not intended to be
read or directly modified, comments may be useful in some cases.

For example, one of the functions of the MAP listing is to
explain the overall structure of a CUFOM module {which can be
complex if it is the result of a multiple linkage edition). To
facilitate the comprehension, CUFCM comments can be copied in the
MAP listing.

Comments may also be used to record the name of the source
file to which it c¢orresponds, the date of creation, a flag
indicating if the compilation was successful, etc.

.1 CO (COmment)_pommaqg

<CO command>::=CO{<hexnumber>},<char string>.

e.qg. C0O3,1AI/0 CONTROLLER (15 JUNE 78).

<char string> is the comment 1itself. <hexnumber> can be
understood as a "level of comprehension": the higher the value,
the more the comment participates in the detail of the overall
structure of the final program.

The effect of the command depends on the processor which
reads it. We 9only define what the linkage editor does. 1If the
level indication is present and 1less than or equal to the
"comment parameter" (given by the user at linking time) the <char
string> is printed on the MAP listing preceded by 1ts level wvalue
in brackets. All the CO commands are also copied to the output
CUFOM file. But if the level indication 1s ©present and greater
than 1, it is increased by 1 before the copying.

7 MODULE DELIMITERS

7.1 MB {(Module Begin) command

<MB command>::=MB<identifier>{,<char string>}.

e.g. MBIB@SE,@7MONITOR.

The MB command must be the first command of an object
module. <identifier> 1identifies the target machine. This
information is used by the linkage editor to <check if all the
modules are homogeneous (destined for the same target machine).
On the other hand, a loading processor accepts only modules for
its specific target machine.

If present, <char string> gives the name of the module. This
name can be set by a special directive in the source program
(processed by the language translator) or given as an option to
the processor (translator,linkage editor or "puller™). This name
will appear in the MAP listing. '

7.2 ME (Module End) command

<ME command>: :=ME.

The ME command must be the last command in an object module.
It defines the end of the module.

8 SECTIONING

An object module can he divided into one or more sections. A
section is a separately controlled region of the program: it has
a type which globally influences the acticns performed according
to the commands that it contains.

Within the same module, a section is identified by a
"section number”. A section is introduced (or resumed) by an SB
command containing its number and it is terminated (or suspended)
by a new SB command with a different section number.

8.1 SB (Section Begin) command

<SB command>::=5B<hexnumber>.
e.g. SBS.

The <hexnumber> represents the section number. As the CUFOM
processors may not accept a section number greater than the
maximal number of sections that they can manage, normally these
numbers are the first of the integers (starting from 3).

If no SB command appears in a module, that means there is
only one section, the type of which is absolute. More generally,
until &an SB command is encountered, the type of the current
section is considered as absolute.

B.2 ST (Section Type) command

<8T command>::=<hexnumber>,<letter> { ,<char string> } .

e.qg. sSTa,A.
ST3,C,03J0E.

In a ST command, <lietter> defines the type of the section
identified by <hexnumber>. TIf present, <char string>» gives a
symbolic name to that section. This name is kept in the symbol
dictionary of the linkage editor and thus can be referenced from
cutside the current module.

A section can be absolute or relocatable. A section 1is
absolute when 1its loading addresses are absolute (known at
assembly or compiling time). A section is relocatable when its
loading addresses are relative to a "base” whose value is only
known at loading time.

Relocatable sections may be individually loaded into
Separate storage areas. However, in some cases, the loading
addresses of sections must be related. During the loading

process, the user may have full control of the storage layout if
the "pusher" allows, for example iIn using overlay directives.
But such a description demands extra work from the user. Then,
except in very special cases {e.g. overlays), it is preferable

~ 11 -

that CUFOM allows interdependancy between sections of different
mocdules. Thus, during the linkage edition, the program structure
is built autcmatically according to the semantics of the source
programs.

For the linkage editor, it is possible to express two kinds
of relations bhetween sections:
* Several sections must be joined into a single one.
* Several sections must be overlapped.
As these sections usually appear in different object modules, the
combination is established according to their symbelic names.

For special storage layouts on the target machine, some
conventions may be passed between language translators and a
loading processor by using special secticon names (e.g. prefixed
names) .

For example, using the vprefix LCP/, the name
LCP/GLOBAL indicates that the section 1s a COMMON
preset data area which must be lcaded into the low part
of the memory. GLOBAL is the symbolic name given by
the user. The LCP prefix 1s destined for the loading
processor., But 1if there are, in different modules,
several sections with LCPGLOBAL as name and of C type,
they are overlapped during the linkage edition (see
example 5).

CUFOM distinguishes between five different section types. In

the following list, each type is given by the <letter> of the <ST
command>.

A (Absolute) : The section is absolute.

G (General) : The section is relocatable and the linkage editor
jeins all G-sections into a single one in the order in which they
are processed (see example 4). 1In a module, only one G section

can be defined; but in different modules, ¢ sections may be named
differently.

R {Relocatable) : The section is relocatable. If R sections that
have been processed by the linkage editor have the same name,
they are joined into a single one (with that name) 1in the order
in which they were processed. Unnamed R sections are not joined
{see example 5),.

