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Résumé

L'application de la mécanique des fractures élastiques linéaires
a la stabilité des fissures dans les structures fragiles est maintenant
bien connue et trés employée. Cependant, dans de nombreux matériaux
structurels, la propagation des fissures s'accompagne d'une plasticité
considérable d 1'extrémité des fissures qui invalide 1'emploi de la
mécanique susmentionnée. C'est pourquoi, les recherches actuelles dans
le domaine de la mécanique des fractures ont pour but de développer des
paramétres permettant de prédire la propagation des fissures dans des
conditions d'é@lasticité et de plasticité. Les concepts étudiés
comprennent des méthodes fondées sur 1l'ouverture et le déplacement critique
des fissures et des techniques recourant & 1'intégrale J et 3d la courbe
R. Ce rapport sert d'introduction & ces concepts et il fournit quelques

exemples de leur application.
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ELASTIC PLASTIC FRACTURE MECHANICS

by

L.A. Simpson

ABSTRACT

The application of linear elastic fracture mechanics (LEFM) to
crack stability in brittle structures is now well understood and widely
applied. However, in many structural materials, crack propagation is
accompanied by considerable crack-tip plasticity which invalidates the
use of LEFM. Thus, present day research in fracture mechanics is aimed
at developing parameters for predicting crack propagation under elastic-
plastic conditions. These include critical crack-opening-displacement
methods, the J integral and R-curve techniques. This report provides an

introduction to these concepts and gives some examples of their applica-

tions.
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1. INTRODUCTION

Recent studies of the fracture behaviour of Zr-2.5% Nb pres-
sure tube material have underlined a need to improve our understanding,
within Atomic Energy of Canada Limited (AECL), of fracture mechanics in
situations involving significant crack tip plasticity. To respond to
this need and to an invitation from the Metallurgy Department at the
University of British Columbia to lecture on the subject of elastic-
plastic fracture, I have written this introductory appraisal of the

field.

The fundamental purpose of fracture mechanics is to provide a
framework by which a test result on a small specimen can be used to
predict the loads under which a structure of the same material will fail
by the propagation of an incipient flaw. Therefore, this framework must
include a parameter which is a measure of the conditions of stress and
strain at the crack tip, can be calculated from the applied forces on
both the structure and test specimen, and signals the propagation of the
crack at some identifiable critical condition. This parameter or frac-
ture criterion must be geometry independent, that is, the failure condi-
tions at the crack tip must be identical in both the laboratory specimen

and in the structure itself.

Linear elastic fracture mechanics (LEFM) utilizes the critical
stress intensity factor KIc as a fracture criterion for situations where
crack propagation is accompanied by little or no plastic deformation.
Quantitatively, this means that the extent of crack tip plasticity
should be at least fifty times smaller than the dimensions of the struc-
ture, including crack length(ll. Because the extent of plasticity
depends only on crack tip conditions and not significantly on specimen

size, we find that larger structures may obey LEFM conditions while



small specimens of the same material may not. Thus a larger structure
may exhibit brittle fracture behaviour while the small specimen fails in
a ductile manner. Designating fracture amenable to LEFM as brittle, B,
and elastic-plastic fracture as ductile, D, we can define four potential

situations in fracture analysis involving a small specimen and a structure.

1. B-B - Both specimen and structure amenable to LEFM analysis,
e.g. ceramics, brittle metals.

2. D-B - Specimen failure ductile, structure brittle, e.g.
some high strength steels.

3. D-D - Neither specimen nor structure is amenable to LEFM
analysis, e.g. CANDU* pressure tubes, pipeline steel.

4. B-D - Specimen brittle, structure ductile, a non-existent

situation.

The principal applications for elastic-plastic fracture mech-

anics are in situations 2 and 3.

Although the bulk of this presentation is concerned with
ductile crack propagation, it should be pointed out that failure in
ductile materials can often be described more appropriately by theories
of plastic collapse than by theories of crack propagation. Plastic
collapse is failure by gross yielding of the specimen or structure and
can be described by plastic limit analysis. Thus, failure is no longer
localized to the crack tip region and may occur without any crack exten-
sion at all. In certain circumstances, plastic limit analysis will
predict lower failure loads than some elastic-plastic crack propagation

theories and must always be considered in ductile failure analysis.

CANada Deuterium Uranium



2. SPECIMEN TYPES

While a fairly wide variety of fracture mechanics specimens
has been developed with rigorous mathematical solutions for the elastic
strain fields, the two most extensively used geometries in elastic-
plastic fracture mechanics are the compact tension (CTS) specimen (in-
cluding modifications such as the wedge opening load specimen) and the
single edge-notched bend (SENB) specimen, Figure 1. For this discussion,

these two will be used as the reference specimen geometries.

