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Abstract

We provide an assessment of the state of the art in variousds®lated to exper-
imental measurements, phenomenological methods anceti@bresults relevant
for the determination of parton distribution functions (P£) and their uncertainties,
with the specific aim of providing benchmarks of differentstixg approaches and
results in view of their application to physics at the LHC.

We discuss higher order corrections, we review and compiffiereht approaches
to smallx resummation, and we assess the possible relevance of [z@atiamation
in the determination of PDFS at HERA and its possible studiHC processes.
We provide various benchmarks of PDF fits, with the specifin af studying is-
sues of error propagation, non-gaussian uncertaintiescelof functional forms of
PDFs, and combination of data from different experiments different processes.
We study the impact of combined HERA (ZEUS-H1) structurecfion data, their
impact on PDF uncertainties, and their implications for¢benputation of standard
candle processes, and we review the reaentdetermination at HERA. Finally,
we compare and assess methods for luminosity measurentahtsl2HC and the
impact of PDFs on them.
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1 INTRODUCTION

With the start of data—taking at the LHC getting closer, timportance of a detailed understanding of the
physics of parton distributions (PDFs) has increased densbly, along with the awareness of the LHC com-
munity for the importance of the issues related to it. ClgdaHe main reason why PDFs are important at the
LHC is that at a hadron collider a detailed understandingl¥ &is needed in order to obtain accurate predic-
tions for both signal and background processes. Indeeddory physical processes at the LHC, PDFs are the
dominant source of uncertainty. On the other hand, an atecaamtrol of PDF uncertainties allows one to use
selected processes as “standard candles”, for instanbe ohetermination of luminosities. However, this also
means that experimentation at the LHC will provide a considle amount of new experimental information
on PDFs, and it will enable us to test the adequacy of thereatitheoretical understanding.

The main aim of this document is to provide a state of the asesmment of our understanding of
PDFs at the dawn of the LHC. Since the previous HERA-LHC wiooks[1], we have witnessed several
important directions of progress in the physics of PDFs. kmntheoretical side there has been conclusive
progress in extending the treatment of perturbative QCDobhéythe current default, namely, the next—to—
leading perturbative order. On the phenomenological didesthas been a joint effort between experimental
and theoretical groups involved in the extraction of PDpectically from global fits, in agreeing on common
procedures, benchmarks and standards. On the experinsagahew improved results from the HERA runs
are being finalized: these include both the construction jofra determination of structure function which
combines the result of the ZEUS and H1 experiments, and teedirect measurements of the structure
function F;, which have been made possible by running HERA at a reducddmplmeam energy in 2007.
Also, the LHC experiments (ATLAS, CMS and LHCb) are now assggsthe use of standard candle processes
for luminosity measurements.

All these issues are discussed in this document. In each@asmain goal has been to provide as much
as possible a joint treatment by the various groups invglasdvell as a comparison of different approaches
and benchmarking of results. In particular, in SEtt. 2, rdfteefly reviewing (Secf_2]1) the current status of
higher—order calculations for DIS, we provide (Séct] 2.ejadled comparisons of techniques and results of
different existing approaches to smalresummation, and then we summarize (Seci. 2.3) the curtainiss
of studies of parton saturation at HERA, their possible iobjpe current PDF extraction and the prospects of
future studies at the LHC. In Sefl. 3 we discuss methods andtsefor the benchmarking of PDF fits: with
specific reference to two benchmark fits based on a commoraget of data, we discuss issues related to
error propagation and non-gaussian errors, to the choifteofional form and corresponding bias, to possible
incompatibilities between different data sets. In Selct.edtwn to recent progress in the extraction of PDFs
from HERA data, specifically the impact of combined ZEUS-kcure function data on PDF determination
and the ensuing calculation @af andz cross-sections (Se¢t. 4#.1) and the recent first deterromati the
structure functionr;, (Sect.[4.2). In Secf]5 we discuss and compare luminositysurements based on
absolute proton—proton luminosity measurements to thasedon the use of standard candle processes, and
the impact on all of them of PDF uncertainties. Finally, itS@ we present the PDF4LHC initiative, which
will provide a framework for the continuation of PDF studies the LHC.

Note: Most of the contributions to this workshop are the resultafaboration between various groups.
The common set of authors given for each section or subsebtis read and approved the entire content of
that section or subsection; however, when a subset of thekera is given for a specific part of the section or
subsection, they are responsible for it.