C (Common) : The section is relocatable. If C sections processed
by the linkage editor have the same name they are overlapped.
Unnamed C section (blank common) are also overlapped. A warning
message 1s printed if their sizes differ (see example 5).

U (Unique) : The section is relocatable and must have a name. If
other U sections precessed by the linkage editor have the same
name, an error message is printed.

In an object module, the type of a section must be given by
an ST command before the section is introduced by an SB command.
By default the type is absolute (A).

9 SYMBOLIC NAME DECLARATION

Some symbolic names appearing in source programs must be
kept in the object modules for further treatment (e.g. linkage
edition). In CUFOM, each symbol is declared by a separate
command. Such commands begin with the character “N" followed by
a letter which gives the type of that name. These commands are
devoted to the resolution of external references.

9.1 NI (Name of Internal symbol) command

{NI command>::=NI<hexnumber>,<char string>.

e.q. NIA,P4SINE,

An NI command must be provided for each symbol which is
defined in the current module and may be referenced from another
module (entry name definition). It 1indicates that, in the
current module, the variable "I<hexnumber>" (see sect. 12.1.1)
shall be associated with the internal symbol <char string>. An
NI command must always come before all occurences of 1its
corresponding I variable.

As the module produced by the linkage editor can be linked

in a further step, the input NI commands are retained (except If
an option is given to suppress them).

9.2 NX (Name of eXternal symbol) command

<NX command> ::=NX<hexnumber>,<char string>.

e.q. NX1l,P45INE.

An NX command must be provided for each external symbol
which is referenced in the current module. It indicates that, in

the current module, the wvariable "¥X<hexnumber>" {see sect.
12.1.2) shall be associated with the external symbol <char
string>. An NX command must always come before all occurences of

its corresponding X variable.

As the module produced by the linkage editor can be 1linked
in a further step, the 1nput NX commands which correspond to
unresolved references are retained.

12 LOADING COMMANDS

The most important part of an object module is formed by the
internal representation of instructions, addresses and data as
translated from the source program. Due to the sequential use of
memory addresses, 1t is possible to isclate one or more "blocks"
(generally a whole section) where the information is destined to
be loaded into contiguous locations. If all the information is
completely known, as for some absolute lcading, each block
represents an exact image (coded in the CUFOM representation) of
a memory region after the loading. 1In such a case, the block may
be simply split into one or more successive LD commands (see
example 1). Otherwise it is also split but as some values are
not the actual ones to 1load in sequence, complementary
information is given in an EX command immediately following the
LD command concerned (see example 2).

13.1 LD (LoaD) command

<LD command>»::=LD<hexnumber>.
e.g. LDID7FIDBE33C63000A144A144A16C1F415A2B2A3D2DAF3C3E.
The <hexnumber> 1is the concatenation of the hexadecimal

representation of the values to be loaded. The way to read this
string, in conjunction with a possible EX command, depends on the

target machine characteristics (word length, address
representation, etc.). Only the processors which are related to
a particular target machine (e.g. code generator, T“pusher",

lcader) can encode or decode it. The linkage editor never uses
or modifies the LD commands, it copies them.

19.2 EX (EXecute) command

(In

<EX command> ::=EX< <EX-item> > .
()@
<EX-item> ::=<loading operation>{<hexnumber>}

{loading operation>::=<nonhexletter>{ (<parm list>) }

e.qg. EXL5RLR({XA,X3,-)L3M{2;1B)LR.

The EX command indicates those loading operations which are

to be applied during the loading of the values represented in the
previous LD command.

The optional <hexnumber> is a repetition factor. If its
value is n, it means that the current <loading operation> must be
repeated n times, Thus, for example, the string LLLLL is

shortened to L5, The <nonhexletter> specifies the operation to

~ 14 -
be applied. The <parm list>, if any, represents its parameters.

According to the loading operation, a certain number of
hexadecimal digits are scanned in the previous LD command body.
The next invoked operation in the EX command 1is performed in
relation with the next hexadecimal digits of the LD command
body. In simple cases of loading (simple operations), all the
values of the LD command can be loaded first and the (relocation)
operations are applied next, directly on the target memory (no
buffering is needed).

An LD command and its related EX command cannot be separated
by other commands. The way that LD and EX commands are organized
intec a module depends on the processing type of the language
‘translator and processors which follow the linkage edition. For
example, if an object format transformation is needed before the
loading, the final format (which is imposed) may induce a special
organization into CUFOM modules. Each LD command 1is, if
possible, contained in a single line, to prevent the buffering of
several lines. An EX command follows 1if necessary (see example
2). But some language translators must first output all the code
and then the relocation information. In such a <¢ase, a prodgram
section is translated in one LD command followed by one EX
command (see example 3).

1¢.2.1 Loading operations

The semantics of a <loading operation> depend on the target

machine. "L" is the only <nonhexletter> which is reserved in
. CUFOM. It does not accept any parameters. It only means "“load”
the current value. Its presence is necessary 1in the EX command

because it permits the movement of the scanning pointer over the
LD command body for a fixed number of hexadecimal digits (related
to the target machine wunit of storage). Its presence is not
required if there 1is no other operation to perform until the end
of the LD command.

e.g. EXL3R2L7. 1is shortened to EXL3R2.
EXL9. can be suppressed.

