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ABSTRACT

Functional integrals are useful in many
branches of theoretical physics, and we can
regard them as an "integral calculus" for
modern physics. Solutions of differential or
functional equations arising in diffusion
theory, quantum mechanics, quantum fleld theory
and quantum statistical mechenics may be
written down as functicnal integrals. Nowa—
days functional integral methods are widely
applied to problems connected with the guan—
tization of gauge fields. There exist many
interesting applications of functional inte-—
grals to +the infra-—red and ultra- violet
agymptotic behaviours of Green functions in
quantum field theory. Recently a new region
for applying functional methods has arisen -
namely the thecry of extended objects {(vortex—
like excitations, solitons, instantons). In
statistical physics functicnal methods are
widely applied to the theory of phase trans—
itions of the second kind, and they are very
useful for problems in which we have to des-—
cribe collective modes {long—wave phonons and
quantum vortices in superfluids and supercon-
ductors, plasma osclillations in the theory of
systems of charged particles and so on). So
far, a rigorous mathematical theory of fune~
tional integrals in quantum field theory and
guantum statistical mechanics still does not
exist and neither does a rigorous theory in
an operator formalism. Nevertheless, we can
uge functicnal methods as a powerful heuris—
tic teool for building perturbation theory or
to zo fromone perturbative scheme to ancther.

These lectures are deveted to some ap-—
plications of functional integrals in quantum
field theory.

*) On leave of absence from the Leningrad Division of
VoA, Steklov Mathematical Institute, Leningrad, USSR,
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LECTURE 1

FUNCTTONAL INTEGRALS IN QUANTUM MECHANICS

Let us consider a2 one—dimensional mechanical system with a Hamiltonian

H{a,p). If we want to quantize it, we have to change gq,p by the operators

. P A ) 9
. '57 — q = ? , f) — }3 = —-L.h §€r (1)

i acting in Hilbert space of wave functions $(q). As we know, the Schrddinger
*
equation

LDW-:}:}\]& (2)

ot

has a formal solution

Vi(t) = L:t(t) Yits) (3)

where
A

WU it) = exp(-itH) ()

ig the co-called evolution cperator.

It turns out that the follewing matrix element of the evolution

operator

A
o' je M e (5)
can be writien down as some average
< e® > (6)
over all trajectories a(7v), p(7) 1in phase space T, such that

?IO) = q , ?{t) - ?I. (7)

5 in Eq. (6) ig an action functiomal

*¥)  We will use units with h=1.



T
S = J‘(Pff)ﬁ'ff) - H(?('C),P(TJ)_)c/‘(' (8)

(§eT) = Jd"(ct))'

The average < expi8 > 1is nothing but a functionsl integral. It can

be defined as a limit of some finite~dimensional integral JN(q,q',t) when
N—=w if we choose some finite-dimensional approximation for trajectories in
phase space. We can use different ways of approximation. One of Hhem is the
fellowing. Det us divide the time interval [@,ﬁ] into N equal parts by
points T1"'°’TN;7° We will consider trajectories for which the p(T)

function is constant in every small interval

(0,7 (t, %), . .. (g, t) (9)

M-t

and q(T) is a linear function in every small interval
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We will know the trajectory if we know the 28«1 values

?n---,?”_,, Pi, -, Pn~ (10)

The & functional furns out to be a functionm of q,q' angd (2N*1) varisbles

(10).
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Let us consider the finite-dimensional integral

|

(2505 fﬂlfn dg,dpdg, .. dg, dp, exp (S = (11)
= J, (9.9, ¢ |

over variables (10).

The main statement is that the 1limit of (‘IT), when N goes to ®,

is equal to the matrix element (5) :

—('tljl I

linn T (9,9,8) = 9'le

N = 00

?> (12)

Let us check this statement for the two limiting cases :

1) "= H(q);
2) H = H{p).

If H= H(Q) we will have :
S = ,((F?—H(y))f/r =
(13)
= PG - g) + Py (Ga=9) et PO ) T JH(?“” t

Tntegrating over PyyevesPyy We ocbtain

@) [ dp.dpy exp iCpits-9) e - 4 ptg'-g, ) =

(14)
= J‘(?‘?f) op(qt _?z) - - - J’(?JV-: - ?')
Due to the & functions, it is easy to integrate over Gyges ,qN 1 and
obtain the answer
J;/[?’?I,'t) = Op(?—?’) E,K/D(-%'f'/“/(?)) (15)

which is nothing but the matrix element (5) for H = #{q).
If H = H(p), we have
t
= {U’?"H(;))d‘c = .
= Pil9=9) +R (92-9)+. A PG -4,.,) — J;H(p(-r))zf'( (16)



In this case we can integrate over Gpaeeery 4

(z:r>’Nj"?,~--°/?y-, exp (P9, -9)+ P (-9 + -+ Pul9= %)) =
{17)
= (2n) expilp 9'~P9) Pippy . B, B

Then we can integrate over all p wvariables, except one, and obtain the

result
(2;:.)"}1;9 exp(iply'~9) -t Hip)) (1)

This is nothing but (5) for H = H{p).

If H depends on both variables g, p, the problem of proving {(12)
becomes more difficult. It should be stressed that, in the general case, the
lTimit {(12) would depend on the way we do a finite~dimensional approximation.
It is connected with the problem of the crdering of operators a, B after
the substitution of q~jﬁ, p=p in H{q,p}. This problem has no definite
solution, because there is no natural recipe for the c¢rdering. Fortunately,

in quantum mechanics we deal with Hamiltonians of the form
H tp> + H, (9 (19)

where Hq(p) is a kinetic term, and H2(q) is a potential. In this case we
have no problem of ordering, and the limit (12) doces not depend on the approxi-—

mation.

Let us now prove (12) for the case

2

= P
H = r o Vig) (20)

typical in guantum mechanics. We will use a slightly different way of appro—
ximation. Namely, we will consider g(7) functions which are constant in the

intervals

(O, 2_) , (}) Tj-!-l-i_z_) S (T”_,;t’ 't) (21)

L
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Let wus multiply JN(q,q',t) by scome function ¢o(q) and integrate

over g :

¢(7'>t) = jJ—N(?,‘?I,t) é, (9 ‘/? (22)

We may consider ¢O, ¢ as elements of the Hilbert space and rewrite (22) in

the following form :

B le) =eh(§\;e'wg" AT & o
where
A 2
\/=V(?),Ho=—2§;=“f;%% )
) Now it is not difficult to show that
: Cip, cﬁN (t) = 75{1?) = e“"“t P, (25)
N oo

in the sense of a strong limit. Let us consider the difference

-~

-'-'3:.\’/‘ -—l"tfi:fu _"(\; -l"ff'?o -7 -—i'/:}t
?%V(t)—gﬁ(z‘):(e‘ e e .e e _¢ )5‘%(26)



According to the well-known Lie-Trotter—-Eato product t rmula, we have
A A ~ - e
Ty ~TH, =TV =TH, —¢Ev ~(Ht
&m " e - €

e *e ... € e = 0 {27)

N-»o0

if both ﬁo and V are self-adjoint operators. Eq. (27) means that

in, Il B, 180 — Pte2]l = 0 (28)

N-—’go
and implies (25).

Let us denote the limit of JN(q,q';t) (the functional integral) as
qlt)=¢'

dgierdpee)
[ esis) [l
fl=q N

Suchk & notation is useful in spite of the fact that the number of integrations

over momenta (N) .is net equal to the number of integrations over co-ordinates

(N=1).

Generalization of the scheme described above to the case of an arbitrary

finite number cf variables is straightforward. We have t0 change

qu,p) — H(q’,...,q”,p,,..., P)

| o - (%0)
xy™ @y ™ g~ 1405, A= ] p,

'.=, t=r

in Bq. (29). We shall denote the corresponding functional integral as

gitr =g’

" doiior dp. |
[ expri$) NP &
q{o)-:? T =y 7T

if we Tix q'y...,9° on both ends of the time interval |0,t].

Let me conclude this lecture by one example of the functional integral

in the case where phase space is not Rgﬂa

Namely, let us consider T = U(1)XR (cylinder). We can calculate the

corresponding functional integral :

e T IR U T T BT R U T i ST TEE TR L T T R Ty R R F T P T



<¥'lexp(-Ht)| ¢) = Sexf J(pdp-Hio) U:{%’J{ (=2

ir H = H(p).

The above limiting expression in the exponent is equal to

N Jud
{ _5_ Pl -¢.) —¢ Z HipoaT (33)
1 =1 =y

tegrate exp(iS) over N wvariables pi and over {N—T)mio

We have to i
It is clear that we must integrate over p. from -®» to @ . But what

about the limits\of integrations over ®; ? We can understand m(t) as

&Plﬁl) = Plo) + _(JLP (34)

The right—hand si&@ of (34) can be squal to an arbitrary real number. This

o{t) which obey conditions

is why we have to \ntegrate over @ from -® to ®. Put then we must
sum over the functiﬁg\\

Plo) = (f[t) p'+2mn N s integer (35)

This is why we obtain the following expression @

an 2, (T[4 expfc Zptg,, -4y +

= -0 =t

(36)
i 2n - ZHipo o)
The integral over Dyyeee Py g is equal to
@x) fﬂ"v’ exp{ ZP,%, r.)}
(37)

N1

= (2,“)“1%‘1—]‘ J‘(P"_Pw-f)} eXFL(PNV!*P'V)

v
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Now, 11 we lategrate cver all momentum varisables gxecept one, wo

cbtain
(2m”'JJF D ex}of CPLP'=¢) + 2ytnpie (T H(p;} i

Using the formula

o0 oo
Z, exf’(’Qﬁn“P() = Z‘CP(F"M) (59)
Nz —oo

e o oo

we came 10 the answer :

o0

Q)" P exXp imipw - exp(-ct Hom) (40)

h= - po

This is the sum over all possible values of the momenlum variable p=m in

compact co—ordirate space.

Problem :

Congider the case of thorus T{0 < x < a, 0<y<b) and try to
obtain the condition ab=21k (k is jnteger). (Quantization o1 the

velume of a compact phasc space)u



LECTURE 2

QUANTIZATION AND FUNCTIONAL INTEGRALS FOR SYSTEMS WITH CONSTRAINTS

We may consider field theory as an infinite~dimensicnal analogue of a

mechanical system. We can gquantize a field system if we generalize the

method of quantization developed for finilte-dimension systems. In such an
approach, gauge fleld theory is nothing but the infinite-dimensional gensra-—
lization of the finite-~dimensional system with constiraints. Therefore if we
want to deal with gauge fields, let us cousider finite—dimensional systems
with coustraints., The claszsical action functicnal for such a system is equal
to

=1

S = JJT(iP{C}( - H(?,p) - QZ:.AQ 'fq(‘i,)”) (1)

The set of variables g,p form the phase space I, diml=2n, A, (a=1,000,m)

are the Lagrange multipliers and wa are constraints. We will assume that the

Tollowing conditions are fulfilled :

{H ¢} = 2. ceyf

fen gy = )7 il

(2)

Here d
S, 95 2 2f
{7(:3} = 2;(:@7}? "55 —_’5_?7"55‘.) (3)

is the Poisson bracket.