2 THEORETICAL ISSUES
2.1 Precision calculations for inclusive DIS: an updaté’

With high-precision data from HERA and in view of the outsteny importance of hard scattering cross
sections at the LHC, a quantitative understanding of deefastic processes is indispensable, necessitating
calculations beyond the standard next-to-leading ordeedtrbative QCD.

In this contribution we briefly discuss the recent extensibithe three-loop calculations for inclusive
deep-inelastic scattering (DIS) [2—-9] to the complete $evefficient functions for the charged-current (CC)
case. The new third-order expressions are too lengthy festiort overview. They can be found in Refs. [10,
11] together with the calculational methods and a more letaiscussion. Furthermore the reader is referred
to Refs. [12,13] for our first results on the three-loop $ipli functions for the evolution of helicity-dependent
parton distributions.

Structure functions in inclusive deep-inelastic scatigihre among the most extensively measured ob-
servables. The combined data from fixed-target experimemdsthe HERA collider spans about four orders
of magnitude in both Bjorkem-variable and the scate? = ¢ given by the momenturg of the exchanged
electroweak gauge boson [14]. Here we considerithexchange charged-current case, see Refs. [15-21]
for recent data from neutrino DIS and HERA. With six struetfunctions,r,” ,Fy* andr,” , this case
has a far richer structure than, for example, electromagmS with only two independent observables,
andr,.

Even taking into account a forthcoming combined H1/ZEUSIfingh-0 ¢ data set from HERA, more
detailed measurements are required to fully exploit thelties potential, for instance at a future neutrino
factory, see Ref. [22], and the LHeC, the proposed high+hasity electron-proton collider at the LHC [23].
Already now, however, CC DIS provides important information the parton structure of the proton, e.g.,
its flavour decomposition and the valence-quark distringi Moreover, present results are also sensitive to
electroweak parameters of the Standard Model suckirets ; , see Ref. [24], and the space-lilie-boson
propagator [25]. As discussed, for example, in Refs. [2§-2%eliable determination afin® ,; from neu-
trino DIS requires a detailed understanding of non-pedtive and perturbative QCD effects.

Previous complete results on unpolarized DIS include theetttoop splitting functions [5, 6] as well
as the 3-loop coefficient functions for the photon-exchasigecture functions ,; [7, 8]. However, most
coefficient functions for CC DIS were not fully computed togé loops so far.

For this case it is convenient to consider linear combimestiof the structure functiors,”  with simple
properties under crossing, suchmas® F (a= 2;3;L) for neutrino DIS. For all these combinations either the
even or odd moments can be calculated in Mellirspace in the framework of the operator product expansion
(OPE), see Ref. [30]. The results for the third-order codfitfunctions for the ever- combinationSFij”+ P
can be taken over from electromagnetic DIS [7,8]. Also thefii@ent function for the odd¢ based charged-
current structure functios , ®* Pis completely known at three-loop accuracy, with the resaitly published
via compact parameterizations so far [9]. For the remaiomgbinationsr,,” “andr, © ¥, on the other
hand, only recently the first six odd or even integer momehtlerespective coefficient functions have been
calculated to third order in Ref. [10] following the apprbacf Refs. [2—4] based on the IMCER program
[31,32].

The complete results of Refs. [7-9] fix all even and odd mosientHence already the present knowl-
edge of fixed Mellin moments for ,,” "and ¥, ® "is sufficient to determine also the lowest six moments
of the differences of corresponding evenand oddw coefficient functions and to address a theoretical con-
jecture [33] for these quantities, see Ref. [11]. Furtheertbese moments facilitate space approximations
in the style of, e.g, Ref. [34] which are sulfficient for mosepbmenological purposes, including the determi-
nation of the third-order QCD corrections to the Paschostélstein relation [35] used for the extraction of
sin®  from neutrino DIS.

The even-odd differences of the CC coefficient functiansfor a = 2; 3; L. can be defined by

Cox = Cof P G G = Cy7 PGP P 1)

2Contributing authors: S. Moch, M. Rogal, J. A. M. Vermaser&nvogt



The signs are chosen such that the differences are alwags ‘ewdd’ in the moments! accessible by the
OPE [30], and it is understood that th€™d.,. part of ¢, ®" P[4, 9] is removed before the difference is
formed. Witha, = =(4 )these non-singlet quantities can be expanded as

X
C. =  a; & (2

=2

There are no first-order contributions to these differenbesce the above sums startlat 2.