Normally "R" is the <nonhexletter> for the relocation operation.
If it is followed by one expression, it means that the address
represented by the current digits within the LD command must be
offset by the value of the expression; if it is not, the offset
is the value of the R variable of the current section (see sect.
12.2.2).

"L" and "R" are the most frequently used loading operations
but it 1is possible to define other operations for special

purposes. For example M(x;y) may mean "multiple load"” : the x
next bytes encoded into the LD command must be loaded, as a
whole, y times into the next memory locations. The definition of

the new loading operations 1is a convention passed between the
‘code generators and the loading processor related to a particular
machine. The 1linkage editor introduces no distortion bhecause it
only replaces some CUFOM variables by equivalent expressions. It
never has to know the meaning of the <nonhexletter>.

- 15 -

11 EVALUATION OF GENERAL EXPRESSTONS

The loading processor uses and updates a counter which gives
the address where the next piece of code {instruction, address or
data) must be stored. Feor absolute loading, this counter may be
initialized with a value given by the language translator. More
generally, a new value for the counter is required each time that
code is to be stored in the memory at some address other than the
next location. The object module must be able to convey such
directives.,

To achieve 1linkage edition, each external reference
appearing in a relocation operation must be replaced with an
expression giving the value of the symbol. Thus the object

module must provide means of associating such an expression with
the symbols it declares.

Consequently some internal variables of CUFOM processors

{e.qg. load counter or symbol dictionary items) must be
manipulated according to orperations expressed in the object
module. Such variables are called "CUFOM variables” and their

symbolic names may appear in <expression>.
- Expressions are not only used as parameters of functions or

loading operations but they can also be used as left and right
part of "assignment commands".

11.1 AS (ASsignment) command

<AS command>::=AS3<l-expression>=<expression>.

e.qg. ASP=AQ0.
ASI7=R,8C,+.
ASK8,2,—-,1=X8,X3,-,1,>.

The value of <expression> 1s assigned to the locatlion
referenced by <l-expression>. According to the semantics of its
left part, an AS command is destined for a particular CUFOM
processor.

12 CUFOM VARIABLES

The internal variables of a CUFOM processor which are made
accessible for command interpretation are identified by a name
with the following syntax:

{CUFOM variable named>::=<nonhexletter>{<hexnumber>}

The <nonhexletter> gives the type of the wvariable. If
several variables of the same type exist, a <hexnumber> is
needed. Sometimes this <hexnumber> has a precise meaning (e.qg.

a section number) and may be omitted if the context provides a
default value {(e.g. the number of the current section).

As the linkage editor can replace variables by an equivalent
expression, the allowed <nonhexletter> are restricted to
predefined types. Thus if a name has a completely defined
meaning, it should not be used for a different one even when this
meaning is not currently in use (for that target machine).

Related to the type of a variable, CUFOM defines some rules
to restrict the use of wvariables 1inside an expression. The
non-observation of these rules may lead to incorrect processing
by the linkage editor which does not necessarily check if all the
rules are obeyed. Obviously other rules can be added as a
convention between language translators and a 1lcoader (or
"pusher"”, or format transformer) bhecause, generally, only a
limited subset of the CUFOM possibilities is used.

- 17 -

12.1 Variables related to the linkage edition

12.1.1 I variables (Internal symbol values)

<I variable name>::=I<hexnumber>

The 1 wvariables are internal wvariables of the linkage
editor. During the first pass on the input, when an NI command is
encountered with n as <hexnumber>, the In name references the
element of the symbol dictionary which is associated with the
symbol defined in the NI command.

In the same module and after this NI command, there must
exist one, and only one, "assignment command" which gives a value
to this variable., The syntax of such a command must be:

ASI<hexnumber>=<hexnumber>.
if the value is absclute.
or
ASI<hexnumber>=Rn,<hexnumber>,+.
ASI<hexnumber>=Rn,<hexnumber>,—.
i1f the value is relocatable. n is the number of the section
where the symbol is declared (may be omitted).

e.g. ASI7=48A.
ASI1B=R,3C,+.

It is not necessary to write a NI command and a ASI command
for the name of a section. By default the wvalue given to a
section name 1is equal to the value of its R variable (or L
variable if the section is of type R and is named).

12.1.2 X variables (External symbol references)

<X variable name): :=X<hexnumber>

The X variables are internal variables of the linkage editor
and are mapped onto the I variables. The symbol dictionary is
built up, as described above, during the first pass. On the
second pass when an NX command is encountered with n as
<hexnumber> and if the symbol it declares 1is found 1in the
dictionary, the Xn names appearing in the same module are
replaced by an expression giving the value of that symbol. This
expression 1s a <hexnumber> if it corresponds to an absolute
address; it 1is "Rn,<hexnumber>,+" if it corresponds to a
relocatable address.

By definition X names cannot be the left part of an
"assignment command". Their main wuse 1is as parameters of
relocation operations. X names must never exist 1in an object
module submitted to a "pusher" or a loader.