Figure 2 shows typical load-deflection curves for small
specimens of various materials. Figure 2a depicts fully linear be-
haviour which is easily handled by LEFM and 2b shows ''pop-in' behaviour
characteristic of certain metals. Here LEFM can often be used to
calculate KIc by the offset procedure as described by ASTM E399-72.
Figures 2c and 2d illustrate the behaviour of concern in this presenta-
tion. Figure 2c shows considerable non-linear behaviour in the load
deflection curve prior to sudden failure, while with the very ductile
material in Figure 2d sudden failure never occurs. Obviously, this
latter situation can occur only under displacement control. In fact,
the shapes of curves 2c and d are as much a function of the testing
arrangements (displacement control, load control, machine stiffﬁess
etc.) as of the material itself. The non-linearities can arise from two
sources, plastic deformation at the crack tip and stable crack extension.
The choice of approach in analyzing the fracture behaviour will depend
on the amount of crack extension occurring prior to failure. It will
also be necessary to define the point on the load-deflection curves at
which failure is deemed to occur (measurement point). Some of the
choices are (1) initiation of crack growth (stable or otherwise), (2)
instability point under load control, (3) a critical amount of stable
crack growth. This choice will epend on the degree of conservatism

required and the geometry independence of the potential measurement

points.



3. LIMITATIONS OF LEFM

To appreciate the need for an elastic-plastic fracture mecha-
nics framework, the limitations of LEFM will first be reviewed. Figure
3 shows the crack tip region in a plane body where "a" is the crack
length and "W-a'" is the width of the uncracked ligament. We recall from
LEFM that the stress intensity factor, K, is the coefficient of (r/a)_l/2
in a power series in r/a which describes the stress field at a point a
distance r from the crack tip. All other terms in the series are of
order (r/a)l/2 and higher; hence, when r/a <<1, the crack tip stress

€Y

field can be described uniquely by K. Knott shows quantitatively
that, for r/a < 0.02, K describes the stress field with reasonable
precision (region B in Figure 3). Because of the singular nature of the
linear elastic stress field, a plastic zone forms at the crack tip where
the yield condition for the specimen is exceeded (region A in Figure 3).
Naturally K does not describe the stresses in the plastic zone because
linear elasticity has been violated. Thus, if the plastic zone size is

equal to or larger than region B, K loses its significance since it no

longer uniquely describes the stress field anywhere in the body.

To summarize, for the stress intensity factor, K, to have
significance, the in-plane dimensions a, W-a, must exceed the plastic

zone size by a factor of &0.

Satisfaction of this criterion will ensure geometry indepen-
dence for the in-plane stress components (equal stresses for equal K)
but not for the stress component in the thickness direction. The
latter is dependent on the degree of plane strain imposed near the crack
tip by the effect of transverse constraint on thickness contraction of
the plastic zone. If fully plane strain conditions apply to the struc-

ture under analysis, the test specimens, to be representative, must fail



under the same conditions. Hence we have the ASTM requirement for
thickness, B, that
pe
B> 2.5 — (D
o
y

where Gy is the yield stress.

If the structure does not fail under fully plane strain
conditions, KC will be thickness dependent and an R-curve approach (to

be described later) may be more suitable.

To summarize, to use plane strain fracture.toughness, Kﬁc, as
a fracture criterion the ASTM thickness requivement must be met in
specimen and structure in addition to the restrictions on in-plane

dimensions.

4. PLASTIC ZONE CORRECTIONS

Historically, the first attempts at extending fracture mecha-
nics beyond the LEFM limits described above involved making a correction
to the crack length to allow for the effect of the plastic zone and
continuing to use the LEFM approach. The early corrections proposed by

IrWin(z) involved moving the crack tip to the center of the plastic

zone, a distance ry, i.e.

a->a+ry (2)



1 Kc2
where ry = o ;—E (plane stress)
y
(3)
1 KIi
=%r 2 (plane strain)
o
y

The extra factor of 3 in the denominator for plane strain was
somewhat arbitrarily chosen to allow for elevation of the yield stress
at the crack tip by transverse constraint. The difficulty with this
approach is that, while it often gives consistent results for small-
scale yielding, the limits of its applicability are not clear. The very

approximate nature of equation 3 is partially responsible for this.