We start the illustration of these recent results by loolkahghe approximations for the p p odd-
N coefficient function&gﬁ (x) (see Ref. [11] for a detailed discussion). These are cordparé€ig.[1 to
their exact counterparts [7, 8] for the evannon-singlet structure functions. The dashed lines reptabe
uncertainty band due to the limited number of known momehi® third-order even-odd differences remain
noticeable to larger values afthan at two loops, e.g., upto’ 03 for F, andx ’ 0% for Fy, for the four-
flavour case shown in the figure. The momemnts= 1; 3; :::; 9 constrain cf’ﬁ (x) very well at x > 041,
and approximately downte 102,
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Fig. 1. The exact third-order coefficient functions of theeew structure functionsr, °* * for four massless flavours, and the
approximate odd-moment quantities fop p combination.

Concerning low values of Bjorker-one should recall that the uncertainty bands shown by thieedias
lines in Fig[1 do not directly indicate the range of applitinbof these approximations, since the coefficient
functions enter observables only via smoothening Mellinvotutions with non-perturbative initial distribu-
tions. In Fig.[2 we therefore present the convolutions ofsidlthird-order CC coefficient functions with a
characteristic reference distribution. It turns out the approximations of the previous figure can be suffi-
cient down to values even belaw= 10 *, which is amply sufficient for foreseeable applications ated The
uncertainty of g(f’ (x), on the other hand, becomes relevant already at largersjatue 10 “, as the lowest
calculated moment of this quantityy = 2, has far less sensitivity to the behaviour at law

The three-loop corrections to the non-singlet structurecfions are rather small even well below the
x-values shown in the figure — recall our small expansion patam, : the third-order coefficient are smaller
by afactor2:0 10 if the expansion is written in powers of,. Their sharp rise forx ! 1 is understood in
terms of soft-gluon effects which can be effectively resuediif required, to next-to-next-to-next-to-leading
logarithmic accuracy [36]. Our even-odd differenced’’ (x), on the other hand, are irrelevantat 0: but
have a sizeable impact at smallein particular on the corrections far, andr;, . The approximate results for

& (x) facilitate a first assessment of the perturbative stahiftthe even-odd differencegl(1). In Fig. 3 we
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Fig. 2: Convolution of the six third-order CC coefficient fitions forr,;;,, in p+ pand p p DIS with a schematic but
typical non-singlet distribution. All results have been normalizedfox ), suppressing the large but trivial variation of the absmlut
convolutions.

illustrate the known two orders far, andr,, for (= 025andn,= 4 massless quark flavours, employing
the same reference quark distribution as in Eig. 2.

Obviously our new 2 corrections are important wherever these coefficientfioncdifferences are
non-negligible. On the other hand, our results confirm thasé quantities are very small, and thus relevant
only when a high accuracy is required. These conditions @filléd for the calculation of QCD corrections
for the so-called Paschos-Wolfenstein relation. Thisti@tais defined in terms of a ratio of neutral-current
and charged-current cross sections for neutrino-nuclel@[85],
N ( N ! X ) (N
( N ! X)) (N

! X)
('S I

®3)

The asymmetnr  directly measuressin® ; if the up and down valence quarks in the target carry equal
momenta, and if the strange and heavy-quark sea distrilsiime charge symmetric. Beyond the leading
order this asymmetry can be pregented as an expansion amd inverse powers of the dominant isoscalar
combinationu + d ,whereq = 01 dx x (q(x) g(x))is the second Mellin moment of the valence quark

distributions. Using the results for differences;f’ (x);a = 2;L ;3 0ne can present it in a numeric form,
(