By demanding 3 to have an extremum, we obtain the following systenm
of equations :

. oH dy? ,
? = af%. + é%;:th 5};- t =1, ...

: w (4)
fi' = - %ggé' - ¢§ii,;\q Easz ¢ =1 e, 4

lf“(q},;) = 0 a=t,...
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Constraint egquations show that some variables are extrs ones, and
should be excluded. In practice, such an excinding problem is very
complicated in many cases. This is why we want to have a method which does

not require an explicit solution of constraint equations.

Because of conditions (2) any trajectory in phase space cannot leave
submenifold WM, defined by the constraint equations mazzO, if its initial

point is on M. Really, if ma==0 for t= 0 we have
e £ pa —
P = {H, v} +;)~ei‘f’,5’} =
€a
= 2o + 222 €y P
] £,d

dimM=2n-m. Let us now restirict once more the space of variables. Namely,
we shall call physical variables only those wvariables which obey the systenm

{5»?‘1} = ;dztfg (6)

If this system is fulfilled, the time derivative

f=LH 4] + 2.2 1¥" £} (7

does not depend on & choice of lagrange multipliers A .  System (6)
defines trajectories on submanifold M such that f=const along every
trajectory. Therefore we know f 1if we krow it on the surface of dimen—
sion (2n—m)—nu=2(n—m) which intersects every trajectery in one point.

Such a surface may be defined by equation :

Xalg,p) =0 A=A, (8)
The necessary condition is
det ([ {x, ¢¢3 [l # 0 (9)

Furthermore, it will be suitable to demand that the X, commute with each

other

{-Xa’Zg} =0 (10)

L L AR D TG BT IR T T T e T R T T RS T Y T R e S P N P T R TR e
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I+ this 1s the case, we can perform a csnonical transformaticn which turns the

Xa into new canonical momenta

Xa(9,p) = Pa @z 1, . m (1)

Let qa be the co-ordinates conjugate to Pgs and q*,p* be the rest of the
cancnical variables. In the new variables, condition (9) can be rewritten

in the following form :
a
det || %fe || = o (12)

which implies that we can solve the system ¢a=:0, a=T,04syn and find
a gy % _*
a”=a {a*,p").

S0 the constraint conditions maH=O and the supplewentnry conditions

Xa define the physical phase space r*. We have for T
- Q Q » *
fa=0, ¢ = 9 (35,77) (13)

We can now construct a functional integral scheme for our system with
constrainits. Let us checose the supplementary conditicns Xa==O g0 that (9)

and (10) are fulfilled.

The main statement is : the matrix element of the evolution operator

can be expressed as the following functional integral :
1 L
Exp ‘.J’AT(Z Peq® = H[‘?,P))} ﬂ 0’)1(7(1), p(r) (14)
o i=¢ -

where the measure is egqual to

dp (90, pror) = (@r) det[l{x, ¢¢}1I T18) 8¢ [y dpes)
aq =y

*
In order tc prove this statement let us go to the new variables qa,q*,pa,p
mentioned above, performing a canonical transformation in T. In terms of

new variables we have

L R T R TRy



I = @™ dee | S ot Stp) [T dg dp. =

ﬂ (Pt o (9% =92 (q" P™) 9 dp, ﬂ 9% dlp}

23

(16)

We can now integrate over q s Py due to the & functions, and we obtaln

the integral

Jor g J(Z— P = Hampn) fh‘} 1] 4o

T j=t 27t (17)

It is nothing but a functional integral for a non-degenerate mechanical

system, described in fthe first Lecture.

We can rewrite the integral (16) in the following form

+
exx’{ ( [(2:; P9 — H - Z o ) d } :

ﬂdet“{)f., 9}” P “ﬂ€(1a)ﬂ47ﬂ'// HATA(;

L=1

(18)

The symbol %(ATdhb>/2ﬂ shows that before the limiting process we have the

following integral over Ka variables :

SEX/J(-L'ZAqu,-)SPq(?(T,-})F('q.)) A'C) HATb\e _

i ¢ B (19)
IS ATLINLS)

This means that we can integrate over A, in (18) and go back to (16).

Iet us now show that the integral (16) does not depend on the concrete
choice of supplementary conditions Xa' et 6Xa be an infinitesimal addendum

to the supplementary condition Xa. We can write :

J’Ya_ = {¢,X¢} + Zg_quPe
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wWhere
- - &
45 - 25_ AQ (P )
a

2;‘}74,‘/’6}1’16 = - JdX,

- P & » . : N .

O tihe submanifold M (cp‘:O} we ean eohalder X az the rosult of an
&

intini legimnl canonitval translormalion with a penerator ¢

Now wo have

Spt = ZA, p ¢

where

A% = dheyt} = Zohe

Ko = Xa + QA 9 e piy 5T % ¢ H>M,
é

ﬂf(kfa) — ]—]J‘(tp““ﬂfﬁ“} = 1+ Ai)d HJ)(PQ,] ,
& q

@

det {2, ¢8|l - det [{x+8x p€sap®]]

= det H{ xedw, Ol det |22 00D
opé
4
a
= det || {xs oxa €Y (A + Ad)
Therelore 11 Lhie chocge dn lhe measure is o changoe X_J - XHMSX_V. P4 s
Lhal o soicorn bl dnvierioat 50 woe |

WO TR o Koo -+5X,i.
LA v ol



LECTURTE 3

FUNCTIONAL INTEGRATS AND DIAGRAM TECHNIQUES IN QUANTUM FIELD THEORY

We may consider gquantum field theory as a theory of a mechanical
system with an infinite number of degrees of freedom. There are different
ways to introduce functional integrals into field theory. The first one is
to start with the Hamiltonian form of the action funetional and then to deal
with the fumctional integral over all the trajectories in the phase space
of our infinite-dimensional system. The second way is to start with the so-
called functional integral Mover all fields" in order to obtain the explicit
relativistic theory. Every way has its cwn advantages and demerits. If we
use the Hamiltonian appreach, the relativistic invariance is hidden and is
difficult to prove in many cases. As 10 unitarity - it is evident in the
Hamiltonian approach — but not in the formalism of integration over all

fields.

First of all, let me dwell upon the formalism of integration over all
fields. We will use this formalism in order to obtain the periturbative scheme
for Green functions. It is appropriate to consider the example of self-

interacting neutral scalar fields with the following action funciional
1z 2 3
S A R TR m 9
= o} - 4 - 2 — 4 :
jx(‘z,‘f’ fr -2 &Y (1)

A%t the end of this Iecture I shall show how to go from the integral

over all fields fto the Hamiltonian form of the funcitional integral.

Let us take a big cubic volume V in Minkowski space-time and divide
it in N4 equal small cubes vy (i::T,...,N4)o Let ug choose the approxi-

mation of w(x) by functions which are constant in every cube Vs

Yix) = const X €V, (2)

For derivatives we shall use the following approximation :

Y = L yixrd,al) - wixn] (5)

M ~ at

URRIL LI s U U ot e g BRI R DI R 18 B e e b I ) P (AT Y P LS B R E p
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If the approximations (2) and (3) are made, S will be a function of N4

variables mi(x) and we may consider the integral

Se"fft‘ Sy | Tdgo (@)

=
eV .

We may now define the one-particle Greer function in the following

way @

G,y = — (<Wwoayivi> =

fexp(t'g) Pixype) !__7, 4, x) (5)

= - et'w.
N'f
V"-e»o

Vo0 {EKP(‘.S‘ ﬂ d(!o'_(x)

=

For the right-hand side of (5) we shall use the notation
. 4
S J
e Xy YIY) ﬂ (X)

S e(S U dypox)

It is a difficult problem, which is as yet unsolved, to prove that the

{(6)

limit (5) dees indeed exist, Nevertheless we can calculate Green functhions
in the free field thecry (when the coupling constant g vanishes) and then

develop a perturbative scheme.

Let us consider the generating functional

fexp(fs + 0 J'zex)wxw/*x) U dprx)
2= (7)
{exp(iS) My

We can obtain all the Green functions by differentiating Z[’n] « FPFor

instance, we have

A \
Gy = & o Z 1] oee ()
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First of all, let us obtain the generating functionsl 2 [n] for tue

free field (g::O)u We can do it by performing the shift transformation

PO == Pixy + ¢ (x) (9)

in the integral in the numerator of (7), in order to cancel the linear

funetional jn@d4x in the exponent. The cancellalion condition

— {1 +m?) Yo (xy = = 0 ) (10)

can be solved in the form

forxy = — fD(x,w?(vu/"y (1)

whers D(X,y) is a Green functicn of the equation
(-0, —m*YDx,y) = ~d(x-v) (12)
We obtain the following formulsa

20[7] = < e)(f) ('f'?(x) lffx)cj"’x >o =

(13)
= e&P - i'i.jd‘;(c/qy 7ZX)D(X,V”?(V)

The Green function D(X,Y) is still not defined by Eq. {(12) because .
we may add an arbitrary soluiion f of the homogeneous equaticn (~[]x—m2)f==0
to any solution of (i2). levertheless, there exists tae most natural Torm or
D{x,y), which can be justified in many ways. One of them is the following.

Let us note that expil8 is an oscillating functional, and |exp(is)|=1.
S0 we cannot hope fthe integral couverges well. Let us try to improve conver--

gence by changing :
So= S = & fp-o-mrice)pdu 0

where € ig an arbitrarily small positive parameter. The absolute value of
‘ . . 2 )
exp 1 5 is less than one and vanishes if jm dx—on If we use the "improved"
oe
action Soe instead of SO, and then let ¢ go to +0, we obtain the

following Green funcition



K %)

= DF(X—Y) (15)

”
D{X~Y}= {’l‘m L KJKQ

K% —wmZ+ e
This is the so-called Feynman (or causal) Green function. Now it is clear

that we have %o take D(x,y} in (13) as DF(X—y}.

If we differentiate (13%) twice and then put M=0, we will have

{Yoowvi> = ¢ Dg(x-v) (16)

It is easy to derive now formulae for averages of an arbitrary number of
field variables in a free field theory. It is evident that an average of an

0dd number of fields is edqual toc zero. Tor the case of an even number, we

arrive at

Wick!s thesorem :

The average of an even number of field variables in a free field
theory ig equal to the sum of the products of 2ll pessible pair
averages (the sum over all possible ways to get n pairs from

an Objects).

For instance, if n=4, we will have
< Pix,) POq) Plxgd WX"DO = < }o(x’“?p[xz)z <l]0(x3) Pix,)) +

(173
+<5"“‘f"f”xs)>o<‘P("15Wv’>o + <tp(x,)yﬂ(x,)>o<‘flxz)WXsDO 7

So we may consider Eq. (13) to be equivalent tc Wick'!'s theorem.

We are now ready tc derive the perturbation theory. Let us expand

exp 1S

S @S )"
-QXP ;'S . exP L'So e'X[-H'S, — e-)(P '.S-o _L_____Y_t_:__ (18)



where

Si= =g s 05

Substituting Eg. (18) into Eg. (6), we come to the following formulas for the
Green function

G(x Y)
4]

(20)

m(3|)ﬂ e S"I"u---ﬂ(’(n if’afx.}-.-lfzf.x..) Udtp(m

Dividing both the numerator and the denominator of (20) by the same factor

Iexp(iso)%dw(x), we obtain the averages

KQL'S" '-f’stx,).,..\lozfx,,y []JLFIX)
Se'&’ [1dyoo e
x

in the denominator of (20), and the averages

CACI IR RN

popin o Pirxn > (22)

in the numerator.