18

12.2 Variables related to the locading

The following wvariables are internal variables of the
processeor which performs the loading. The <hexnumber> which may
follow the <nonhexletter> of their names represents the number of
the related section. If the variable number is the same as the
current section number, it may be omitted. If no SB command
exists before, the variable is related to the absolute section.

12.2.1 L variables and U variables (Low and Upper limits)

<L variable name>::=L{<hexnumber>}

<U variable name>::=U{<hexnumber>}

A relocatable section 1is 1loaded within a region of the
target memory. This region is characterized by two values which
are 1its lowest and highest addresses. Ln and Un contain these
values for the section n. Normally these variables are not used
for absolute sections, but by convention they may contalin the
lowest and the highest address of the whole target memory.

As L and U variables are only known at loading time and
remain constant, they cannot be the left part of an "assignment
command”. They are initialized by the loading processor when the
section is entered for the first time.

12.2.2 R variables (Relocation bhases)

<R variable name>::=R{<hexnumber>}

At assembly (or compiling) time, addresses pointing to a
location in a relocatable section (which is generally the section
currently being processed) can only be translated to an offset
relative to a "section origin". At loading time, as the origin
value will be known, the actual addresses will be calculated and
loaded (program relocation)., It is Rn which will contain the
origin wvalue for the section n. R variables are not used for
absolute sections.

An R variable is initialized by the loading processocr when
the corresponding section is entered for the first time.

When the 1linkage editor Jjoins several sections (from
separately compiled modules) into a single one, it updates the R
variable of the resulting section in such a way that the
relocation offsets remain unchanged (see example 5). This is the
reason why all addresses which are to be relocated must use, as
relocation base, the R variabhle of the section into which they
point. This is also the reason why CUFOM allows "assignment
commands"” with R name as left part but with the following syntax:

- 19 -

12.2.3 P variables (locading Polinter)

<P wvariable name>::=P{<hexnumber>}

The variable Pn contains the address of the target memory
location where the next element (instruction, address or data} of
the section n should be loaded. Thus it is automatically updated
each time a new element is loaded. But it may be modified in
using an "assignment command". As it 1is a pointer to a section
location, the syntax of such a command must be:

ASPn=<absolute expression>.
if the section is absoclute,
or
ASPn=Rn{,<absolute expression>,+}.
ASPn=Rn{,<absolute expression>,-1}.
if the section 1s relocatable,
or
ASPn=Pn{,<absoclute expression>,+}.
ASPn=Pn{,<absclute expression>,-}.
only to update Pn (independently of the section type)

where n is a <hexnumber> (or may be omitted).

When the first lcocad command of a relocatable section is
encountered and if the P variable was not initialized before by
such an "assignment command”, it is assumed that the value of the
P variable is equal to the one of the R wvariable {(ASP=R. 1is the
default command when a new section is entered).

12.2.4 E variable (Execution starting address)

<E variable name>::=E

The E variable contains the address of the first instruction
to be executed. This value is loaded in the program counter to
run the program.

An E variable name can be the left part of an "assigment
command”. Usually such a command appears, at most, once in a
module directly produced by a language translator. But after a
linkage edition there may exist several of them. Logically it is
the last assignment which decides the E value. Nevertheless the
actual behaviour depends on the 1loading processor convention
(target dependence). As the E variable need not be assigned in a
module, the 1loading ©processor can provide either a warning
message, a default value, or a parameter set by the user at
loading time {(e.g. an absolute address, an internal symbol
name) .

- 28 -

12.3 Variables related to the linkage edition and the loading

12.3.1 S variables (section Size)

<8 wvariable name>::=S{<hexnumber>}

The S variables are internal variables of the linkage editor

and of the loading processors. There 1is one § variable per
relocatable section in an object module. The variable ©Sn
contains the size of the section n (in target machine wunit of
storage). Assigning a size to an absolute section is

meaningless.

As the S wvariable wvalues may be wused by the CUFQOM
processors, they must be calculated by the language translator
and set by an "assignment command" with the following syntax:

ASSn=<absolute expression>.

where n is the section number (or may be omitted) and
<absolute expression> must be evaluable at linking time.

In a module, there must exist one (and only one) such
"assignment command" for each relocatable section.

The S variables are used by the linkage editor for:

joining several input G or R sections into a
single one. If x 1is the address which will be assigned
to the R variable of the resulting =section and y an
offset calculated at compiling (or assembly) time, the
address of the corresponding element will be the sum of
X,y and the sizes of all the previously Jjoined
sections. The size of the resulting section is the sum
of the sizes of all the Jjoined sections (see example
5).

overlapping B or C sections. The size of the
resulting section is the size of the largest overlapped
section. If the sizes are not all equal an appropriate
message is printed.

- 21 -

12.4 Variables with a meaning dependent upon the target machine

The following variables can be internal wvariables of the
loading processor. The language translator knows the ageneral
specification of the target machine {e.qg. the 1instruction set,
the address and number representation, the word length, etc.) but
it may ignore some peculiarities of a qiven installation (e.g.
the size of the memory, the addresses of I1/0 ports, the ROM
location, etc.). To solve such a possible case, it can generate
expressions containing X variable names. At locading time these K
variable will have a constant wvalue related to the target
installation.