1 d + c 5] 7 1
R = — Sjl’% w ot ha 1 —sjn2 w T — Sjl’% W
2 u +d 3 2
)
8
5—5 1+ 1689 o+ (3661 0:002) 2 + 0 (@ +d)? + 0 2 ; 4)

where the third term in the square brackets is determinembyi corrections cf’ (x);a = 2;L;3. The

perturbation series in the square brackets appears rdagamall convergent for relevant values of the strong
coupling constant, with the known terms reading, e.g., 1426: 0.23 for .= 025. Thus the 2 and
contributions correct the NLO estimate by 65% in this case. tli® other hand, due to the small prefactor
of this expansion, the new third-order term increases thaptete curly bracket in Eq[{4) by only about
1%, which can therefore by considered as the new uncertaintiygis quantity due to the truncation of the
perturbative expansion. Consequently previous NLO esésaf the effect of, for instance, the (presumably
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Fig. 3: The first two approximations, denoted by LO and NLOthe#f differences[{|1) for, andF, in charged-current DIS. The
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The dashed curves correspond to the two approximation taicges for the new . contributions.

mainly non-perturbative, see Refs. [37—39]) charge asyimnoéthe strange sea remain practically unaffected
by higher-order corrections to the coefficient functions.

To summarize, we have extended the fixedthree-loop calculations of inclusive DIS [2—-4] to all
charged-current cases not covered by the fullfa)lecomputations of Refs. [7—9]. The region of applicability
of these new results is restricted to Bjorkenalues above abouto °, a range amply sufficiently for any
fixed-target or collider measurements of those chargerkotistructure functions in the foreseeable future.
Except for the longitudinal structure functian,, the present coefficient functions are part of the next-to-
next-to-next-to-leading order (MO) approximation of massless perturbative QCD. Analysésiaorder are
possible outside the smallfegion since the corresponding four-loop splitting fuans will have a very small
impact here, cf. Ref. [40].

2.2 Smallx resummation 21

The splitting functions which govern the evolution of thetpa distributions (PDFs), together with the hard
cross sections which relate those partons to hadronic gailysbservables, are potentially unstable at high
energy due to logarithmically enhanced contributions. drtipular, parametrizing observables such as deep-
inelastic structure (DIS) functions or Drell-Yan (DY) ordjs production cross section in hadronic collisions
in terms of a dimensionful scae? (photon virtuality or invariant mass of the final state in %I DY respec-
tively) and a dimensionless ratio(the Bjorken variable 0%2 in DIS and DY respectively), when ! 0there

are logarithmically enhanced contributions to the pewtidn expansion of the form * 2 (©?)log™ (1=x)

(n m 1). Whenx is sufficiently small, one must resum such terms, reordetiegoerturbation expansion

in terms of leading logarithmic (LL) terms followed by neix-leading logarithmic (NLL) terms and so on.
The problem can be traced to ladderstathannel gluon exchanges at LL order, with some quark
mixing at NLL order and beyond. The underlying framework foe resummation procedure is the BFKL
equation [41,42], an integral equation for the unintegtagleion £ (x*;0 3) that is currently known up to full
NLL order [43—-45], and approximate NNLL order [46]. This ithge schematic form (up to NLL):
z h i
NEK09) = NEQH+ sk dk® Kok®k%00+ s kIK kP k%08 £&2); (5)

wheref; (0 2) is a non-perturbative initial condition at some initial Eca o, s = 3 s= andk,, are the

2Contributing authors: G. Altarelli, R. D. Ball, M. CiafalgrD. Colferai, G. P. Salam, A. Stasto, R. S. Thorne, C. D. W#/hi



LL and NLL BFKL kernels. Different choices for the argumeriiittioe running coupling are possible, leading
to accordingly modified ; [47,48].

The solution of the BFKL equation can be used to extract tepdnd subleading singular contributions
to singlet DGLAP splitting functions. The BFKL equation caither be solved numerically in its form given
by Eq. [), or else analytically by performing a double Meliansform with respect ta andk?:

4 1 Z 1
£( N)= ®?) dxxM £ (x;k%); (6)
0 0
whereby the BFKL equation becomes a differential equatwith kernels , ( ) defined respectively as
the Mellin transforms oK ;. Furthermore, by using the.-factorisation theorem [49], one may determine
leading smallx contributions to all orders to hard partonic cross sectifmrsphysical processes such as
heavy quark electroproduction [49] and deep-inelasti¢tedag [50]. Approximate subleading results are
also available [51,52].