With the help of Wick's theorem we can calculate all the expressions

(21) and (22) Feynman noticed that it is convenlent to relate some picture

(dlagram) to every term of the sum in Wick's theorem.

We can arrive at diagraws in the following way. First of all let us

relate the diagram
A L A A o)

which consists ¢f n points (every peint has three tails), to the denominator
average (21)o The correspcnding diazgram for the numerator average has the

following form :

DT R R 8 R SRt WL b I e AR AL TR L e e e s e



— AT A A AT e

In order to distinguish the pictures, (23%) and (24), from real Feynman
diagrams, let us call them prediagrams. Each predisgram has its own symme try
group. The order of the group is egual to Rn= I(EA)n due to the fact that
we may rearrange every pair of points XygeossX, and every palir of tails
attached tc a given point without changing a prediagram. Let us note that we
have just (qig)nR;1 factors in series in both the numerator and the denomi-
nator in the right-hand side of (20). According to Wick's theorem, each
average (21) cr (22) is egqual to the sum of the products of pair averages.

We can obtain a diagram corresponding to a given way of getting n pairs
from 2n Field variables if we link sach pair of points (xi,xj) by line

if there is an average <¢(Xi)¢(xj)25 in the product of pair averages. The

number of lines 1s equal to the number of pairs.

For instance, if n=4 we obtain the following set of diagrams from

prediagram (23):
o é ¢
e © @
and the following one for (24) :
a <
co o @& of
(26)

e Y/~ 8N

In (25) and (26) we do nct take into account tadpole diagrams like this one :

O—0O ()

We can exclude such diagrams by introducing the counter term aj¢(x)dx in the

action functional and by chocsing a in order to cancel all tadpole contribu-—

tiong
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+ + ... 1]

In the operator formelism-we exclude the tadpole diagrams by choosing the

normal form of field operators :@3(x): o

Now we can calculate the expression for a given diagram if we integrate

the product

nOFHch(xj))o (59)

-
OVeT Xyyeos X, and then multiply the result by (nig)an «N. Here N 1is

the number of ways to get a glven diagram from a prediagram. It is easy to
see that

_ Rn
N = ~ (30)

where 1 is the order of a group symmetry of the diagram.

We thus come to corresponding rules which allow us o calculate an
expression corresponding to a given dimgram. DLet us relate Green's function
DF(Xiﬁxj) to each line connecting points X and Xj’ and the coupling

constant g to every vertex :

X, X.

’ DF (Xe =x)

A g

In order to obtain the expression corresponding to a given diagram,

(31)

we have to take the product of the expressions corresponding to its elements
(1ines and vertices), and then to integrate this product over all co—ordinates

of the vertices. We then have to multiply the result by

b-n -1
L g4 (32)
for diagrams cf the denominator, and by
-ﬁ'h*f -1
t g4 (53%)

for diagrams of the numerator. r. in (%2) and (33) is an order of the symmetry

group of a diagram.
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It is a well-known fact that the derominator of (20) may be written

in an exponential fcrm

vac)

exp 2: D( (34)

vac . . . ; - .
Here D, is the contribution of the +th  connected vacuum diagram (Jaeo,
4
a diagram without outgoing 1ines)u The expouent function is due teo the

symmetry factor

-1
n.
[_I(nf! L& ‘) {35)
v
for any diagram which consists of 1, connected components of the first sort,

n, components of the second scrt, and so on.

The numerator of (20) Ls equal to the factor (34), multiplied by the sun
o all connected disgrams without vacuum components. This is why the factor
(34) in the numerator cancels that in the denominater, and we may take into

account only connected diagrams without vacuum components.

As for councrete calculations, 1t is more suitable %o go to the Fourier

transform
{ VKX y
(ZIT)" 36
and to consider Green Tunchion:

<EF{K1)"'¥(K“)>O (37)

The elements of the dizgram technique in momentum gpace are the

Tollowing cones :

(K +Ke) (KE =ty oyt

)i 9 9K+ Kyt Kg)

K, L

(33)

We shall obtain an expression corresponding to a given diagram i1 we fake a
preduct of the expressions corresponding to all diagrem elements and then

integrate this product over all inner momenta and multiply the result by



; b-n-1
4 ( ‘ ) (39)
T \(2x)

fn~1=c¢ dis nothing but the number of independent loops in a given diagram.

Every Green function in %k space has the form

Gk k) = LIS %) Mk, ) (40)

Here 6(Zki) ig due 0o the energy-momentum conservation law.
i

If we know the Green functions, we can obtain the 3 matrix elements

by using the well-known formula :

n ) )
Skyin) = i Mk kA TNy 02k 12 k0T Cam®
=)
(41)

devnﬁ-

Let me conclude this Lecture bj demonstrating how we can go from the
integral cover all fields to the Hamiltonian form of the functional integral.

Let us show the integral over ¢ fields

SEKP(L'SD{’]) l_]dlflx) (22)

to be equivalent to the functional integral

exs(Strm) Dégmdnr

over o and mw fields. Here

T 2 2 2\
Spxd = §(rap- T B8 29 - 2%,

A

The functional SE&,&] is equal to S[ﬁﬂ if we change n — boma The integral
(43) ig a Hamiltonian functiocnal integral. The corresponding Hamiltonian is

equal to
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H=fi (32 E ¢ 14 ¥) w

Here m(x) plays the role of a co—ordinate density, w(x) is the momentum

density.

We can go back from (43) 1o (42) by performing the shift transformation
W (X) == TCIX) 4 o P(X) (46)

Instead of (43) we cbtain the integral (42) multiplied by

exp(_%gﬁzlx)cl”x) nth((x} (47)
} 4

We may consider (47) as some normalized factor. In integrals for the

Green functions we have factors (47) in both the numerator and the denominator

and they cancel one another,

So we see that it 1Is peossible to go to the Hamiltonian form of the
functiconal integral by introducing the integral over a new variable (momentum

density) intc the integral over all fields,




LECTURE 4

THE CASE OF FERMIONS; FUNCTIONAL INTEGRALS IN QUANTUM STATISTICAL MECHANTOS

In the previous Lecture we have considersd the quantization scheme for
a Bose field in the functional intsegral approach. Quantization of Fermi fields
mzy be realized with the help of the integration scheme over anticomnuting

variables.,

We can define the integral over a Fermi field as 2 limit of the integral

over the Grassmann algebra with a finite (even] nurber of generators

X. x. =1, (1)

b

which anticommute with each other :

xF et xt = X. X"+ x¥x. =
XX+ XX, =0 0 X Xk XTX =0 XX+ XX, =0 (2)
According to Ege. (2) we have xi::O, x§2=:0, and each element of the algebra
can be written down in the following form @
a a, %£ * &,
* . i h ) X
Foox*) = D7 Caa g g, XX ()

a;, € =01
Hers Caﬂ"ansbj”bn are complex coefficients.

Let us define the involution operation in the algebra by the following

formula :

é f;, *4, *a,

5= ) Caae.g X XXX | ()

0‘.l f‘ ":O;'
We can now introduce the functional integral over the algebra

g{fx,X”JQ(X*dx = JJC(X.,...,X-»,X.*,...,x.‘*) di*dx, . detdx, (s

We can do it in a unique way, by demanding that the following conditions are

valid

B T T T T R e T U AT



| fdx‘. =0 fa[x‘.*-.— o gx,-o!xl. =1 S‘xfdx,.* = { (6)

forbiecctbetin e fqivt o fpbes

Symbols dxi, dxf mist anticommute with each other and with the gensrators

1

of the aligebra. The Cj, C coefficients in (7) are complex numbers.

2

So if we integrate the polynomial Tunction (3), we obtain the following

result

. |

X

The follewing two formulae are important for future applications to quantum

field theory

j‘exp(—x*Ax) dx*dx = det A (9)

‘(exP(-— CAX wqTx e X0} dx*ax

= exp 1Ay (10)
Jexp(_-—x*ﬁxﬁ dx* dx

* . .
where x Ax 1is a guadratic form

XAx = D a, x*x
LY 4 ('H)

* )
T x, x*n are linear forms

A R AN (r2
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*.
The symbols s ni anticommute with each other and with the generators x., Xy

. . . * *
This is why we may consider the set Mir Mis Xiy X5 88 @ set of generators

of a wider algebra.

We shall prove (10) if we expand the exp Tfunction and then notice
that only the n't term gives a contribution to the integral. As Tor Eq. (11),
we can prove 1t with the help of the shift transformation x— x+m, x*~$x*+q*

which cancel the linear terms in the exponent.

Let me now dwell upon the functional integrals in gquantum statistical

mechanics.

First of all, let us consider the system of Bose particles at finite
temperature T din the finite cubic valume VAR *). It turns cut that we
can associate a functional integral cover a space of complex Tunctions w(;,T)
(Rev, 1el0,8], B=T_7) with our Bose system.

We shall demand {(%,7) to be a pericdic function, so #(x,0) =4(X,p).
Besides this it is suitable to impese pericdie boundary conditions on the x

variable. We may thus expand ¢(%,7), ¥(%X,T) in Fourier series

y (KX +ewT)
PR = = 2 e A (F,w)
I
—— (13)
— 2 —i{KX +wWT)
(]I/(?,T) = --—-iw- qe a+(-’<97w}
-

Here a(%,w), a+(E,w) are Fourier coefficients

w = 2ﬂn/ﬁ’ K(.:‘_ 2»31'”(' /L , n, Hf’ Hz’hl arLe tfnf-egets (14.)

Let us introduce the functional

£ R
S:: gdtgdsx ?()?,TJQTY’(F,T) — fH’(T}('['Z (15)

which plays the role of an asction functional of the system. Here B (1) is

the so-called generalized Hamiltonian

%) T will use the system of units where h=X_ =1 (# is the Planck
constant and kB is the Boltzmann constan%).
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H'oo = [d% (2 FFETYET) — A Fier piie)+
— _ (16)
+%§J‘xd’y UK=Y Y (o) YT AR SR

u(;L§) is a pair potential function, A 1s a chemical poteniial coefficient.

We can now define the Green function of the system by 3

G, 1) = — L R0 Fige> (17)

where

S o e Jrd
<Y/(?,T)?(§’,r')> - Se WX,T.{HY(Y,T) gdy

ges c/ft/% (18)

is a quotient of two functional integrals over a space of complex funections.

We denote the measure of integration as dvdy.

It is convenient to use the Fourler decomposition (13) and to rewrite

.1.

the S functional in terms of the Fourier coefficients a, a

S=So+5.: (19)

where

{20)

S = Z(L'w_§£+n) at(p) Qlp)
P

4 e ey
S = - vy Z(vw,-xgnwx,-x,)) atipya¥tp)up,) a(p,)
P'+P2.=P3+Pq
(21)
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Here p' denotes the set (g,w), V(E) ig the Fourier transform of u(;)
which is defined by :
(ER

W)= L e v (22)
™

4
\%

+

In terms of a, a we have the following explicit form for the measure
-— +
CJ\)’&/L}/ = ﬂtJQ (;o)c/Q(p) (23)
P

We can now build up the perturbative scheme for the Green functions
like we did for the relativistic Bose field in Tecture %. First of all we
can calculate the generating functional for the free field theory [in the case
of a vanishing pailr potential u(;;g)jo The corresponding formulas is eguiva—
lent to the Wick thecrem. We then use the expansion :
L el
S S, S S S,
° 1 e —
hoo *

where SO is & quadratic form, S1 is a fourth degree form in the S

functional.

