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Abstract

The variety of events which almost certainly will occur at pp collider
energies suggest the simultaneous presence of a magnetic and calorimetric
analyses. The possibility of an integrated magnet-calorimeter structure
is discussed in which ionisation sampling elements are inbedded in the
superconductor-stabilising structure at liquid Helium temperature. The
massive hadron absorber plates mantain also the huge mechanical forces
produced by the currents. A possible geometry for a cosf current
distribution generating a dipole field is discussed. The properties of

the sampling counters at liquid Helium temperature are reviewed.
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1. How to sample‘zi at liquid Helium temperature?
1)

Liquid Argon™’ is now almost universally used as a sampling
medium for counters for photon and hadron showers. Its properties, i.e.
the large density, low cost and relatively high liquification
temperature make it ideal in the majority of applications. In our case
however the Argon will be a frozen solid. Electrons can be easily
extracted from solid Argon and indeed the drift velocity is somewhat
higher than in the case of a liquid (see Fig. 1). However polarization

effects almost inevitably occur and there is no known trick to remove

these effects. Hence in a matter of minutes the detector will stop

working.
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Fig.la) The field dependence of the electron drift velocity
in liquid Ar at 85 K.
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Fig.1b) The field dependence of the electron drift velocity
in solid Ar at 82 K.
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Another a priori possibility is the one of using liquid Helium
of sufficient purity to collect the electrons produced by the ionizing
particles traversing it. However a dramatic drop in the electron
mobility 1 is observed at low temperatures and even at moderate
densitiesz) (Fig. 2). A model which fits the experimental observation
is one in which a microbubble is formed around the electron thus
reducing the mobility. Similar bubble effect have been observed in H
and Neon close to their triple point3). Therefore a liquid Helium

calorimeter is again excluded by this phenomenon.
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The only realistic possibility is then the one of using gas at
suitable low density. From Fig. 2 one can see that bubbles exist only
for p > pc and'T < Tc where pc, Tc are determined by the free energy
of the system. Taking T ¥ 4K we get p > 1.2 x 102 cm 3 as a safe
limit . This corresponds to p < 1072 gr/cm®, or about < 15 times lower

density than the liquid Helium or gas Helium at S 44 atm and NPT.
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Multiplication of the number of electron is then necessary before

detection and thin wires at high voltage must run along the slots. A
"

reasonable gain could be ¥ 10", leading to pulses about 100 times

larger than the one from liquid Argon.

2. Sampling showers with gas counters. Expected resolutions

Estensive studies on calorimeters equipped with gas filled

proportional counters have been performed by R.L. Anderson et al.“).

Their main conclusions are as follows:

(1) the energy resolutions of shower counters have been investigated

with electrons of 1,2,4,8 and 16 GeV. The resolution (s.deviation)

is consistent with a law of the type:

AE = Kﬁ/E

E s.d.

with K = 0.185 (units are GeV). The calorimeter (Fig. 3) was made
of 36 lead plates (0.423 r.%) interleaved with 36 planes of
multiwire planes 3/8'' wide. The resolution of a similar lead
calorimeter but filled with liquid Argon built by Hitlin and

col1.")

is about 1.6 times better than the
gas counters.,

(2) A hadron calorimeter with iron plates was also built and tested.

Plates were iron sheets about 3 cm thick, interspersed with gas

counters (see Fig. 4). The instrument was tested with electrons

and pions. The responses are characterized by a law:

AR K
Er.s.d.= VE KA/ET

with K = 0.44 for electrons and K = 0.72 for pions(all units
are GeV), The best resolutions obtained by Willis and call.“)
with liquid Argon have been K = 0.63 for iron plates and K = 0.316

for fission compensated uranium plates.
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(3) The major source of fluctuations in the energy measurement seems
to be associated with the coarseness of the sampling. Taking
every second (third) sampling increases resolution by a factor
V2 /3). Therefore a fission compensated calorimeter will not be
appreciably better unless a much finer sampling is introduced.
In conclusion gas counters sample the energy depositions only

slightly less accurately for hadrons and about a factor 1.6 time worse

for e.m. showers,
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3. A tentative dipole magnet-calorimeter configuration

The magnetic field is generated by a succession of cosf current
distributions. The shape of the current carrying superconducting wires
is shown in Fig. 5. The basic formulae for the field and forces are

given in Ref. 5. If we indicate with j the average current density in

the point of maximum (y = 0) plate of thickness Ax increases the

(uniform) field inside the cylinder by an amount:

AB = 0.62 . j(A/mm?®) . Ax(m) Tesla

Fig. 5

For the reasonable thickness Ax = 3 cm and j = 10 A/mm® which is a

safe value for a stabilised superconductor we get:

AB = 0.20 Tesla
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Note that this result is independent of the radius of the cylinder. In
order to reach a central field value Bo = 3 Tesla, 15 concentric
cylinders of this type are required. The force is equivalent to a
pressure tending to push conductors apart and it has its maximum value

in the equatorial plane:

PMAX = B ] . Ax  (M.K.S.units)

3T with Ax = 0.03 m and j = 10 x 10°A/m?