Finally, 1if the set of all the previous CUFOM variables is
not sufficient, it is possible to give a precise meaning to W
variables which are normally understood as working registers.
Then, for example, it is possible to pass a parameter between
separately compiled modules, using reserved W variable names.
The only requirement 1is to link-edit the module which contains
the assignment to such W variable before the others.

The linkage editor never replaces or deletes K or W

variables names from the expressions that it reads. It never
puts K or W variables in the new commands it generates.

12.49.1 K variables (constangﬁl

<K variable name>::=K<hexnumber>

The meaning and the use of these variabhles are the
responsability of the CUFOM user. But as they are intended to
contain constant values, they cannot be the 1left part of an
"assignment command”.

12.4.2 W variables (Working registers)

W variable name>::=W<hexnumber>

No special meaning is attached to these variables: in
different parts of the same module, a W variable name may be used
for different purposes (e.g. to store a value temporary) .

- 22 =

13 THE GENERAL COMMAND

For some particular cases of loading on a specific target
machine, it may happen that the previous commands are not
appropriate. With the US {use) command, new commands can be
defined to solve these particular problems.

<US command>::=US<identifier>{ (<parm list>) }
When such a command is encountered at loading time, the
routine specified by <identifier> is applied, using the values of

the <parm 1list> (if any). The definition of that routine is
target dependent.

14 CHECKSUM

When object modules are sent for locading through data links
which do not allow hardware checking (e.g. INDEX line), CUFOM
may be authorized to add error detection information into the

object module. In such a case, the "pusher"” adds a checksum
field or at the end of each line, or at the end of each command,
either at the end of the module (in the "module end command").

The choice depends on a convention related to a target machine.

If present, the checksum field is between the full stop (or
the <continuation sign) and the "end of 1line"” <character. It
contains a <hexnumber> which represents the value of the
checksum. The way that this checksum is calculated depends again
on a convention related to target machine. For example, it may
be the value of the lower byte of the sum of the ASCII codes of
each character in the line and preceding the full stop or the
semicolon. As the word size may differ between the host and the
target computer, the term of "sum™ must be understood as "sum as
calculated on the target machine™.

Object modules with a checksum field are not accepted by the
linkage editor which cannot have any special convention with a
target machine. The checksum must be calculated afterwards by a
"pusher" (pre~-lcading processing).

15 EXAMPLES

- 23 -~

15.1 Example 1

The following object module is an example for absolute
loading. The values represented in three first LD commands must
be loaded in successive locations starting at the address 2560

{AQE). The
loaded in
(Bl14). The
the address

MBJBE@7.
ASP=AQ0.

values represented in the 1last LD command must be
successive locations starting at the address 2836

execution must begin with the instruction loaded at
2568 (AQ8).

LD@3FA350564DCGTFFAABOACO1A0G2FB7A45732A2BE3759537F8D412007FA4.

LDQEABG3891llAAF372994l4ﬁBZAF4C7(EBQGBQB61FE64A88429D76054BGBZ
LD437B0AP2AAF38384,

ASP=B14.

LD45464748000CFFO1AC3E,

ASE=AQS8.
ME.

_24...
15.2 Example 2

The following module is an example of locading with address
relocation. There exists an absolute section (number @) and a
relocatable section (number 1). The length of the relocatable
section is 112 (in bytes 1in the case of the TEXAS INSTRUMENTS
TMS9920 microprocessor). No space 1is reserved at the beginning
of the program. Firstly 37 words (or 74 bytes) must be loaded in

successive locations. Each loading operation ("L" or "R") is
applied on a word {" bytes}. Thus the words
1,7,11,14,2@,23,25,27 with the respective values fin

hexadecimal): @@SB,@EdA,HEZB,GGZ@,@@3C,@GBC,BB3C,BEBC must be
relocated in adding to them the address of the word o. Next, 1in
the absolute section, 2 words must be loaded respectively in the
locations 260 and 22 (for interrupt handling). The location 22
must contain the address of the first word of the relocatable
section. Finally after the 37 words previously stored
(relocatable section), 3 new words must be loaded. The 32 last
bytes are not initialized. To execute this program, the program
counter must be set with the address of the first word of the
relocatable section.

MBTMS99088 , # 7EXAMPLE.

ST#,A.

§T1,G.

SB1l.

AS55=70.
LDBZ2EQPASA03000000027COL000202004AD232110306ARGA2¢1FBAGAR.
EXLRL5RL3R.
LDB@2A23401FPAL130CCl4BG6AGOA3CIEPARGAGBB3ICARARBE3CAGARRRIC.
EXRL5RL2RLRLR.

LD1D@AA4551F@PD16FE32081FAR1G6FEIDGBA44B.,

SB@.

ASP=14.

LD@118agae.

- EXLR(R1).

SB1.

ASP=R, 20, +.

LD48454C4C4FAl.

ASE=R.

ME.

— 25 —
15.3 Example 3

The following module 1is another example of loading with
relocation, but only one LD command and one EX command are used.
Space for 32 memory units (e.qg. bytes) 1is reserved at the
beginning of the section.

MBB52,XWZ.