So we arrive at diagram techniques with the following elements :

P p' (¢ K -1
P W — =
J‘PP‘ ‘ F +))
(25)
Py P - -
X 1 v(bekg) + V(K1'-Ky)
F@ Pa

In order to obtain an expression corresponding to a given diagram, we have to
take a product of the expressions corresponding to all diagram elements, and
then sum up over all independent four-momenta p==(§,w) and multiply the
result by

&-n

(1)

1
T oipyS (26)

for wvacuum diagrams, and by

T LI



E-n-1
A /=1 (27)
z \gv.
for diagrams corresponding to a one-particle Green function. r 1in Egs.

(26) and (27) is an order of a symmetry group of z given diagran.

The exponentiaticn of contributions of vacuunm diagrams takes place in
stétistical mechanics as well as in relativistic field theory. This is the
inherent feature of 2 perturbative scheme independent of concrete details of
the theory. Therefore we may take inte account only connected disgrams

(without vacuum components) for the Green functions.

However, the sum of all vacuum diagrams has a physical meaning in

statistical mechanics. HNamely, we have the formuia :

S .

e~ dgd
g ¥ ?/ '-—Z—- = e)(/’ﬁ(.f).o-"ﬂ ) {28)
(e>apay %

Here ZO, 7 are partition functions for idesl and non-ideal systems, Q=

I

= -p V Q= =pV where p is the pressure 1n an ideal system and p 1s
o' ’ o ’

the pressure in a non-ideal one. The left-hand side of (18) is equal to

eXF (Z D‘.MU) (29)

vac . . .
( ) is the sum of all connected vacuum diagrams. So we arrive

i
at the formula :

- - _f_ D.(VQC)
P P BV L: ¢ (30)

where T D
1

If we want to deal with a Fermi system at finite temperature T in
the wvolume V::Lg, we have to use the anticommutative field functions

$(%,m), T(x,7). It turas out that ¢, ¥ must be antiperiodic :
- > e o, e
%(x,ﬁ) = — )I«(x,ol , tllz(x,ﬁ)'—'-%“‘,o) (31)

S0 we have the following Fourier series Tor the ¥, ¥ in the Fermi case :



1 T+ BX)
(X.T) = == e Q(p)
PR = g 2

(32)

* (p)

_c'(&,'ti—-l(,;}
(?T) = —fw—- ﬂ?e a

where w=(2n+1)r/8 are the "Fermi frequencies™. Let us notice that the
Fourier coefficients a(p), a (p) in (32) may be considered as generators of

an infinite-dimensional Grassmann algebra.

The S functicnal and the Hamiltonian are of the same form - (15), (16)
— as those for the Bose sysftem. So we arrive at disgram technicues with the

elements

F it J‘PP, (t'w-— g + 7\) (M/ =(2n+1)rr[/5)

y

P ' P, — . - — (33)
3 >< VIK, - Ky) — VK, - Kk,)

The "Fermi" diagram technigues differ from the "Bose™ ones on the

following points :

1} Fermi freguencies ®=(2n+1)n/B are odd instead of even Bose ones
w=2nn/p;
- - -
2) we have an antigymme trized potential V(kT—k3>-V(k1~k4) in (%3)

instead of a symmetrized one in (25);

3) the factors with which we have to multiply the results afer summation
over independent momenta are

b-n

1) -'.g (:;f\‘,) (5¢)

for vacuum diagrams, and



f—n-y

(_,)F % (..‘p_‘.'\?) (35)

for diagrams corresponding to the one-particle Green function.
There is an extra factor (—7)F in (34) and (35), where F is

& number of independent closed fermion loops.

The diagram techniques which we have just obtained in the functional
integral approach are nothing but'the well-known Matzubura—-Abrikosov=Gorkov—
Dzyaloshinsky perturbation theory for the temperature Green functions. The
functional integral method gi#es ug the shortest way to obtain it. Moreover,
functional methods are very useful in many cases when the perturbative scheme
is nect applicable in its siandard form, for instance for the superfluid Bose

or Fermi systems.



LECTURTE 5

QUARTIZATION OF GAUGE FIELDS

Gauge flelds are geometrical objects. They may be considered as
connectior functions of some fiber bundles. The base of & bundle ig a Minkowskl

space—time and the fiber is a finite~dimensional "isotopic" space.

I we quantize a gauge field we must take into account its geometrical
nature. If two fields can be obtained one from the other by gauge transfor-
mation, they are non-distinguishable geometrically and phyeically. Therefore
it is natural to unite in one class all the fields which we can obtain from a
given one by gauge transformations. Obviously we need & theory which deals
with classes of fields rather than with fields themselves. Such a theory can
be developed in a funétional integral approach if we integrate not over all

fields but over some surface which has only one common point with every class.

Let A be a gauge field with A% components, where (,=0,1,2,3 4is
W
& space—time index, and a is an "isotopic" index. Iet us denote by 29

the field which one obtains from A by gauge transformaticn . The set

AQ, where A is fixed and O goes over G, is the so-called orbit of the

gauge E£roup.

The action functional of the gauge field is gauge invariant
I
S[A]:S[A] {1)

We will suppose a local measure of the function integration

{N[g]=-f]r]dﬁizm | (2)

X pma

to be gauge invariant as well asg S[}ﬂu This is really the case for both the
electromagnetic and Yang-Mills fields which we will consider below. The gauge
invariance of the action functional and the measure implies a nalve funcitional

integral
(STAJ
§e dp[A] (3)

to be propertional to the Mgroup volume!™
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Thus it iIs natural to extract factor (4) from (3). We can do it by going

to the inftegral over some surface
fiay =0 (5)

which has one and only cne common point with every gauge group crbit. It
means that the eguation f(AQ)==O has one and only one solution Q for any

Tixed A. Let us define a gauge invariant functional ﬂf[}ﬂ by the equation
Ne3
A;[R] .(rlcf(g(A (x)))n’_Q(x) = 9 6)
X

Here gﬁ(f(A(x))) is the so-called & functional which ig defined by the rule

of how fto integrate it with other functiocnals,

Now let us put the left-hand side of (&) into (3) and, after a change

of variables AQ-*A, we obtain just the factor (4) multiplied by the integral

et agLA] [ﬂ J’(]C(A))} dp A (7)

This integral is a starting point Ffor gauge field quantization. It does not
depend on a choice of the surface f(A)::O. We can prove it by substituting

another "unity"

{ = 8,[A] Kﬂ L(g(A%00))d0x (&)

into (7)0 Making the change of wvariables : A A ang A"eAQ_1, we obtain
the integral which differs from (2) by making the following change : f(A)~+g(A)

and & [4]- Ag[A] .

We can generalige (7), replacing the & functional by an arbitrary
non-gauge invariant functional LFEA] and Af[A] by (#[A] which is
defined by the equation :



L —
1) (Fran] Naaeo = g
So we come o the following functional integral

SecS[ﬁ] FIA) d>[A] a//q [A] (10)

We will justify the cutlined guantization scheme if we show the integral {7)
[ér (101] to be equivalent to the Hamiltonian foxm of the functional integral.
We shall do this for both the electromagnetic and Yang-Mills fields considered

below,

The electromagnetic field is the simplest gauge fisld., Its action

funectional

S =- %f(&ﬂv—ayﬁ,)‘d”x (1)

is invariant under the Abelian group of transformations

A

,..(’“ — Aﬂ{x\ + Qﬂkfx) (12)

as well as under the local integration measure

dpln] = DD“{AF(” (13)

Let us now chcose a non—-gauge invariant functional Eﬂ:&]. We will

consgider three possible ways of doing it

F't[n] = n op( Qﬁ ‘4,4(’“) Lorentz-Tanday gauge
FZ [A] = l—] J‘( at'Alv(x’) Coulomb gauge (14)

. ~ 2'4*1 Iongitudinal gau
RIA]= ex;a(-fgtg(%ﬁrm) x) ; e

The corresponding ¢ functionals are defined by the formulas

L T T L R Ty S T T IS e R R T S T s e LI IR T e e g
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na
1
1

‘( l:] J)( 9/\. {Aﬂ +9/‘~)\)) J%(;{}

o' = gr\ QLI (A, +3,50 dyix)
x (15)

b, = gexp{—f—de f(@,(ﬁ,,+a>«))’“el"x} UJW;

These funcilonals do not depend on 4 at all. We can check it, performing

1

a shift transformation A-i- O ! D A in the first and third integrals in
ol

(15) and A-—A- A"1 biAi in the second one. This is why we may put

#’1 = #z_ = ‘#3 = 1 (16_}

Thus we come to the following functicnal integrals

a)ge’(,}(( S [H]) ( ﬂ (P(aﬂ )q/.. )) q’;« [AJ Torentz—-Landau gauge

b)gexf) (L‘ S [HJ) ( ﬂ J‘(Q(Ai)} t{/u [}-)] Coulomb gauge (17)

C)SQXP{L. (S[R] _ "i’;l'é f@/“p)l""x)} J/“ [ A] Tongitudinal gauge

Green's functions of the electromagnetic fleld are different in different
gauges. We can obtain them from a generating functional. For instance, for

the Iorentz—Landau gauge we have

Jexp((Sta1 ¢ < [0 d )(1160, 4.)) dpera]

Zhl= S
jexp(ls[ﬁj} (DCP(Q/‘A,‘)) t{f«[ﬁ]
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We can calculate (18) by performing a shift transformation A -*AM+A£O> in

- U {
order to cancel the linear functional JnoA d4x in the exponent. The A\O)
i LL

u
field must obey the gauge eguation OHAEO%==O ag well as Au' Therefore

Z 1] =ep (- L W %d'Y » iy D (x-19, () (19)
2 (2 v

which is equivalent to the Wiek theorem. Here

HK,xnvl

2
D,w(x"‘” ~ I ldwe ~d KT+ KoKy

(25’ (KZei0)® 20)

is a Green function of the electromagnetic field in the lorentz—Landau gauge.

In quantum electrodynamics we deal with both slectromagnetic and

electron-positron fields, and we have the following action functional

S[;’ \h/‘)] - J( q/-(ixh(af‘-(eg/“’) m”"')\zb - Ti" (&ﬁy“aﬁﬁf)f&(m)

t, v in (21) are the four-component spinors which can be regarded as elements
of the infinite-dimensional Grassmenn algebra. We can quantize this system
by using a functional integral over boih electromagnetic and spinor fields.

For instance, in the Leorentz-Llandau gauge, we have

Sexp("S“‘:,‘f,ﬁ]) U J’(’e)ﬂ A/“(”) QJE‘{XMN"‘M /Ua/ﬂ/*{x} (22)

Functional integrals and perturbative schemes for Green functions are
different for different gasuges. Nevertheless all physical results do not

depend on gauge at all.