The innermost coil then at B
(10 A/mm®) experiences a max. radial pressure of 9 Kg/cm?., We can
calculate the deformation of the plate using the formula derived in
Appendix 1. The total force acting on half of the ring is 135 Ton/metre
length and for a radius of 75 cm. The deformation of a free cylinder
is then as large as 135 x 10%® x 3.75 x 107° = 5.06 cm! Therefore the
plates must be solidly connected with each other in order to discharge
the mechanical pressures to the outside. The whole stack may be as
thick as 15 x 3 + 15 = 60 cm and the total force is 135 x %§= 103 Tons.
Assuming a moment of inertia equals to 1/4 of the one of a solid steel
block, one gets a deformation of 0.6 mm Which is entirely acceptable.
If not sufficient, additional straightening could be achieved by

adding an additional external retaining cylinder.
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Appendix 1

Deformation due to radial forces on a cylinder

Assume the idealized case of Fig. 1. A cylinder of length & of
average radius r and thickness h is subject to two diametrically
opposite traction forces F. We shall determine the effects existing in s
such a configuration,

We shall assume that the ring is ideally cut along the line
indicated in Fig. 2. For symmetry reasons, no shear stress can exist
along these sections. Instead we find a tension force F/2 and a bending
moment M_, which is defined in our case as positive if it tends to

increase the local radius of the cylinder,

Along the section I defined by the polar angle ¢ (Fig. 2) we can
calculate the internal forces and moments with the condition of
equilibrium of the separate slices. Projecting the forces along N and T

and calculating the bending moment along the section, we get (Fig. 2)

N =% cosd T =-—§- sind ¢

F
=M — -—
Mf 5 + > T (1 - cosd)
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The work performed over the whole cylinder after the deformation

is given by:

/2 1 Mf 2 ME XT?

We=24/ —_— N+ + — rdd (2)
o 2ES r 2E T GS

where:

E is the Young modulus

is the modulus of rigidity

G
X is a dimension less coefficient = 1.2 for rectangular cross—sections.
S is the moment of inertia. Its value is given by the formula:

I is the moment of inertia. Its value is given by the formula:

B 2 p 4 6
1 [h 1 [h l(h
I =fsr? — =+ —|=)+ T\T) * e
12 \r 80 \r 448\r

for h < <r, the moment of inertia, given by the first term of the

expansion coincides with the one of a rectangular section.

According to the theorem of Castigliano, the equilibrium conditions
oW

3&; = 0, or equivalently to
m/2 1 M, N 1 BMf
— + n——— Sem— —
of ES N oM Y * @
[o) (o]
M oM xT 3T
+ -.f_ ——f + ce—— —— dd) =0
EI M GS M
ON 3T oM,
Setting - = = =0 — =1 ve get
oM oM oM
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/2 F cos¢ 1 1 Fr
S + | — + - M +=— (l-cos¢){p dp =0
0 25r st? I ° 2 .

o

Performing the integrals and solving respect to Mo we get:

1 1 Sr2
Mo ==-Fr|~— - =
2
2 I Sr +Io
F
No=—
2

. . o
For curvatures which are not too steep, i.e. r > >\J— we get

M= -Fr &G-3)
o 2 7

To conclude, the total internal forces and moments are as a

function of ¢:

N ="E2"' cos¢ T =—§- sing
Fr 2 1
Mf = — - ———— - cOS(
2 m™ 1 + IO/Sr2

(4a)

(4b)

(5)

Replacing the values of (5) in Eq. (2) integrating on ¢ we arrive

at the following formula:

w3 mr? T X

(T2-6) + === =
64 ES 64 I E 32 GS

(6)
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In order to calculate the maximum sagitta we apply energy

conservation and assuming that defractions are proportional to the

applied force:

4=fF(s)ds=£§ - W 7)

where S is the elongation of the radius of the cylinder. Combining

(6) and (7) we get

. 7rF 2 r? X
S = — + (m?-6) + — (8)
16 2ES ZIOE GS

For sufficiently large radii the second term is dominating and we get:

(12-6) riF Frd

~ 0,121

32 T E IE
o o

which compares with the classic formula of a bar with a force at one

end and fixed on the other side etc:

F23

S: ——

3I E
o

Two formula coincide when £ = 1.40 r g—72—T--is as one would have expected.
Assume in one particular application a steel tube one metre long,

of average radius of 75 cm and 20 cm thick. For steel we have

E = 2.1 x 107 Kg/ecm?, G = 0.77 x 10° Kg/cm®. The moment inertia is

I Y 20 x 100 x (75)2 x 1% (i?o)"z = 6.67 x 10" cm". With these numbers

we get:

14.73 (1.17 x 10 1% + 7,76 x 107° + 7.79 x 107!%) =1.27 x 10 “cm/Kg

S
F

Note that the result goes like v h® and that a 3 cm thick sheet will

S -
give F=3.75x 10 > cm/Kg.