More rigorous calculations of the plastic zone correction are

3)

available. The Dugdale model is a useful example and will be dis-
cussed in some detail since the result provides the basis for much of

the current work in the United Kingdom on elastic-plastic fracture
mechanics. Dugdale assumed that yielding occurs in a strip-like zone at
the crack tip which extends the crack by a distance c-a (Figure 4). The
stresses in this yielded zone are considered to be a continuous distribu-
tion of point loads o .dt per unit thickness which act to restrain the
crack from opening. gy integrating the appropriate Westergaard stress

function for point loads in cracks from a to c, an expression for the

restraining stress intensity factor is obtained.

1/2 1
K = 20y (%) cos (%) (%)

The size of the yielded zone is found by allowing equation 4
to oppose exactly the stress intensity factor for the opening of the

crack under the applied stress ¢ and total crack length, c,



K = o/mc (5)

to give

a o

C = 08 o0 (6)
y

For o ~ Oy, a/c - 0 and general yielding spreads across the

plate. For o/oy<<1

NZOZ
afc ~ 1 - — (7)
80y

We can compare this with equation 3 as follows:

d =2r = c-a (8)
y y
a a dy -1 iz
e o -C-! = a+dy = (1 + a ) x 1 - 2 + .o

for d <<a.
y

Comparing this with equation 7,

d
EX-= T K (9)

This equation differs from the plane stress plastic zone size

in equation 3 by about 20%.

(4)

An extension of the Dugdale analysis yields an expression

for the displacement normal to the crack plane at the crack tip, §



8
T

ML<Q

TO
a In[sec zoy] (10)

§ =
which for 0/0y<< 1 reduces to

_ 2
§ =K /oyE (11)

The term 8 is known as the crack opening displacement (COD)

and is a useful measure of the crack tip strain.
The Dugdale analysis is one of plane stress. As before, plane

strain situations can be handled by a modification to oy to account for

yield stress elevation.

5. YIELD STRESS ELEVATION IN PLASTIC ZONES

The maximum shear stress in a body occurs on planes at 45° to
the direction of the maximum and minimum principal stresses and is
proportional to the difference between them. For instance, using the

Tresca yield criterion

max min y y

where Ty is the shear yield stress and cy is the uniaxial tensile yield
stress. Referring to the stress components in Figure 5a, the thickness

component in plane stress, 633, = 0 and

Opp = cy (Figure 5b).



However, in a triaxial stress system, 033 # 0 and the stresses
will be similar to those shown in Figure 5c. Because of the free surface

at the crack tip, 911 will rise from zero there and the yield conditiom

will be

or o] =g +0 (12)

i.e. the stress component 0,, will exceed the uniaxial yield stress by
an amount equal to Oqq° This elevation of stresses in the plastic zomne
can be as high as threefold in a perfectly plastic material and even

(5)

higher for work-hardening materials .

Because higher stresses can be sustained, a crack may propa-
gate by cleavage under plane strain but by a ductile process under plane
stress where the cleavage stress is not attained. This underlines the
importance of maintaining plane strain conditions in small specimens to
predict plane strain failure in a structure. It will be seen in the
following sections that certain approaches are capable of predicting
plane strain behaviour using small specimens that violate the ASTM

requirements (equation 1).

6. CRACK OPENING DISPLACEMENT

6.1 THE CONCEPT

Equation 10 gives an estimate of the crack-tip opening dis-
placement under an applied stress. The concept that the crack will

propagate upon attainment of some critical value of & = Gi is a logical
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one and we have seen in equation 11 that, for limited plasticity, Si is
related to KIc' However, in many materials crack extension is stable
under rising load to some much larger value of § (= Gmax) before unstable
failure occurs. It is in this latter circumstance that LEFM methods

fail and a new approach is desirable.

An example of this stable crack extension is shown as the heat
tinted surface in Figure 6. It initiates at the specimen mid-section
where the level of transverse constraint is highest. Because the plastic
zone size at the specimen surface is larger (Figure 7), the strain there
for a given COD is more diffuse. Thus, ligaments remain, restraining
further propagation of the stable crack unless the load is raised. As
the load is raised, these plane stress ligaments penetrate more deeply,
increasing the resistance to crack propagation, until fast fracture
eventually occurs. Ultimate failure can occur at any stage or after a
complete transition to slant fracture (full penetration of shear 1lips)

depending on the material properties and specimen geometry.