In the conclusion, let me dwell upon the Hamiltonian form of the
functional integral for an electromagnetic field. Here it is suitable to
use a functional integral in the Coulomb gauge[ihe second one in (1?)]c

Thig integral is equivalent to
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jexPr_(S[nﬂ,FM}) (140380 [1dA, 000 [[dF,, 00
x I

Py (23)

where

SUFnd = J(4Fub = £ B (e h=an))dn

In (23) we integrate over A and T v(x) as over independent variables. In
order to prove that (23) iz equivalent to (FT.b), we can do a shirt transforma—

ticn ¥ =F 4D A -0 A and cbtain the product of two integrals
[AY [IRY i VoL

Jexp (£ 07 B %) 147,00

K MLV

(25)
Jerp (-4 [ (Gua-3,404%) []46G A8

instead of (23),

But let us now transform (23) in ancther way. PFirst of all let us

Tewrite (24) in a three-dimengsicnal form

AF:[ R S-S i L e i 5
SlAF) (E. 9, A, g ETv 1 (H)-t,o/})r/-}od,f,)of“x(%)

Here

E = Fo;' ¢=1,2,3 H1:F1‘s HJ.:FM,HB:FH.

| ) (27)
We can integrate over Hi’ (j,=1,2,3)c It is equivalent to changing
g —
H —= =zt A (28)

in (26). Then we can integrate over Ao“ This integral is proportional to




H ¢ 9. E) (29)
b 4
So from (23) we get the following integral

Sexp{f S[A(-,E.-]) ﬂ (9. A J'(3.E,) ” a/ﬂ,.!x)a'E,-fX)

(20)

where

_ L / _,2_-. _L - 2 ‘{y
S[nu‘,Ei] - j‘(El 9°A' z E (Tﬂt A ) /) 3 (31)

This is an action functional in a Hamiltonian form. The corresponding Hamil-

tonian is
He L{d (E* + @t A)) (52)

The funciional integral (30) is an infinite dimensional analogue of functional
integrals for systems with constraints (see Lecture 2). Here the wvector
potential i plays the role of a co-ordinate, the electric field E is an
analogue of the conjugate momentum. Equation biAi==O is a supplementary
condition. In (30) we ilntegrate over the transverse components of vectors

-

A, ﬁ, which are real dynamical variables and correspond to two independent

polarizations of the eleciromagnetic field.

Problems :
1. Obtain Green functions of an electromagnetic field in both Coulomb
and longitudinal gauges.

2. Cbtain a perturbative scheme for spinor elecirodynamics in the Lorentz—

Landau gauge (22).

3. Consider a Hamiltonian form of the functional integral for spinor

electrodynamics.
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LECTUERE 6

THE YANG-MILLS FIELD

The Yang-Mills field is the simplest case in which we deal with a non—

Abelian gauge group.

It 1s convenient to describe a Yang-Mills vector field ba(x) by
U
matrices in a Lie algebra

n

B/“(x\ _-:Z:B;m’ra (1)

a4 =1

We suppose T tc be normalized by the condition

Choosing an adjoint representation of the Tde algebra, we will have

( ¢ gc
‘Bfl)ag - (TC)QG ef" - thC M (3)
where 1 are structure coefficlients of the Lie group. The action functicnal

abe
of a Yang-Mills field

S8l = L {ta FLE, d% 8

where

F - QVB,‘“QNB,,"’E[B ,8‘,] (5)

MV

1s invariant under the gauge transformations
B - DB Q' +L0.00 @
M M £ M

Let us apply the general scheme of quantizaticn outlined in the previous
Lecture to the Yang-Mills field, We will consider the functional integral in
different gauges and different purturbative schemes. In the conclusion we
we dwell upon the Hamiltonian form cof the functional integral and discuss

Gribov's ambiguity of the Coulomb gauge.
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We will consider twe different gauge conditicns :

E% = 0 Lorentz~Landau gauge (7.a)
nom
9 - Coulomb gauge (7.b)
B, =0

The corresponding factors AL[ﬁ:], AR[B] depend on B  non-trivially
in a non—-Abelian case. WNevertheless, we can obtain them in a closed form as

the determinants of some operators.

First of all, let us consider the equaticn for AL[B]
A, LBl Jﬂ £(3,87)dom = 1 (8)
X

We really need the AL functional only for fields cbeying the Loreantz~Landau
equation (7.a). In this case the whole contribution %o the integral over the
gauge group comes from an arbitrarily small neighbourhood of the unit element

of the group itself. In this neighbourhood we have

_Q: I + E LLix)

3.B = 5, (B.+ £[u,B,]+3u) = (s)

2 2
A w

= [] w - ¢ [:E%M:,%%,Llj =

S0 we have
a, 8] = det (D — € B, d.) (10)
Analogously, for the Coulomb gauge, we obtain
Ar [R] = det (& ~ ¢ B.2:) (11)

We can write down the determinant (10) as a functional integral over some

anticommutative fields ¥ (x), 7 x)

det (D -€B,3,) =

forfiiniong Qiadee

R T R T L T T U L T TR IR Y EREE L U IR U R by e e e g



where

LB,y 7] = -+t (DO -€8B.3.)y =
{(13)

=7°09% — € teec 579 9°¢

We may say that the Yang-Mills vector field interacts with some fictitious
scalar Fermi fields m°(x), 7°(x). We may consider M ,na,ﬁa] as an

W
addendum o the Lagrangian of a Yang-Mills field, and we may speak about an

ceffective action functional

S[8 % ] :JJ«X(% teF. B, - 47 (0-£B.2)%) »

S0 we come to the functional integral
§exp(eSIB.T.MI) T19(.8,) 1148, d7dy (15
x ™

and can develop a perturbative scheme for ifts czleulation. This scheme can

be formulated as a diagram technigue with the following elements

/\4A vE a €
—— e B
G:ve Gﬂ.g
(16)
Py g Pma Pav e PR
Pima /
Fiea -——{b
Fafc Puv 8 P8 d Y psc
vV aéc abcd
pvp Va?c

f“y_PGJ M



where

4 -

G;v (p> = = Sug (P* Iy = PuPr) (Preco)™™

G p> = ~ dug (prree)™
a € X

\//'*)”f = CE lag (F"’J/“‘P = Pip %)

y (17)

afcd
pope = B tase teae (B e = )
a€c .

il

£ -
\//w L—z tq@c (Fz Fl)ﬁ

We shall obtain an expression correspending to a given diagram if we
take the product of the expressions corresponding to all its elements {lines
and vertices) and then integrate this product cver all independent four—

momenta, sum over all inner indices and multiply the result by

7" (————i )e-H 0
y = (18)
2x)
here v dis the number of vertices, £ ig the number of lines, s is the

number of closed fermion loops and r is an order of the symmetry group of

the diagram.

This perturbation theory is not the only possible one. We can get a
different form of diagram technigues in the sc-called first-order formalism.

Let us consider the integral
{exp(iSIB,FY) a,[8] ﬂ 23.8) 148, [Td R 0

MLy

where

B L T e e I T L E AT T B T IR



S [B) F] = Jdﬂx (-— é— tr Ff«vF;'w + -;-’; ta F}ﬂ,(a,, Bﬁ-—%‘ BV 1—{[%3{@

(20)

The integral (19} is equivalent to (15), and come back to (15) after a shift

transformation
Fahu My SL Ei” %L Bv ¢ l.E%N, EL (21)
in (19).
If we try to build up a perturbative scheme for the integral (19}
(after writing down AII:E] as an integral over a scalar fermion field)
we get a diagram technigue with the following elements :
Ma vé My a PE Mva 66
c— 33— s ;|
C;QG aé al
My /‘"Y,f ﬁv)fé
(22)
Pav €
aéc
Firva V
Fald
Pave
here one lines corresponds to a B Tield and a double line to & F o field.
M

L

Expressions corresponding to the diagram elements (22) are :

= Jle (‘Flﬁu +.P/,Pu) (F?'-f-c'olpz sy

ERRTTTOR T TSR I

e



Ga€

M. = ('dle(P"J;"P_Prd:'p)(Pl'H'O)"
at
G/«v,fd = e { Irp Ive = Dug dup -
(23)

Ctde

— (f'z-}—c'o)_" (QJ;'JD PvPe + d?'d Pﬂ}’f - d;é P“PP - or;ﬁ P Pé)}

aéc

I

Il

'S ta@c

Iines of fictitious particles and vertices, describing their interaction

with the vector B field, are the same as in the second-order formalism

(16) and (17)0 Thg firgt—-crder formalism is coﬁvenient if we want to cobtain
a canonical guantization of the Yang-Mills field. DLet me demonstrate how we
can go to the explicit Hamiltonian form of the theory. The starting point is

the generating functional for Green's Ffunctions in the Coulomb gauge.:

ZIn] =
_ SCXp(i S [B)F]+-€J(r1f%€:+ 2_1: 1 va ;,)d'fx) Arz[B] Uﬂ‘q'[g.-)ABJF

fe"P(fSIB,FJ) 5,181 []403,8)dBAF (20)

We will consider three—dimensional transverse Tields Bi’ Foi as dynamical

variables. We suppose the following conditions to be valid

2oa

il

VZ‘_xa = D’J(' 70('4. = 9(' 71'4 =0 (25)
These conditions mean that there are only source terms of dynamical variables

in Z[ﬁ]. Using three-dimensional notations, we can write the Lagrangian in

the following form :

'b'( (- é. Ft'v. Ft’K * _:i" Fo'- Fo'- * Tff. F!'K (an: 8.'_'9:' BK te [8";8*!])

, (26)
-1 Fo. o, B‘_ - ‘280(9" F. ¢ [B(,Fm‘]))
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We can integrate over BO, Foi due to the absence of sources in these variables.

Integration over Fik is equivalent to the change

Fl'K - Hilc. = aK 8'. -—8{ BK +¢'[8¢‘: 8"] (27)
in (26). Integration over BO gives ug a & funectional

MG R - L8, 5.)