These results for splitting functions and hard partonicssreections can then be combined with fixed-
order results to obtain resummed predictions for physibakovables. However, it has now been known for
some time that the LL BFKL equation is unable to describetsday data well, even when matched to a
fixed order expansion. Any viable resummation proceduretings, at the very least, satisfy the following
requirements:

1. Include a stable solution to the BFKL equation with ruignéoupling up to NLL order.

2. Match to the standard DGLAP description at moderate ag kivalues (where this is known to
describe data well).

3. Provide the complete set of splitting and coefficient finms forr, andr, in a well defined factorisa-
tion scheme.

Over the past few years, three approaches have emerged,whisbime extent, aim at fulfilling these
conditions. Here we call these the ABF [53—-60], CCSS [486G]-and TW [68—73] approaches. In the
ABF scheme all three requirements are met, and resummetingpfunctions in the singlet sector have been
determined. Furthermore, a complete control of the scheepertlence at the resummed level has been
achieved, thereby allowing for a consistent determinatibresummed deep-inelastic coefficient functions,
and thus of resummed structure functions. However, thdtseghtained thus have not been fit to the data yet.
In the CCSS formalism, resummed splitting functions hage dkeen determined. However, results are given
in a scheme which differs from the s scheme at the resummed level; furthermore, resummed deaffic
functions and physical observables haven’t been constiuett. The TW approach, instead, has already been
compared to the data in a global fit. However, this approackesha number of simplifying assumptions and
the ensuing resummation is thus not as complete as that whielins in other approaches: for example, this
approach does not include the full collinear resummatiotnefBFKL kernel.

A comparison of resummed splitting functions and solutibrewwlution equations determined in the
ABF and CCSS approaches with = 0 was presented in Ref. [1]; the main features and differentésese
approaches were also discussed. Here, we extend this dgomptr the case aof: 6 0resummation, and also
to the TW approach. First, we will briefly summarize the maattires of each approach, and in particular we
display the matrix of splitting functions determined in thBF and CCSS approaches. Then, we will compare
K -factors for physical observables determined using the AB& TW approach.

Note that there are some difference in notations betweepusgroups, which are retained here in
order to simplify comparison to the original literature. garticular, the variablel in Eqg. (8) will be referred
toas! inthe CCS approach of Sectibn 2J2.2, and the variahilethe same equation will be referred toras
in the ABF approach of Sectign 2.2.1.

2.2.1 The Altarelli-Ball-Forte (ABF) Approach

In the ABF approach [53—-60, 74—77] one concentrates on thielggn of obtaining an improved anomalous
dimension (splitting function) for DIS which reduces to thelinary perturbative result at large (large x),



thereby automatically satisfying renormalization grogmstraints, while including resummed BFKL correc-
tions at smallv (small x), determined through the renormalization-group improgiesl running coupling)
version of the BFKL kernel. The ordinary perturbative ré$at the singlet anomalous dimension is given by:

N;s)= s o)+ 1)+ 0) :::: (7)

The BFKL corrections at smait (smallx) are determined by the BFKL kernel ; ¢ ):

M; )= s oM)+ 2 M)+ :::; (8)

which is the Mellin transform, with respect to= In ‘;—2 of then ! Oangular averaged BFKL kernel.
The ABF construction is based on three ingredients.
1. The duality relatiorbetween the kernels and

( N;s) s)=N; (9)

which is a consequence of the fact that at fixed coupling theisas of the BFKL and DGLAP equa-
tions should coincide at leading twist [53, 74, 78]. By usdwglity, one can use the perturbative ex-
pansions of and in powers of ¢ to improve (resum) each other: by combining them, one obtain
"double leading” (DL) expansion which includes all leadif@agd subleading, at NLO) logs afandg 2.
In particular, the DL expansion automatically resums tHeraar poles of atM = 0. This eliminates
the alternating sign poles1=M ; 124 2;:::that appearin o, 1,..., and make the perturbative ex-
pansion of unreliable. This result is a model independent consequehogomentum conservation
(1; )= 0, whence, by duality:

0; )= 1: (10)
2. The symmetry of the BFKL kernepon gluon interchange. In Mellin space, this symmetry iegpl
that at the fixed-coupling level the kernelfor evolution iank—iO must satisfy ™M )= (1 M ).
By exploiting this symmetry, one can use the collinear resation of the regiom 0 which was

obtained using the double-leading expansion to also ingptbe BFKL kernel in the anti—collinear
M 7 1region. This leads to a symmetric kernel which is an entirecfion for allM , and has a
minimum atM = . The symmetry is broken by the DIS choice of variables = In 5> and by the
running of the coupling; however these symmetry breakingrdaution can be determined exactly. This
then leads to a stable resummed expansion of the resummethknus dimension at the fixed coupling
level.