The problem in using COD as a fracture criterion is in choosing
the value at which "failure" occurs. The obvious choice for materials
which do not show stable cracking behaviour is Gi but materials which
show it can often sustain much higher loads than that to reach éi and
such an approach may be over conservative. However, the amount of
stable crack growth a specimen will tolerate will depend on its thick-
ness and Gmax will therefore be geometry dependent. Thus each case must
be judged on an individual basis.

The geometry independence of Gi was demonstrated by Knott(6)
who tested SENB specimens of varying thickness. The 6i values showed
good agreement except for the 2 mm thickness which was less than two
plastic zone diameters (3.4 mm). In this case, sufficient plane strain

did not exist at the specimen mid-section to allow initiation at éi.
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(6) )

Knott and others

through equation 11, which is good evidence that initiation takes place

have obtained good agreement between éi and KIc

under plane strain conditions. Thus, support is strong for the use of
Gi measurements (on small specimens) to predict plane strain failure
(KIC) in structures where the ASTM requirements demand inconveniently

large specimens.

In structures where full plane strain conditions are not
maintained, the conservatism in using Gi as a fracture criterion may be
undesirable. If a higher value is used, a means of accommodating the
geometry dependence must be found. Even maintaining constant thickness
is not sufficient since amax appears to depend on crack length in other-
wise identical specimens. The selection of the measurement point (criti-
cal value) of 8§ presents difficulties under these conditions since

steel, at least, has been found to undergo slow crack extension at
(8)

constant load where 6, < § < §
i max

It is not always a simple matter to relate COD in a structure
to the applied loads and crack length, especially where the failure
criterion is geometry dependent. Often direct calibrations will be
necessary on the structure itself as was done in an early study on

9

pressure tube fracture by the United Kingdom Atomic Energy Authority .

6.2 MEASUREMENT OF COD

While we have discussed at some length the applications of the
COD approach, little has been said about how it is measured. The most
common method employs a clip-on displacement gauge at the specimen crack
mouth and a calibration between gauge reading and the actual crack tip
displacement. It has been found for steels(lo), using CT and SENB
specimens, that after some initial loading, the crack faces separate as

if there was a fixed center of rotation in the specimen ligament. This
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center of rotation is determined experimentally by photographing pairs
of microhardness indentations on the crack faces as the specimen is
loaded. Sets of displacement readings, each corresponding to a given
load level, are plotted against distance from the crack tip (Figure 8).
Extrapolation of these plots to zero displacement yields the center of
rotation. For steels, r, the center of rotation, was found to be 0.3+
to 0.4 after some initial loading and was independent of crack length

and specimen size. 1In such situations, § can be calculated (Figure 8)

from

- Vg
6 = 1 + (at+z)/r(W=-a) (13)

Before using this type of calibration, it should be confirmed
for each material that r is geometry independent and independent of load
level. This is not always the case; in fact zirconium alloys do not

exhibit this behaviour(ll).

(7)

Robinson and Tetelman used a different technique for
calibrating clip gauge readings. They infiltrated the crack mouths of
SENB specimens at various load levels with catalytically hardening
silicone rubber. When the rubber had set, they broke the specimens open

and determined COD directly from the mould.

6.3 MEASUREMENT OF Si

Several methods are available for detecting the onset of
stable crack growth so that Gi can be determined from a test in which

(12)

COD is monitored. Smith and Knott's technique , Figure (9), involves
loading a series of specimens to various stages of the load-defection

curve, unloading, marking the extent of stable crack growth by heat

T expressed as a fraction of the ligament size, W-a (see Figure 8).
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tinting, and fracturing the specimen. The extent of stable crack growth
is measured and plotted against crack opening displacement as in Figure

(9). The zero intercept gives 61.

To be accurate, the above technique requires at least five
specimens. In some materials, éi can be detected by measuring the elec-
trical potential drop across a specimen in which a constant electric
current is passed. The onset of stable crack growth gives rise to an

abrupt change in the specimen resistance.

The term 61 can also be measured directly from the fracture
surface of a specimen(lB). Generally three regions are visible, the
fatigue precrack and the stable crack surface are separated by a band of
stretched material inclined about 45° to the crack plane. This is
called a stretch zone and is a manifestation of the crack tip deforma-
tion during development of the crack opening displacement. The size of
the stretch zone projected normal to the crack will be related to 61
since the zone stops growing once stable crack extension begins. By
averaging a number of measurements taken along the stretch zone, a good

estimate of Si can be obtained. Again, the validity of this method must

be confirmed for each material.