Let us now substitute into the integral over Bi’ Foi the integral

gﬂef(ac + 0. F,.) dCx) (29)

which really does not depend on Foi at all. Then, after a shift dransforma—

tion F . —-F _-».C, we have
oi oi 7i

\\dac+a, 7)) = 189 F) (50)
b4 b3
\:}5(9; For-€[BFl) = [Tac-I8. 2]+ ¢ [8:,Fd) (51

Let Co(x) be a solution of the equation
AC - €[B.9,¢] = -¢€[B, F.] (32)

We can solve this egquation if we know the Green's function D(x,y;B) of the

operator in the left-~hand side of (32). Namely, we have

Cotxy = — ¢ ‘(D(x,v L R) [8'.“), F,,(-(VJ] d3y (33)
After the C-->0+CO shift, we obtaln

¢ (ac-<[B:,9c]) (54)

and can put C€=0 elsewhere, except in this functional., The integral over

the € wvariables
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_S’DCP(AC*E [8,—,8;(2]) dC (x) (35)

cancels the factor AR[ﬁ]n

So we come to the integral

f expl i ST8, Fol+ (28" Tuoc for )] T180:8)0R) Nda e

Se'(f’it S[B.-,For]} H J(D(B,-)J)(a,- F..) H‘IB,CI E. (36)

Here

S8, Ful = jdxo(ja(:f- 26" d3x H) (57)

(38)

_ N R A PR B SR SN S TP RO
H——Sdsx(q["”“"'fc 4—_2_{“- )(o, + 7 D;Co 9‘.00)

The action functional S[Ei,Foi] has a Hamiltonian form, where b? and

fii play the role of co-~ordinates and momenta, respectively. The formalism

of a functional integration over cancnical conjugate variables is equivalent

tc a canonical guantization. For our case we shall obtain a canonical operator
formzlism by replacing the fields b?(x), fgi(x) by operators obeying the

following commutation relations

- (39)
X

After such a change, the Hamiltonian (38) would be a gelf-adjoint and

positive energy operator.
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In the conclusion, let me dwell upon the ambiguity of the Coulomb gauge
recently discovered by Gribove The polint is that the soluticn Co(x) of
Eqg. (32) may be non—unique if the field b: is not small in some sense., If

this is the case, a non-{rivial solution of the homogeneous equation
AC - & [B(.)E);C_] = 0 (40)
may exist. The natural conditien for such a solution is
SDI-C“Q{CQ d3x < o (41)

because the left-hand side of (41) is Jjust the energy of the longitudinal
rart of the foi field,

First of all let us look for a sclution of (40) where Bi can be

obtained from zerc by some gauge transformation

t

B. = (0.)" = L 9.0 Q™ (42)

Demanding that Bi obeys the Coulomb gauge condition, we obtain the following

equation
J. (2, Q Q7)) =0 (43)

Gribov has obtained a spherical symmetric solution of (43) of the form

L = exp (Taxe Y (20)

where O(r) depends only on r, Substituting (44) into (43) gives us the
following equation for 6 :

2
494"19_ Simd@ =0

dtt o ¢ (45)

where +t= £n(r/ro)n Thig equation describes a pendulum with friction. The

potential energy of this pendulum has a form like :



Let us lock for a solution @(r) which behaves like ar for small r,
and a > 0. We sse that © must go to n/2 [}he bottom of a potential pit

for r—w (t—ém) due to frictioé]o For large 1 we must have

6 ~ X, _8__001(%56,‘%)

2 7 (46)

It is interesting that Grivov's solution belongs to a non—zerc homotopy class

and cannot be obitained from the zero field in a continuous way.

Let us now substituite Gribov!s zolution into the homogenscus equation

(40)o We can search for a solution in the Torm

Calx) = % {7y T = I¥X] (47)

which behaves 1like ~r for r—0. The equation for f

cll-f- 2 d4 _ 2 eten { =0

may have a non-trivial soluftion. Nevertheless, the condition of finiteness of
the energy (41) is not valid for any solution which behaves as ~r at small

r. Let us show this. For r—® we must have
f=a+o(1) (a #0) ox -S'=%+ o(f) (80 (1)

In order to exclude the second possibility, we multiply (48) by rgf and

integrate over from r=0 $c r=R. We thus obtain

R
! 2/ 2 1
R*F(R) £ '(R) = [(2(H#)" + 24%ene) dn (50)

o
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It f£={(b/r)+o(1/r), the leTt-hand side of (%0) vanishes if R—m. But the
right-hand gide is a positive value. This is why £ must go to some non—
nere congtant a 1f r—w, and the energy functional (41) is infinite.

30 we see¢ that the homogenecus equation corresponding to Gribovls field

Bizz(T/e)bf)Q"1 still has a trivial solution with finite energy.

Nevertheless, we can chocse a figld b?(x) —~ belonging to the zero
homotoplce class — such that there exists a non-trivial finite ensrgy solution

of (40). Gribov suggested to take a field of the form

@ ! X
o = = &. €

which obeys the Coulomb gauge condition sutomatically. ILooking for a solution

cf (40), in the form (47), we come to the esquaticn

dl;_-p_‘.z’_df -.29(2)'5‘20

A2 T odz ~

(52)

It is clear that we can choose a function g(r) such that this equation has

a non-trivial solution with finite energy.

The examples considered are interesting in many respects. TPFirst of

all, they are "streng" fields. TFormally, we have an inverse coupling constant
3_1 in front of both Edgs. (42) and (51). S0 we are beyond the perturbation
theory when we deal with such fields. In other words, the formal perturbative
scheme is still valid for "non-strong" fields. The first example, Eq. (42),
gives us a field which belongs to a non-zero homotopy class. We can say that
this field corresponds to another vacuum state with non—zero topological charge.
The second example, Eq. (51), ghows that for a sufficiently large field, the

Coulomb gauge condition is not suitable for field parametrization.

Tet us try to represent the situation by the following picture

.,
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Here the straight line is a "Coulomb gauge surface"™ in functional space, the
curves are the orbits of the gauge group. The first orbit has two common
pointe with a gauge surface, the second one is tangent to the surface, and

the third one has no common points with the gauge surfsce at all., The point

A in the picture corresponds to the case when Ea. (40) has a non—trivial
solution. We can consider A as a critieal point on the gauge surface. The
set of critical peints gives a natural boundary on the gauge surface, confining

the region where a Coulomb gauge parametrization is still valid.

natuaal gaunt«"/dz/” /

For this plece of phase space we have a unitary thecry, and the irans-
verse fields Bi and Foi are natural dynamical variables. As for Tields
whose orbits do not intersect the gauge surface, we have to look for another
parametrization for them. If the orbit has more than one common point with a
gauge surface, we may still use this gauge if we would take into account only
one point, for instance the point inside the "natural boundary". In this case

we may use the functional

e(B) [](§(8) (53)

where 9(]3):1 inside the natural boundary, and G(B)=O outside. The

corresponding equation for a weight factor Af[B] has the following form :
Wel
A{[B] 0(8 )ﬂef)({(gﬂ(x)))dﬂ{)”'-_—i (54}
0 X

Therefore a real problem arises only for those fields whose orbits do not
intersect a gauge surface at all. It is natural to suppose that such field
configurations are connected with extended objects in the Yang-Mills field

theory.
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LECTURE 7

INFRA-RED ASYMPTOTICS OF GREEN'S FUNCTIONS IN QUANTUM FTETD THECRY

Hon—-trivial infra-red asymptotics of Green functions is characteris—
tic for theories with massless particles. In this case we have to sum up an
infinite number of diagrams of a standard perturbative scheme in order to
cbtain the correct result., The Ffunctional integral formalism allows us to

perform such a summation in a shorter way than standard perturbative methods.

One of the possible approaches to the infra—red problem is the method
of integration first of all over "fast" and then over "slow" variables. The
main ldea is to go fo some new perturbative scheme when we integrate cver

"slow" variables.

The gquestion arises as how to define "fast" and "slow" variables. For

instance, we can use the Fourier transform of the field variable w(x)

‘]V(x) = Je

where kx==kbe—E;, k2==k§¥§2. We can then define the "fast" part of w(x)
2
o?
integral over |k2] < kg, where ko is gome parameter.

(KX

)"lK}J"K (1)

as an integral over k with ]k2|:=|k§-E2l =k and the "slow" part as an

It is perhaps more convenient to g0 %o the Puclidean field theory and

define the "slow" part wo(x) and the "fast" part wj(x) of ¢(x) by :

Yixy = Y, (x) + ¢ (x)

l‘KXA- .
{ = [/ Kx -~
R SN T L P
IKI< ke, K] >k
where °

4 1
KXx = éK‘-X,- s Kz—.:,;l((.z , lKi-‘-"\/KT

If we obtain the asymptotic formula for Green's functions in a Euclidean
theory, we can go to the pscudo-~Euclidezan case by an analytical continuatiocn.
The parameter kO which separates "slow" variables from "fast" ones is not
defined exactly. There exists only one most reasonable choice of the order of
ko. 1t is clear that this parameter, which occurs in intermediate caleulations,

must drop cut from the final result.
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Let me consider first the one-electron Green functicn in guantum
electrodynamice (QBED). We will then obtain asymptcetic formulae for the Green
functions of an arbitrary number of fields in QED. Such formulae are valid
not only in the infra-—-red region, but can be used in some problems of high
energy scattering. In the conclusion I will dwell upcn one example of a

theory with infra—red asymptotics different from those in QED,

Thersefore we start with the one~electron Green function of Euclidean

guantum electrodynamics in the Lorentz-ILandau gauge.

Goxv) = — Ly Fud> =
JY/(x) ¥ (V) eg rjf(&ﬁﬁld¢d¢'€/ﬂ

—- - (3)

jes [4(3,4.)d¢ 44 4A

Here we will use the shorthand notation d¥d§ds instead of

ﬂa‘?’;(x el Yo (xy ﬂd,qﬂ (x)
& r

The S functional in (%) is
2 —
S=-+{(0.8,-3,8)x - (Fly(8.-cea)—m)pdsc

where vy are the Euclidean Dirac metrices obeying the anticommutation
81

condition

Y. ¥, + %, ¥, = 2. (5)

We want now to obtain an asymptotic formula for (3) for large IW=|x-y|

(r >¢'mﬁj)o
We will integrate Eq. (3) in three steps :
T« first of all we integrate over the Fermi fields ¢,$;

(1)

"

2. then we integrate over the "fast™ part A

field A ;
3

of the electromagnetic

(0)

1
field by using some asymptotic formula for the one—electron Green

0
function in the "slow" part AE )n

3. finally we integrate over the "slow" part A of the electromagnetic

B L N NI 90 S IR P SRR 0L IE SIBNE T 4| AR OB D IR R e s e
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We define the A(O), A<1> fields in the following way
L L

/qf, (xy = A:)(xr + ﬂ:’ (xy

. . : (6)
o VX~ y Uy g LKX -~ K ) dl,’
( = e K X} = e At K
Ao = (™ Auydhe | Al e
[KI& K, 1Kl 2K,
choosing the crder of ko according to the following inequalities
e? h
K, <& m €. N e 4 {7)
> 4ret K,

The first step of cur programme (integration over Fermi fields) may be

carried out in closed form :

SeS‘ D”"W‘i’ = €S°[”dez‘(‘o’,4(%,—t‘ea,.)—m) (8)
= oS- SelA] _
S*[/lx\ Vivre ljdy/dy/ = Gtx,vm)det(b;@-:ez;ﬁ;_m)(g)

Here SO[A] is an action of the free electromaghetic field,
det[&u(bu—ieAu>—é] is a determinant of the Dirac operator for a spinor par—
ticle in the electromagnetic field A . We can regularize this determinant
i1t we divide it by the determinant ofuthe free Dirac operator det(yub -m).
G(x,ylA) is & Green Tunction of +the electren in the electromagnetic fgeld,

defined by :

(Y (G-t Au) = m) QUX,¥IA) = Llx-v (o

We cannot integrate the functionals (8) and (9) in closed form and we need
an approximation method to do it. For the first non—-trivial approximation,

let us use the following formulae

‘.
det (I + z~(€A) = 1 | (17)




b 4
G YR+ AY) % G (x, 1A®) explce (A d3,, ) oy
X

The first formula means that we neglect vacuum polarization effects
in the firet approximation. The second one allows us to take intc account
the "slow" part of the electromagnetic field in an explicit form. The integral
in the right-hand side of (12) is a linear integral along the straight line,
connecting points x and y. This formula isg 2 well-known one. It is exact

for A =3 A and must be asymptotically exzct in the limit ko—-ro°
W L

Approximations (11) and (12) imply the Green function o be a product

of two factors

C1X,v) = - .Se"(”(gofﬁj)c“,vm“’) E‘J‘(gﬁﬁ;))a//_)”’