COR,28%%**A NEW VERSION (ZWX) IS AVAILABLEX***%

STE@,G.

SB@.

ASS=74.

ASP=R, 20, +.
LDB2EGP0S023000ARER23CALAAR2A2004AD232110306ARBA2A1AFBAGAR:
PO20034P1FBAL3QCCLl4BA6AZAA3CIERARGANGA3ICAAARARICAGARRER3C:
PO0A45A736C3000000ARAANAFFF20A04D543E604D23A0G0GAC03A3B1:
1DPAP4551FOD1SFE32A81FOBl6FEIDOBGB44BA48454CACAFAL .
EXLRL3M(1;2E)RL3RL2RLSRL2RLRLRL3RLRL2RL3RLARL2M (1:A2) L2R:
EXL2R.

ASE=R, 282, +.

ME .

15.4 Example 4

The three following modules are an example of a linkage
edition where external references are resolved.

The two following modules, listed in two columns, are the
input.

In the first module, with name GOLD, the four external
symbeols: T1,T2,T3,P5 are referenced and the internal symbols:
V1,V2,V3 are declared as entry names. The values of V1 and V2
are absolute and are equal respectively to 8 and 1@ (A).The value
of V3 is relative to the origin of the section 1 with a positive
offset of 22 (16). We assume that the target machine has a byte
addressing, a 16 bit word and an address length egual to the word
length. Thus, for the absolute section, the execute command
expresses that the value which will be 1loaded in the word of
address 8 will be the value of the symbol T3 plus 18 (#@PA). For
the relocatable section, the execute command expresses that the
values which will be loaded in the relative address: 16 (12)
onwards will be respectively:

* the value of T1,
the value of T1 plus 4,
the value of T1 plus 8,
19948 (4DEC),
the value of T2 minus the value of TI1 plus 1@ (A),
the value of p5,

* % % ¥ %

MBJB@@7,04GOLD,
COl1,11"GOLD" (1@ JUN 78).

MBJBZ287,26FINGER.
CC1,13"FINGER" (13 JUN 78).

ASP=R,10,+.
LDBCRCACO42AABADECAIRRADRAD.
EXR(X1)3LR(X2,X1,-)R(X4)}.
ME .

i

[
STH,A. [ST@,A.
ST1,G. | ST1,G.
SB1. | SB1.
NX1,02T1. | NI1,p2T2.
NX2,02T2. | NIZ2,f2T1,
NX3,02T3, i NX1,082vV1,
NX4,@2P5. | NI3,H2T3.
NILl,@2v1. ! NX2,#2V3.
NI2,@2V2. | ASI1=R,2,+.
NI3,@2V3. | ASI2=R,4,+.
ASI1=8, | ASI3=R,8,+.
ASI2=A, | ASS=A.
ASI3=R,16,+. | LDFFF4A32D130CRA0A06A0R .
ASS=1C. | EXR(X1)L2RR(X2).
SB@. | ASE=R, 2, +.
ASP=8. | ME.
LDBOBABSE6. J
EXR (X3). |
SB1. [

|

l

l

!

- 27 -

The next module illustrates the manner in which the two
previous modules are linked.

As this module may be linked with other ones in a further
step, the NI commands are retained. The external symbol P5 was
discovered unresolved. An appropriate message is printed on the
MAP listing of the current linkage edition and a NX command is
produced to allow a further linkage. 1In the execute commands the
other external references are replaced by an equivalent
expression. In the part related to the second input module, the
origin of the relocatable section of the output is modified by
the assignment command: "ASR=R,1C,+.". Thus in the execute
commands, each call without parameter to the relocation operation
(in this example: the R follwing L2 in the last EX command) are
not to be replaced by a call with a -parameter (which would be
R(R,1C,+) in this example). The command "ASP=R." which 1is a
command by default in the module B is now generated because the
next LD command is no longer the first one of the section.

MBJB@AB7, AAGOLDFINGER.
C01,32"GOLDFINGER" LINKED ON IBM373/168, DATE= 29 SEP 78.
CO02,11"GOLD" (1@ JUN 78).
5Ta,A,

sT1,G.

SB1.

NXE,A2P5.

NI@,f2vV1.

NIl,@z2va.

NIZ,@2v3.

ASI#=8.

AST1=A.

ASI2=R,16,+,

ASS=26.

SRaQ.

ASP=8§.

LDAGPABSAG .,

EXR(R1,24,+).

SB1.

ASP=R,10,+.
LDARCOAAGA0GA84DECAAGANADA .
EXR(R,20,+)3LR(R,1E,+,R,20,+,~)R(XA) .
CO2,13"FINGER" (13 JUN 78).
NI3,@2T2,.

NI4,@2T1.

NIs,g2T3,.

ASR=R, 1C,+.

ASI3=R,2,+.

ASI4=R,4,+,

ASIS=R,8,+.

ASP=R.
LDFFF43@2D]13GCARAAG6ADN.
EXR(8)L2RR(R,6,~).
ASE=R,2,+.

ME.

The following figure

shows the MAP

produced during this linkage edition.