7. THE J INTEGRAL

7.1 DEFINITIONS

Consider a body containing a crack as in Figure 10. J.R.
Rice(14) discovered in the 1960's that the following line integral has
some very interesting properties when evaluated on a contour, I', enclos-
ing the crack tip and running from the lower face to the upper face

(Figure 10).
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dui
J = f[Wdy-Ti———dSJ (14)

dx

T

€

where W= “/Bijdeij (strain energy density for elastic materials),
o
Ti = tractions on the contour,
u; = displacements on the contour.

Rice(lé) demonstrated that for a body showing non-linear
elastic behaviour, the value of J for a given set of loading conditions
and crack geometry was independent of the path of integration. This
implies that J is a crack tip parameter since a circuit taken just
adjacent to the tip would give the same result as a circuit taken some
distance out. Since it is a crack tip parameter, it can be evaluated at
some distance from the crack tip where the deformation state is more
accurately known. If we allow the crack to propagate a small increment,
da, moving the contour with it, then / Wdy da is the change in strain
energy moving to the new contour and [ Ti dui/dx ds da is the work done
by the tractions in moving. Thus Jda is the total energy flow through
the contour for an extension of the crack by da. Because of path inde-
pendence, we can shrink the contour to one just surrounding the crack
tip region and hence J is just the energy made available for crack
extension, i.e., J = G, the strain energy release rate for linear or

non-linear elasticity. Also for linear elasticity

2
-¢ =X
J=6=% - : (15)

Another definition of J is derived below. Referring to
Figure 11, the potential energy per unit thickness of a cracked body is

given by
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U= fw dx dy - fT.u ds (16)
A g

where A is the in-plane area of the body and ST is the surface over

which tractions are prescribed. By comparing this with equation 14 and

recalling that dx = -da
-dUu
J= 1 (17)

i.e. J is equal to the change in potential energy with crack length.

For non-linear elastic bodies, we can show that J is equal to the energy
available for crack extension. Figure 1la shows a typical load, P, vs.
defection, Sp’ curve for a specimen showing non-linear elastic behaviour.
In the case of specified tractions (fixed load), equation 16 shows that
the potential energy, U, is the shaded area in Figure lla. When only
displacements are specified (fixed grips), ST becomes zero (i.e. it is
non existent) and U is simply the strain energy or the area under the P-

§ curve.
p

In Figure 11b, a specimen of crack length, a, is loaded to
point A, and crack extension is allowed to proceed at‘fixed load to
point B. The total work done on the specimen is area OABCO. Consider a
hypothetical non-linear elastic specimen of initial crack length atAa
loaded to point B. Its P—Gp curve is obtained by unloading from B to O
and is reversible. 1If we assume that the deformation states are the
same in the two specimens at point B, the strain energy will be given by
the area under the hypothetical curve. Then the energy available for
crack extension in the actual specimen (work donme-final strain energy)
is the difference in the area under the two curves (shaded in Figure
11b). But this is the same as minus the difference in potential energies
(areas above the curves as in Figure 1la). Thus, from equation 17, J is

the energy available for unit crack extension.
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For the fixed displacement case, Figure llc, the strain energy
is equal to the potential energy and the equality of AU to the energy
available for crack extension (shaded area) is obvious. The small
difference in shaded areas between Figures 11b and c is a second order

infinitesmal and is negligible.

Using these results we have

P

AU /;15 562
J=_Ka_=_ Ed6p= Ba dP (18)

The derivations above apply to bodies showing non-linear
elastic behaviour. Since our problem is to analyze elastic-plastic
crack tip environments, we must justify such an extension. Rice proved
the path independence of J for bodies obeying the laws of deformation
plasticity. This theory relates total strain to the current state of
stress and therefore lacks a history dependence. Thus loading in the
body must increase monitonically everywhere and unloading, such as
during stable crack extension, is prohibited. Since the load deflection
curves of non-linear elastic bodies and those conforming to deformation
plasticity theory are indistinguishable, equations 17 and 18 are exact
for both cases. When plasticity is involved, J simply loses its signi-
ficance as the energy available for crack extension because of the
dissipative component of [ Wdy. This is unfortunate but as we shall see

in the next section J retains its significance as a crack tip parameter.