§exp(s,0277) T $(3.A) dR”

| (13)
Y .
Se"'l’(so[fﬁﬂeiff’(z;d?ﬁ) Ud’(%‘ﬁ:vc/}m

Ie’(P(So[AW]) UJW(&A;:J) JA(oJ

The whole non-trivial asymptotics is due to the second factor in the

right=hand side of (13). Tet me call it the "infra-red factor™. This factor
is a Gaussian functional integral because we can write down the linsar integral

ag a four—-dimensgional one :
M (et @
‘ ( = (2)d%2
Le }:Ar %)0’2/,, {e f ErlH /—)ﬂ 2) (14)

If we cancel this linear functional in the exponent by the shift transformation

A = A +A£O), we obtain the following formula for the "infra-red factor" :
(] T

e&/’{' E-Zz j‘fﬁ{i{') Q”(a,-z,_)fy{ﬁ)d?@; a”?l} )

vy (15)
= exp ‘E’ Q—;J'J?w I"Igzv Dﬁvtef’zl]}
X X
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Here

1 N N,
D0 = oy Je gt o
1L,
By performing the linear integrations
l 2 el"“ e
S -8 -
Je da, = = x=v) (17)
X L(K)X—V)

we obtain that the exponent in (15) is equal to

et [ di KXxwP— k,x-v)" ( < x)
- L ’ 2 1 - et (K, X-v)
(277)«, K (K, x-v) (18)
Kitk,

Using polar co~ordinates [lx—y|==r, (x-y,k)==krcogé] we will have

b § KeZltorel
_ g [amtede (T iz gy
43 ) cer @ X (19)

Now it is not difficult to obtain the asymptotics of (19) if kT >> 1,

For the "infra-red factor" we obtain the formula

exp 2l +3_e~15«1<,z+§_§_7'(1+2c -26.2) (20)
42 &§x? 16 n?

where C is the Buler coustant. This function depends on the parameter ko
which must drop out after we multiply (20) by the first factor in the right-—
hand side of (13). We can calculate it by taking inte account only the one—

lodp diagram for the self-energy part 2 2ording to the formulae

e "(P!x-yj qu

1
(X-y}) ==

Ko (.'ZJ'I)“r £p +m =2 (p, ko) (1)

ORI TR E VLR



Z(/o,x,,) = el (22}

In the integral over %k in the one-loop diagram we have to integrate only

over Ikl = koc Se we obtain for p2 ] --m2

Gx.(f’) = q,, Jeezcl (23)

2
mx,"'P
where
= - Re’ 3e* ¢
A, t 172 e &E
2
(4% = - £k,

Ko m s (24)

Here A 1s the ultra-violet cut—cff in the integral for the self-energy part,
mko is the electron mass if we do not take into account its interaction with

"slow" field AEO)Q So we have

©,x~v)
GK,{X"W = 1 getq,x Gn,”’“”l’

(2.7?)" =
(25)
2 n —
_ Q. (_":._)’1 (1+n)e %*
"2 \anz
where
A
n= )H" (26)

T

LR e T T PRI
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Multiplying {(2%) by the "infra—red factor" (20), we come toO 3

4 8
vy & sm A -3, 38 . e
which does not contain koa Here
2 ‘
a= 1 + %1(3C—3&.2"2) (28)

The corresponding formula in p space is

m-(p _e*
Glp) = m* (1. Pt 1+3¢ (1-3%) -
L)

Let me now explain why the asymptotics obtained
2
- e

2 - 2£
G(p)~ (1+%L) &

must be exact 1f we understand e as a renormalized coupling constant. Iet

us choose ko arbitrsrily small. In this case we can uge (12) with §=:e0
1

(bare coupling censtant). We can integrate over the "fast™ field A<
L

according to the formulac

So A 2 YT, nit} o ¢
SG(x,ym“’) e ]det(a-M-t'eo (A A)) T106.A2) g

= G, (X exp SLAY] o

where
Gy (¥-7) =
IG(X,V‘A'”)EX}’S_,[H‘”J Jet(é‘—m _ie, ﬁm) Ué\(a‘ﬂ;fi)dﬁﬂl

S exp S,LA"] det(s-m-ce.A”) [10(3. A"V A"

(31)
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i1s & quantum Green function for the elsctron in the "fast™ ficld,

exp(S[A”)) =f®cp(§u[ A1) det (3 -m-ie.(A )TN0 AR .

-_—

iz a result of the integration of exp8 over the Fermi fields Ty ¥~ and
cver the "fast" field A(j). S[}(O?] is an effective action functional of
w

the "slow" field. It can be written in the form

A o

—~

(33)

i

where C is soms constant .
2. 2
Z"‘ 23 = € /eo (34)

is nothing but a charge renormalization factor (or the renormalization constant

of the photon Green functicn). Now we have to integrate the expression

b4
exp (STAY + ie, (A rdz,. ) (35)
X

over the "slow" field A(O). The result is just the infra-red factor {(75),
where e2==e§ Z ig the gquare of the renormalized coupling constant. As Tor
Gko(x;y) it has-the form-(25)a 50 we obitaln the asymptotic formula (2?) for
G(x—y), andé (29) for G(p)n The e value in these equations is a renormalim

zed coupling constant.

We can apply the outlined method to any theory of minimal electromagnetic

interaction, obtained by the change

(36)

Qﬂka= Bﬂ—:'e!)ﬂ

For instance, let us consider scalar electrodynamics with an action functionsl

r

(1Bt n I et i) = L [(50.-0,8, o5,

| T . . : 1.

&
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The cne-—particle Green function of the theory has the form

3e*

——

pre 2\~ 1- 5=
G(p) = _;1’:, (f+ fw.'_1> " (38)

.

The peint is that the asymptotic formula (12) for the Green function of a

particle in the "slow" field A(O) is a universal one for any "minimal"
i

theory. It implies the same "infra-red" factor for any such theory,

Let us now consider the Green function of an arbitrary number of

fields in QED

Lyixy ... Vi) i) . Fowm A, () Aﬁk(ak)a (39)

(in the Lorentz-Landau gauge). We are interested in the asymptotics of (39)
if the distance between any pair of arguments KiseeosXyy Fyyocesds ByyeessZp
gees to infinity.

After integration over the Fermi fields ¢, U
(1) we will obtain the sum of all connected diagrams of the

and over the fast electro—

magnetic field A

48

form

(20)

Here M 1is an irreducible part of a given diagram.

The expression corresponding to (40) is

HGK,,(X“ Uy l ﬂ(w) GKo( Vi) Ye !H(O)) [-'ID/"J‘{, M":--- v (41)

(]
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Let us now use the approximation

X
GKD ,u [A°) = (. (x-u) exp(ie, SAL'”(;)J?A’)

(42)
w
for the electron Green lunction. Lg for D
o) Y]
ag ilndependent of A( )o

exp K =

and M we may consider them
So we have to integrate the following expression

) ()2 Jy ' : .
= exp(- o5, J QA=A AT w26

=y

X,
(or
° i‘/q,,,. f?r“/?.-,,) (43)

over the "slow™ field A(O)

. Here
1.
xf" x' > L{" = bf‘ » e{‘o = €° lé" t £ nh
(44)
Xf- = yl v “I = Vl- 3 e-o = ‘heo "l_-'—l 5—- { é Zh
The result is
(ex,; K> = exp(-X) (45)
where
In 2 Iz
(B (B )
— J - U
- 2:-(;—)" S KY 0= (Xm0 (K %72) (26)
’T ¥
KILk, '
‘KX (ko —-:'Kx). _ — K “
e (e e )

This expression plays the role of the "infra-red factor" for the Green
function (39)9 In p

space we will obtain the following formula

LATALL LR AN B e
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ﬂ(~tr>.+vr~)”(‘“‘ -MHD )

(=

Lihn K
MV:-HVS(‘P"“')PJ-h;ql,-»-,?g) J’(ZF' +.SZC’5) . (47)
L= ] =y

§- S € exp( 2 tptmre, - T)

Here
Yooy
ALhn ] y 21'6}(-{ oK) ~20€ (p.x KL R
LS el Sc_*__k(e P _1)(e 5 )_!)(de__i)
“ K" Kpytep;)

(48)

Expression (47) behaves like "
~q4- 3¢

(f+ f'_ gre
if p§*+~m20

It 1s interesting that Egs. (47) and (48) are valid not only in the
infra-red region. Actually they describe some high energy processes as well,
All the informetion is contained in (47) and (48) and can be extracted from

these after a slight modification.

For instance, let us consider the electron scattering preocess with

large momentum transfer

P
ﬂ a

(49)
P= P
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We will suppose that [pfgl > !p?], ipgl ~ mza In this case it is natural

to choose ko in the follcocwing way

N
P, Pe L& kE oz« pl (50)

Equations (47) and (48) (for n='i,l:=1) give us the so—called double
r
9%

logarithmic asymptotics of an irreducible vertex par:

2 1. 1.
-~ _ _ e Pia. P. -
\_',‘ €Y exp (- o G, = t. T:‘%“ ) (51)

In the comclusion, let me say a little about = theory with an infra-red
This is a theory of massive isotopic

behaviour is different from that in QED.
The corresponding

fermions interacting with massive isotopic scalar fields.

action functional is

4 Rt netds - R0 -m rgTp) % o

In crder to apply the above-menticned formalism to this theory we need a

formula for the Green function of a fermion in the "slow" part of the field

©_o Such a formula is the following one
a
Y
(53)

GOy IR = G (xn Texp(g [ gty dsee)

Texp means an ordering exponent along a straight line connecting two

Here
The problem of infra-red

points x and ¥
asymptotics reduces to averaging the expression
2

in Buclidean space—time.

k4
Te,,(], g fz-a ‘10:”(2) ds(z) (54)
‘ x
with the weight factor
(e (o)
e—s’(P(—%J&% J, Yo a"’x) (55)

It turns out that after such an averaging, we will obtain the following

factor

R I T 0O AT LU ARG 4



/g
(i+€2-1€nm'z) (56)

ingtead of the exponentizl factor exp(}ez/anz)ﬂn mr in QBED. So here we

have nc "exponentiation" which is characteristic of RQED,

Problem :

Obtain the double logarithm asympfotics (51) from (47) and (48).
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EXTENDED OBJECTS

How the theory of extended objects i3 jiself a very cxbtended object,
and it is impossible to grasp it in one lecture. I should therefore dwell on

one or two examples where such objoets could arise.

The firet example is the Goldstone model in {2+1) dimensions, where
the extended objects are vortex—like execitations. ILet us consider s Buclidean

field theory of the complex scalar field with an action functional
- b8 g b J
== (e oy - AT+ Liyr") dx
S j(w%f«f Al 't ()

The coupling constant g 1is positive (g>0), If A <0 it is not a very
interesting case. Here we have an ordinary renormalizable thecory of a self-

interacting complex scalar field.

The A > 0 case is much more interesting. If g=0, we have particles
with negative mass square m2 < 0 (tachyons)o Goldstone noticed that
the inferaction term g/4]¢[4 changes the situation radically. The Rose
condensation occurs and as a result we have two sorts of particles, namely the

massless (Goldstone) particles and the massive cnes.