PAGE 1

listing

CUFOM LINKAGE EDITOR (27 SEP 78)

==0==> "GOLDFINGER" LINKED ON IBM370/168, DATE= 29 SEP 78

==1==> rGOLD"{10 JUN T78)
ABSOLUTE SECTION
RELOCATABLE SECTION
UNRESOLVED REFERENCE
DEFINED IN SECTION
DEFINED IN SECTION
DEFINED IN SECTION

==1==> “FINGER"(13 JUN 78)
DEFINED IN SECTION
DEFINED IN SECTION
DEFINED IN SECTION

—_O00 a0

—_— 3

SIZE=0026(38)

{NOT REFERENCED)

DO3255> 1 UNRESOLVED REFERENCE <<<<<<X

>>>>>>> 0 ERROR DETECTED LL<LKLKL

OFFSET=0008
QFFSET=0004A
OFFSET=0016

OFFSET=001E
QFFSET=0020
QFFSET=0024

which

was

15.5 Example 5

The three following modules are an example of a 1linkage
edition where several sections are combined together. It
concerns the FERRANTI Fl@0L microprocessor (16 blt words).

A program in store essentially consists of an area to hold
the program instructions and two data areas: the lower and the
upper areas. The lower area must lie within the addresses range
1-2#47, while the program and the upper data areas may fall above
this range. This separation arises because the address field of
a single word instruction is 11 bits wide. Instruction may refer
to addresses higher than 20647 by use of a second word {(or by

means of pointers having addresses in the range 1-255). The
upper and lower divisions are further subdivided into nine
"storage classes” which are (in the order of 1increasing

addresses) :

— Lower Data (LD}: local wvariables.

— Lower Common Data (LCD): common variables.

- Lower Preset Data (LPD): local preset constants.

— Lower Common Preset Data {(LCPD): common preset constants.
— Program Instructions (PR).

~ Upper Preset Data (UPD).

- Upper Common Preset Data (UCPD).

- Upper Data (UD).

- Upper Common Data (UCD).

When program segments are combined to form a complete progranm,
corresponding areas are merged together in the order of
presentation to the linkage editor.

The following figures shows a source segment ({SEGA) and its
generated object module. The segment consists of 1 program block
and 7 data blocks. The data blocks are of various kinds, thus
the first declarations concern the Lower Common Preset Data
area.

As the addresses may be represented on a 11 bit field
(single word 1instruction) or on a 15 bit field (data or double
word instruction), two relocation operations (EX commands) are
distinguished: respectively S and R.

SSEGMENT SEGA

- 32

SLOWER COMMON/C1
(3 WORDS ARE RESERVED WITH PRESET VALUES: 1,2,3
Ll- 1,2,3
SUPPER COMMON/C?2
L2~ 71,72
SLOWER
(3 WORDS ARE RESERVED WITH NAMES: A,B,C
' A,B,C
SLOWER COMMON/C1
L3~ 4,5
SUPPER
L4~ A,B,C
SPROGRAM
LDA A
STO E
SLOWER
L5- 9,10
SUPPER COMMON/C3
D,E
SEND
MBFER1@¢0L, 24SEGA.
C0l,2F"SEGA™ COMPILED ON IBM 37#/168, DATE= 17 AUG 78.

ST#,R,B32LD.
ST1,R,83LPD.
ST2,R,B2PR.
sT3,R,33UPD.
ST4,R,#2UD.
ST5,C,37LCPD/Cl.
ST6,C,@7UCPD/C2.
ST7,C,B6UCD/C3.
ASSO=5.

ASS1=2,

ASS2=2.

ASS3=3.

ASS4=0.

ASS5=5.

ASS6=2,

ASS7=2.

SB5.
LDEGeleen20003.
SB6.
LDAG4A70048.
SBS.
LDAGA4AGAS.
SB3.
LDBAAAAGRLOGR2 .
EXR (R@) 3.

SB2.
LD8OPA4aaL.

EXS (R@)S (R7) .
SB1.
LDAGO9ARGA.

ME .

- 31

The following figures shows another scurce segment (SEGB)
and its generated object module.
$SEGMENT SEGB
SUPPER COMMON/C3

F,G
SLOWER COMMON/C1
L6~ 41,42 ,43
SLOWER
H,I
$PROGRAM
LDA G
STO L
SUPPER
L7~ 6,7
$LOWER
L8~ 11,12,13
SEND
MBFER1@¢L,24SEGB.
CO1,2F"SEGB" COMPILED ON IBM 37@/168, DATE= 23 AUG 78.
ST#,R,P2LD
STi,R,83LPD.
ST2,R,02PR.
ST3,R,A3UPD.
ST4,R,22UD.
ST5,C,06UCD/C3.
sT6,C,8%7LCPD/C1.
ASS@=2.
ASS1=3.
ASS2=2,
ASS53=2,
ASS4=0.
ASS5=2.
ASS6=3.
SB6.
LDB@2922A2A002B.
SR2.
LDBA@B140302.
EXS(R5)S(R7).
SB3.
LDA@aenan7.
SB1,
LDOAABAZACAGAD.
ME.
The next figure illustrates the manner in which the wvarious

"storage «c¢lasses" from the SEGA and SEGB segments are combined
together by the linkage editor.