7.2 ELASTIC-PLASTIC CRACK TIP FIELDS

Figure 12 shows the crack tip region for a typical elastic-
plastic body. In this view a large elastic-plastic field surrounds the
crack tip which very near the crack tip will be an intensely non-linear

zone associated with crack tip blunting. It is the well-behaved outer
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elastic-plastic zone which we are concerned with. Just as K was found
to describe the linear elastic near-tip stress field in LEFM, Hutchin-

son(ls) and Rice(l6) showed that the stress-strain field is described

by,
N
Oij = oy (;E—g——)N+l fi' (r,o,N)
vy J
1 (19)
J (1+N
T (rc — g.. (r,0,N)

for material obeying a power law work-hardening relationship of the form

(refer to stress-strain curve in Figure 12),

o =0, (N (20)
y e
y
with o , Ey = yield stress and yield strain. Note that for the linear

elastic case, N = 1, and equation 19 reduces to the familiar LEFM equa-

tions with J = KZ/E.

To summarize, J is the intensity of the elastic-plastic field

surrounding the crack tip.

Just as the size of the plastic zone governs the validity of
LEFM, so the size of the intensely non-linear zone restricts the applic-
ability of J. Because of the intense deformations in this zone, accurate

(5)

plasticity analysis is not possible. Rice and Johnson have analyzed

it using slip line theory. They show that it contains high hydrostatic
stresses, at least three times the uniaxial yield stress. Paris(l7)

shows that if analysis using J is to be relevant, the size of this zone,

w, must satisfy

w=2 J/oy << planar dimensions. (21)
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Futhermore, if plane strain behaviour is to be maintained, the thickness

B must satisfy
B > 25 J/oy. (22)

Note that this restriction is an order of magnitude less

severe than the corresponding LEFM requirement in equation 1.
7.3 J AND COD

We have seen that J is fully consistent with the LEFM para-
meters G and K in elastic fracture conditions. We will now look at the

interrelationship between J and 6.

We return to the Dugdale concept of a strip-like yielded zone
at the crack tip. Barenblatt also considered this model but in a

(18)) in that his restrain-

slightly different way (as described by Rice
ing forces in the crack tip (cohesive) region were a function of §, as
in Figure 13. We calculate J by taking the integration contour just
outside the cohesive zZone, which is of negligible thickness, so that

dy n 0. Then,

[
Il
|

Bu, 5, + -
fl‘i 7% ds = - f022 3% (U2 - U, )dx

g—i dx = -fa—i [fo(5)ds]dx (23)

where Gt is COD.
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For the Dugdale model where o(8) = Oy’

J = o, S . (24)

J=G=-I]-§—=06 (25)

which gives a consistent picture of the interrelationship of the various

crack tip parameters.

The value of J is in its ability to serve as a geometry inde-
pendent fracture criterion under much less stringent conditions of crack
tip plasticity (equations 21 and 22) than LEFM methods. The most predo-
minant application at present is in using small specimens, in which KIC
cannot be determined, to determine a valid J. Equation 25 is then used
to calculate K in thick structures where plane strain fracture occurs.

Ie (19)
Work in this area so far is very promising ' "7,

Its application to
prediction of ductile fracture in structures, while not as well develo-
ped, seems attractive since J can be calculated for most structures as a
function of crack size and loading by finite element analysis and
equation 14. The suitability of this method, however, will depend on
the demonstfation of geometry independence for the critical J value and
it may be more appropriate to use an R-curve technique as described in

a later section.

7.4 APPLICATIONS OF J-INTEGRAL

We have seen that J is the change in potential emergy in a
specimen per unit increment of crack extension and can be calculated
from the difference in areas under two load deflection curves for indenti-

cal specimens of slightly differing crack length. Begley and Landes(lg)
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used this definition to measure JIC on (sub ASTM size) compact tension
specimens of low and medium strength steels. A series of specimens of
differing crack lengths were loaded to failure and the load/load-point
deflection curves were determined. At various stages of deflection the
work expended (area under P—dp curve) was calculated and plotted against
crack length as in Figure l4a. The slopes of these curves yielded -
dU/da = J and, using the set of curves, J was plotted as a function of
§ din Figure 1l4b. It was fortuitous in this case that the critical
deflection and hence the J—dp curve did not depend on crack length;
however, this is not a restriction on the technique. The value of J at
failure (crack initiation in this case) agreed very closely with K_ as

Ic
determined on full thickness specimens (using equation 25).

The above method consumes a large number of specimens, which

diminishes the advantage of using J to estimate K (small specimens).