Here I should like to speak mainly on vortex—like excitations in the
model - which may be considered as a third sort of particles. ILet us consider

the classical equation (85=0)
—-A%—A)b+%?‘%%=o | (2)

There exists a trivial solution =0 of this eguation and a non-trivial one

¢0==const, where

_Po = h"oll = ‘1;‘ (3)
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This sclution corresponds to the absclute maximum of the funectional (1), The
main contribution in the functional integral over the ¢, § fields ig due to
functions with |¢|2 near o . Such fields correspond to fthe superfluld state
of the system, and Py is nothing but a density of the Bose condensate. In

order to describe excitations in the superfluid state, it 1s convenient to

go to polar co~ordinates of the ¢, § fields
—— P —_ ~Cpix)
Y{X} = \/E(x) e ; \}/ (x) = P(x) e (4)
and then to

Ttx) = P(x)—p, (5)

Let us rewrite the 8§ functional in terms of the new variables

2 ﬂ'g JT 1 Al
=—j(,n)9 dp + Lt I nt)dx + 2 Vdx
S (P* FE ot q4(p,+7) " ) 3'{ (6)

After a new transformation

/
- L T = V7o, T
?D ?Gz;: 90 > '2}30 (7)

The quadratic form of +this functional
{
- 1 2 T Nyt
lg(%}#?@#tf + aﬁﬁ/‘u + 2 Tt)alx (9)

describes a system of two filelds : a massless ¢ field and a massive n

field. The corresponding masses are
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Vh;,':o , M o= 2% >0 (10)

The interacting terms in (8) can be obtained from (9)'by the change
, -1
f 2 . —
%40y — (1+V}:F)%~V‘z"7 , 7o “’(“Vf;ﬂ) GTER (11)

Due to the interaction, the w particle becomss unstable. Tt may decay into

Two o particles

X (12)
¥

Let us now congider vortex-like solutions of Eq. (2)0 The simplest

one is a function of Xq9%, of the form

' _ X
Y=e fw) r=ilxig | ©=ardy (13)

The non—-linear equation

d*4 { df { 3
7 - 9 =
dz* * T A A + 2 2 d ° e

can be written down in dimensioniess wvarisbles

I
X = v :.\/—2- (15)
% > h 22 ; :
in the following way
| _ - 3
ln”er‘hx-x‘la +h -h =0 (16)
This equation coincides with that of the theory of a non—ideal Bose gas., It

can be shown that there exists a solution of (16) which ig proportional to x

for x—0 and goes to one for x—w.
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This scolution describes a guantum vortex in the (x1,x2) plane. We
can consider the straight line x1=:x2==0 ax a "world-line" of the voriex.
At this 1line we have ¢ =1y =0 and the ¢ variable is not defined. It is
clear that every straight line in three~dimensional space may be a world line
for a solution which can be obtained from that corresponding tg XT==X2=(),

by a linear co—ordinate transformation,

Now, let us consider the situation with many vortices. We will suppose
a distance between the vortex world lines %o be much greater than the charac—
teristic length lﬁ%o Because of the interaction, the world lines now are not
gstraight but are slightly curved. Let us confine every vortex line to a tube

with radius T such that the following inequality would be valid
..-l/z_
A L4 7, £4 R (17)

where R i1is a distance between vortices. We can write down an action

functional in the following way

S (L) hpap + f (BT 2ot -

(18)

— Zh«(?a) JﬂlS,- + %fsdx

Here the first term is an integral over the space outslde the vortex tubes.

The valus m(ro) [énergy (mass) of a wvortex inside a tubé] :

M) = gdzx(3‘-¢9,.¢ + _3,(1?!"-—,0‘)7‘) = 2wp, a.%’ (19)

T& T,

ol

depends logarithmically on r_. The value a in {19) is of the order of X Z.
The symbol ds. in (18) is a differential of the length of the i@ vortex

world line.

Tn the presence of vortices, the ¢ variable (7) is not one-valued.

It gets an addendum

J¢ = £2ny7p, = £ 9 (20)

if we go around a vortex line.
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We can go back to the cne-valued funciion in the following way. Let

me explain it, neglecting the o—-m interaction term and considering only the

{ 2
E fa.YQchx (21)
We can do & shift transformation

f{x) — (f{x) + P () {22)

funectional

where mo(x) is a many-valued function which just gets the addendum (20)

after going eround a world lins. Moreover, let @, obey the Laplace equation
AW (x) =0 (23)

After such a shift we will have
{ : 3 ! . , 3 1 . . 3
E:jhgfy)a"? tJ‘X —rr EZJ'Q,?NQ,V’J X - 3:'f<g fii% Voti X (24)

Now, a new ¢ wvariable [in the right-hand side of {22i] is one-valued.

How can we now obtain an explicit expression for wo(x)? It turns
out that the vector field

- -
}) = 0 V& (x) (25)

is nothing but a sclution of the fellowing magnetostatic problem in a threew

dimensional space
—

—~ >
ot h = 9 divh = 9,"1" =0 (26)

where
J =21 (o
4

is a sum of linear currents (J::i?) along the vortex world lines.
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X,

We can solve this problem with the help of a vector potential g such
that

—p — —
h = et @ )e./,‘v&'-’-O

(2g)
3¢ we obtain
— q T ty) d3y
a =  — —_—= .,
4y I X -V
) —~ 3
= V9L P d3 1 2 13 :9'( a d%x =
Dfataax < L (hrde = L (T -

2 (J(X) J(‘I)Jc[ /3 (dﬁxn)d?lv))
ZE?FSS X -5 cy—;]rPoZ‘SJ X -5

CyI-Yi>e,

We impose the condition [§L§| > r_, becauge we have to take into account

only the field outside the vortex tubes.
So we come to the expression

P~

(a/Stx a/stv)
S e om - T [
-5

©J 1>,
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The second term in the right~hand side is due to the vortex interactiocn.
This non—local interaction may be written down in a local form. Namely, we

have the following formula

S~

G)(P S =
. SeXF ("‘Wil‘l.) Z Ids,- - i f('{o‘t K)LJSX - "‘i f'f’ﬁd!x) qu(atA.}JA -

-l

§exs (- L et B)*d2) UJ‘(Q,-A,-) dA

where A (x) dis the "slow" electrcocmagnetic field
W

(KX A~
Aﬁ(x):— J'e A,,“‘)“”K (32)
IKIL 25!

— A +A(O ) which
U

We can prove this formula by the shift transformation : 4
1 L

r—}"—i

e b
cancels the linear functional qujAdjx.

So we have introduced an electromagnetic vector field (Which cbeys a
gauge condition DiAi==O) regsponsible for the long range interaction between
quantum vertices. It seems 10 be an attractive feature of the theory that
here the gauge field A arises dynamically. We have introduced it instead
of the many valued <« ¥ield, and we can say that we deal with some non—
trivial description of the ¢ field. [iet us note that the number of physical
degrees of freedom (one) is the same for both ¢ and A fields;] The value
q has the meaning of a coupling constant (change of vortex). It is interest—
ing that q is inversely proportional to the coupling constant V375;==q'

in m~p and m-—n interaction terms. Namely, we have
i
?7 = 4y (33)

If g' is small, g is large and we have sirongly interacting
vortices. Such a situation is typical for extended objects. That is why
we can hope fo obtain a strong interaction ftheory starting from a theory with

a small coupling constant.

We thus have obtained three sorts of excitations in the Goldstone

model @
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1) massless particles ("photons™)
2) massive particles ("oions™)

3} quantum vortices ("protons and antiprotons"),

We can regard this model =g the simplest one for strong and electromagnetic
interactions in (2+1) space—time. There are the following reasons for such

an analogy.

a) The interaction between vortices is due to mass particles of the
¢ Tleld at large distances and o both @ and m particles at

gmall cnes.

b) There is a conservation law for a number of pariicles minus a number
of antiparticles. It is the analogue of a conservation law for an
electric charge which coincides with a baryonic charge in this simple

model.

e) The w—2¢p decay is an analogue of no-*2v in pion physics.
Let me now speak about some analeogues of this model in a four-dimen—

sional space~time. The simplest one is a model of = three—component real

scalar field with an action funection
jd"x (9 (ﬂ:_ o Y. — A ququ (Z a ‘ﬂ&.) (34)

The equatiocn 683 =0
“AY - X+ g (2 0, =0 (35)

has a non-trivial soclution wazzconst with

Z = 39- (36)

We can look for a non-=trivial vortex-like solution of the form

X
= 3 ) (57!

The equation for f(r)
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il

— - =L 1 xf -3§°=0 (38)

actually has a solution which behaves like ~r, if r—0, and goes to

Vk;g, if r—wm. But the energy in a sphere r < T,

Fi(onan + 2(Zne-3)7)

TLy

=]

1
is linear at T, for r012> A %, This is why we cannot speak about a new

particle in this case.

As you know, mere complicated solutions do exist if we add 1o (%4)
the Yang-Mills action functional and change o —>Vu = bu—eB » Namely,
! N

for the action functional
2,
R T R A R S DA T

(40)
~ 4l Z (2.8 -5,€% 4 cnn gfer)

@,y

we have the 't Hooft-Polyakov monopole solution

(x) = W) 4 _ g
fatr = Xo T2 @l =€, % (e - L) )

The energy (mass) of this execitation is egqual to

AX
M = g‘g:‘. (42)

where A~1, BSo M 1is inversely proportional to gez and we can obtain a

heavy particle in a theory with small coupling constants g, e,
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Many examples are known of extended objects in the so—called exactly
integrable systems in (1+1) gpace=time. Classical equations for such
systems can be sclved by the inverse scatlering problem method. For instance,
thig is the case for a relativistic Sine-Gordon medel with the following

action potential

G- _de.;f (Lt - Lul - (1-cow)

(43)

(in units with h:ln=1). It was shown that here we have a rich spectrum of

excitations @ o

a) initial particles of unity mass
b) particles of mass M=8&/v (solitons)

c) bound states of solitons with

Ve %]

We can obtain the § matrix for soliton scattering by semi-classical methods.

The result is

%
S(‘S) = e,xr(t%i gdx a\ E:-!- ) , ~§ — SwlML-J-‘/S(S_.tsz.))
1

2 M*

(24)

Quantum corrections %o the scliton mass and the scattering phase may be
obtained in the funciicnal integrasl approach. Thege corrections turn cut to

be some power series on the v parameter, So they are small for small v .

comparatively to the quasi-classical values which are of the order of y-ﬂo
The idesa that some of the particles are nothing but vortex-like
excitations (or solitons) ig very attractive bhecause 1t allows us to reduce
a number of fundamental fields. Classical solutions can be labelled by some
gquantum numbers which have a topological nature. We can interpret these
numbers as some charges. In theories with small coupling constants, we can

develop a new perturbative scheme in functicnsl integral formalism in order

il W Y IR T e e P T Ty T B L T TP I
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to take into account small guantum fluctuations arcund classical sclutions.
Extended objects themselves interact strongly with each other as we have seen

for both Goldstone and Sine-Gordon models,

Nowadays the search for more realistic examples of field theories
with extended objects is a very actual problem. It may be that, namely in

this way, we can find a key fto strong interactions.
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