MBFER1@0GL, 34SEGC.
COl1,2C"SEGC" LINKED ON IBM37#/168, DATE= 29 SEP 78.
CO2,2F"SEGA"” COMPILED ON IBM 370/168, DATE= 17 AUG 78.
ST3,R,82LD.
ST4,R,#3LPD.
ST5,R, @2PR.
ST6,R,@3UPD.
ST7,R,820D.
ST8,C,#7LCPD/CL.
ST9,C,@7UCPD/C2.
STA,C,36UCD/C3.
ASS3=7.

ASS4=5,

ASS5=4,

ASS6=5.

ASS7=0.

ASS8=5,

AS5S59=2,

ASSA=2.

SBS.
LDGAG1O0020083.
SBO.

LDGpA7a848,

SBS.

LDAAR4AGAAS.

SB6.
LDPBOB00R10002.
EXR (R3)3.

SBS.

LD8BO34001 .

EXS (R3)S (RA) .
SB4,

LD@AGOGAGA.
C02,2F"SEGB" COMPILED ON IBM 378/168, DATE= 23 AUG 78.
SBS.

ASP=R,
LDAA293 00 2A0028B .
SBS.

ASR=R,2,+.
ASP=R.
LD8ER14GE2.

EXS (RA)S (RA) .
SB6.

ASR=R, 3, +.
ASP=R.
LDO2060RA 7.

SB4.

ASR=R, 2, +.
ASP=R.
LDEGGBAGACAGAD.
ME.

- 33

Finally the following figures shows the produced MAP listing.

PAGE 1

==0== "SEGC* LINKED CN IBM370/168, DATE= 29

==1==> *“SEGA" CCMPILED ON IBM 370/168, DATE=

RELOCATABLE SECTION
RELOCATABLE SECTION
RELOCATABLE SECTION
RELOCATABLE SECTION
RELOCATABLE SECTION
COMMON SECTICH
COMMON SECTICN
COMMON SECTION

==1==> "3SEGB" COMPILED ON IBM
>>> COMMON SECTION 8 : QLDSIZ

»>>>>>> 0 ERRGR DETECTED

s12é=00072
SIZE=0005
SIZE=0004
SIZE=0005
SIZE=0000
SIZE=0005
SIZEzooozg
SIZE=0002

G/165, DATE=
0003 {

<LL<LKKK

PO OW U]
e

CUFOM LINKAGE EDITOR (27 SEP 78

17 AUG 78

OFFSET=0000
OFFSET=0000
OFF3ET=0000
OFFSET=0000
OFFSET=0000
OFFSET=0000
OFFSET=0000
OFFSET=0000

3 AUG 78
3),NEW SIZE=0005 (

LD
LPD
PR
UPD

UD
LCPD/C1
UCPD/C2
Ucn/C3

5) <K

<absolute expression> 7
<alphanum> 4§
{char string>
{character> &
{CUFOM variable name>
{expression> 7
<function call>
<hexdigit> 6
<hexnumber> 6
<{identifier> 6
{l-expression>»
<letter> 6
<loading operation>
<nonhexletter> 6
<parameter> 7
{parm list> 7

8
6,16

-

~

13

Absolute expression 7
Absolute section 14,11
AS command 15

Assignment command 15

Blank common 11
Checksum 19

CO command B8
Code generator
Command 4
Comments 8
Common section 11
Continuation sign
Cross—-software 2
CUFOM 3

CUFOM processor
CUFOM variable

1,3

4

3
15,16

E variable 19
Entry name definition
EX command 13
Execute command
Expression 15
External reference

12
i3

12
Format (of object modules)

Format transformer 2
Function (in an expression)

1,2,4

7

General command 22
Generated code 1
Host 2

I variable 12,17

Intermediate code 1

INDEX

L variable 18
Language translator
LD command 13
Length {of a command)
Length (of a section)
Librarian 1,3
Library 1

Line (of an object file)
Linkage editor 1,3
Load command 13
Load module 3
Loader 1,2
Loading address
Loading operation
Locading processor

1

4
20

4

1,19
13,14
2,3

MAP listing

MB command 9
ME command 9
Multiple linking

8

3,12

9
11

Name (of a module)
Name (of a section)
Name declaration 12
Named section 11

NI command 12,17
Notations (for the syntax)
NX command 12,17

5

Object file
Object module
Operation (for loading)
Operation (loading) 13
Origin {(cf a section) 18

1;4
1,4
14

P variable 19

Parameter (of a loading
operation) 13

Portability 2,4

Positionning sections

Puller 2

Pusher 2

11

R wvariable 18

Relation (between sections)

Relocatable expression 7

Relocatable section 1¢,11,18

Relocation 1,14,18

Repetition factor 13

Representation (of object
modules) 4

Resclution (of external
references) 12,17

11

5 variable 20 Type (of a CUFOM variable) 1A

SB command 10 Type (of a section) 1,111,248
Section 1@

Section number 103,18 U variable 18

Size (of a section) 20 US command 22

Space (character) 5

Special routine 22 W variable 21

ST command 10 :

Starting address 1,19 X variable 12,17

Syntactic analyser 1

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37