Ic
However, more recently, methods have been developed for determining J on

(20). Consider a CT specimen of unit

certain single specimen geometries
thickness deeply cracked so that deformation is primarily in bending.
From equation 18,
P 36
J = —L2 ap (18)

Ja

For bending we substitute moment M for P and angular deflection 6 for

displacement.
M
N 26)
J = f (8a> y M (26)
o
where 6= ecrack + eno crack
6 = deflection due to presence of crack
crack

] = deflection in absence of crack.
no crack



- 21 -

A dimensional argument shows that

M
3] = fl—F (27)
crack ((W—a) 2>
where W-a is the uncracked ligament length. Then
o0 Merack . m (28)
o (W-a) 3 (W-a) (W=-a)3 (W-a) 2 57

_2M aecrack (29)
W-a oM

Substitution of 29 into 26 gives

G
2 crack
J = W-a f Mdecrack (30)

o

If the ligament forces are primarily bending (deep crack) but

the moment is applied by a force P, we may substitute P, dp for M, 6,

6crack
2
J = W-a / P 6crack (31)

(o}

Now for the deeply cracked CTS, § v § so that §

crack v no crack
need not be determined and subtracted from the load displacement curve,

thus,

J = Wea (32)

where A = area under the load displacement curve.
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Generally, the requirement for deep cracks is satisfied if a/W
> 0.6 although a more general expression of the requirement for deep
cracks is that plasticity be confined to the ligament area.

Equation 32 is now widely used in determination of J values.

7.5 J AND STABLE CRACK EXTENSION

While the definition of J does not apply to situations where
unloading occurs at the crack tip, there are at least two areas where it
is desirable to extend J to this situation. One is cyclic fatigue at
high load levels such that the LEFM description of cyclic load (AK) no
longer is valid. Dowling and Begley(Zl) using A533B steel calculated AJ
from the loading portion of the P—GP curve for each load cycle using
equation 32. The crack growth correlated very well with valid LEFM data
taken at lower load levels when both sets were plotted against AJ as in
Figure 15. This is, therefore, strong evidence that the J integral may

be adaptable to situations where unloading occurs.

Another area of interest is to calculate J in materials showing
stable crack growth. When J at crack initiation provides an overly

conservative failure criterion, it would be useful to be able to calcu-

)

late it after a degree of crack extension. Garwood et al(22 suggested
a method based on the assumption that J for a specimen in which the
crack has extended from a to a + Aa (curve 1 in Figure 16) is the same
as for a non-linear elastic specimen of initial crack length a + Aa and
loaded to the same values of load and deflection. The actual and hypo-
thetical load-deflection curves are shown in Figure 16. Initiation
occurs at P and continues to point Q on curve 1. The energies Ul’ U2,

U, and U, are represented by areas OPRS, ORQTS, OPQR, and PQTSR respectively.

3 4
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Now U, + U, =U, + U (33)

From equation 32,

JOB

Ul = (W—ao) (34)
JlB

U2 = 5 (W—al) (35)

The thickness B appears because equation 30 deals with unit
thickness. JO is the value of J at initiation and U4 can be measured

from the record so that Jl can be calculated if U3 is known. It is

assumed that the U, energy is entirely consumed by crack growth, hence,

3
for small Aa

v, = 2L pra . (36)

Substituting this back into equation 33 gives

w—al 2U4
Jl = Jo W—aO + B(W—ao) (37)

Generalizing to successive increments of crack extension, we can calcu-

late Jn’ the value of J after the nth increment.

W-a 2(U U )
n n n-1 (38)

B(W-a

J =J
n—l)

n n-1 w—an_l
This approach has yet to be proven theoretically sound but the

success with the earlier fatigue correlations in unloading situations

gives encouragement to this type of investigation.

We have seen that the J integral method is a very powerful
technique for extending fracture mechanics beyond the LEFM boundaries.

We have also seen that some of the theoretical limitations on its
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validity may not be too severe. This is an active field of research at
the moment with new developments appearing constantly. The reader
should therefore be wary of applications applying some of the techniques
to new or previously untested materials without very careful analysis
including cross-checks of obtained J values against other fracture

parameters for consistency, if possible.

8. R-CURVE TECHNIQUES

The J integral and COD methods discussed so far have shown
their major successes in relating their values at the initiation of
crack extension to KIc as measured in full-size structures which fail
under plane strain conditions. We have seen much evidence that initi-
ation occurs under plane strain conditions in small specimens which

explains the success of COD and J in predicting K_ . However, many

c
structures do not fail under fully plane strain cinditions but will
accomodate a significant amount of stable crack growth, usually under
rising load. This is normally due to an increase in the proportion of
plane stress fracture as the transverse stresses relax (described at the
beginning of section 6). We have seen that Gmax’ the COD at instabil-
ity, can be much larger than that for initiation. Similarly, it appears
from section 7.5, that Jn will continue to increase after crack initia-
tion in some materials. Since these parameters will probably be geometry
dependent after crack initiation, a new technique is required to normalize
the results from various geometries. The R-curve has been proposed by
many as a means of normalizing the failure behaviour of different geome-

tries. The only restraint is that the specimen and the structure be of

the same thickness.
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Consider a CT specimen with in-plane dimensions sufficiently
large that K describes the in-plane stresses but where the thickness is
less than that required for plane strain fracture. Figure 17 shows a
typical R curve for a specimen at initial crack length = a_ . As we load
the specimen, K increases to point, P, at which stage crack initiation
commences. As the crack extends further under rising load, K continues
to rise until fast fracture occurs or it reaches a maximum. This plot
of K vs crack extension is called the R-curve (for resistance curve)
because it measures the resistance to further crack extension as a
function of crack growth. K, so plotted, is often subscripted KR and
called crack growth resistance. There is a school of thought (and a
considerable body of supporting evidence) which maintains that the R-
curve is independent of specimen geometry for a given thickness of
material. The fracture criterion used with R-curves states that when
the strain energy release rate G (a,0) is sufficient to cause instabil-
ity, failure will occur. Thus, one plots a family of G-curves at various
applied stresses Gl’ 9y etc. (converted to KG’ the crack driving force,
via equation 25) as a function of crack length for the geometry in
question. These are generally calculated from a stress analysis for the
cracked structure. The stress o, in Figure 17, just sufficient to give
tangency between the G curve and the KR curve, will be the critical
failure stress for an initial crack length, a,. Instability occurs
because at tangency the energy release rate, KG always exceeds KR for
futher crack extension. Because different geometries will have differ-
ently shaped K, curves the point of tangency and hence the critical KR

G
value will be geometry dependent.

The need to express the R-curve in terms of KR usually demands
very large plate-like specimens to meet the in-plane dimensional require-
ments. Much of the current research on R-curves now is directed towards

expressing crack growth resistance in terms of J or COD so that more
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reasonable specimen sizes can be used. New ideas in this area are
evolving almost daily so the reader is referred to the current litera-

ture for updating(ll’Zl’zz).

9. SUMMARY

The preceding has been an attempt to introduce to the reader,
who is already familiar with basic LEFM concepts, some of the approaches
for dealing with fracture of a more ductile nature. No claim for com-
pleteness is made, rather I have attempted to describe the more widely
used approaches for dealing with elastic-plastic fracture. Some of the
concepts are difficult to understand at first reading and the interested
reader is advised to give careful study to the references cited in this
work. I cannot hope to impart a full understanding of elastic-plastic
fracture in these brief descriptions, but rather only hope to whet the

reader's appetite for more knowledge.
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FIGURE 1: Compact Tension Specimen (a) and Single-~Edge Notched Bend specimen (b)
showing dimensions in standard (ASTM) nomenclature.
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FIGURE 2: Schematic load (P)-load point deflection (§_) curves for fracture
mechanics specimen with increasing amounts Pof ductility.
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FIGURE 4: Dugdale model of "strip-yield" plastic zones under applied stress 0.
Plastic zone size is c-a.
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FIGURE 5: Crack tip stress fields in plastic zone region as a function of
distance, r, from the tip.
(a) Coordinates
(b) Plane stress
(c) Plane strain



FIGURE 6: Fracture surface of Zr 2.5% Nb CTS which has undergone stable crack
extension (region S).
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FIGURE 9: Application of the Smith and Knott method of determining 8i to Zr 2.5% Nb
pressure tube material(13) (CT specimens).
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FIGURE 10: Typical path of integration, I', used in calculating the J-integral.
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FIGURE 11: Load (P) point deflection (§8_) curves showing potential energy
changes with crack extension (Reference 17)
(a) U for situation where tractions are prescribed (fixed load)
(b) AU for fixed load case
(¢) AU for fixed displacement case.
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FIGURE 14: J-integral determination on steel by Begley and Landes
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(a) Energy adsorbed at a given deflection versus crack length
(b) J volume as a function of deflection
Reprinted by permission of the American Society for Testing and

Materials, copyright.
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FIGURE 15: Comparison of fatigue crack growth rates during gross plasticity
with linear elastic data(21),
Reprinted by permission of the American Society for Testing and
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FIGURE 16: Actual (OPQ) and hypothetical (ORQ) load-deflection curves for
determination of J subsequent to stable crack growth.
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FIGURE 17: Matching of an R curve to crack driving force curves to determine
the critical stress.