3. The running-coupling resummatiasf the BFKL solution. Whereas running coupling correctidas
evolution equations are automatically included when sgithe DGLAP evolution equation with re-
summed anomalous dimensions, the duality relation[Eqt$6)fiundergoes corrections when the run-
ning coupling is included in the BFKL equatidd (5). Runnirmypling corrections can then be derived
order by order, and turn out to be affected by singularitre®ellin M space. This implies that after
Mellin inversion the associate splitting functions is emted asx ! 0: their contribution grows as

s 0 ]ni " with the perturbative order. However the series of leadingamced contribution can be
summed at all orders in closed form, because it correspanitie tasymptotic expansion in powers Qf
of the solution to the running coupling BFKL equatidh (5) wtike kernel is approximated quadrati-
cally about its minimum. This exact solution can be expréssdéerms of Airy functions [54, 79] when
the kernel is linear in 5 and in terms of Bateman [56] functions for generic kernelec@ise both the
exact solution and its asymptotic expansion are known,BRiKL running coupling resummation can
be combined with the DGLAP anomalous dimension, alreadymesed at the BFKL fixed coupling
level, with full control of overlap (double counting termsychematically, the result has the following
form:

rc;pert (

o (s®N )= TTETEC SN )+ P (SN ) D (SN ) S (BN )

Seo( sON )+ nawn ( s(®GN )+ nom (0N ); (11)
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rc;pert

where " 7( s(t);N ) contains all terms which are up to NLO in the double-leadirga@sion of
point 1, symmetrized as discussed in point 2 above so thduss has a minimum; B ( S(t);N )
resums the series of singular running coupling correctigiag the aforementioned exact BFKL solu-
tion in terms of a Bateman function? ( o(t);N ), L.( s(t);N ) SBS,@( s(t);N ) are double counting
subtractions between the previous two contributions;, subtracts subleading terms which spoil exact
momentum conservation;, .., subtracts any contribution which deviates from NLO DGLARI at

largeNn doesn’t drop at least q$

The anomalous dimension obtained through this procedw@ sample pole as a leading small{i.e.
smallx) singularity, like the LO DGLAP anomalous dimension. Thedtion of the pole is to the right of the
DGLAP pole, and it depends on the value qf Thanks to the softening due to running of the coupling, this
value is however rather smaller than that which correspomdise leading BFKL singularity: for example, for

s = 02,whenn; = Othe poleisat = 0:17.

The splitting function obtained by Mellin inversion of tha@malous dimension ed.(11) turns out to
agree at the percent level to that obtained by the CCSS grpmoitnerical resolution of the BFKL equation
for all x < 10 #; for larger values of (i.e. in the matching region) the ABF result is closer to theQN
DGLAP result.

In order to obtain a full resummation of physical observabipecifically for deep-inelastic scattering,
the resummation discussed so far has to be extended to tHessgedor and to hard partonic coefficients. This,
on top of various technical complications, requires twonm@inceptual steps:

A factorization scheme must be defined at a resummed leveaue only one of the two eigenvectors
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of the matrix of anomalous dimensions is affected by resutiomgonce a scheme is chosen, the resum-
mation discussed above determines entirely the two-byrhatrix of splitting functions in the singlet
sector. The only important requirement is that the relatbithis smallx scheme choice to standard
large x schemes be known exactly, since this enables one to combgsuenmed results with known
fixed order results.

PDFs evolved using resummed evolution equations must beicechwith resummed coefficient func-
tions. These are known, specifically for DIS [50], but ar@d&isown [80] to be affected by singularities,
analogous to the running coupling singularities of the mesied anomalous dimension discussed above,
which likewise must be resummed to all orders [58]. This fngrcoupling resummation of the coef-
ficient function significantly softens the smallgrowth of the coefficient function and substantially
reduces its scheme dependence [59].

These steps have been accomplished in Ref. [59], where needranomalous dimensions (seelfig. 4),
coefficient functions (see f[d.5) and structure functiorese (sectiol 2.214 below) have been determined. The
scheme dependence of these results can be studied in desilts have been produced and compared in
both theM s andQ (M S schemes, and furthermore the variation of results uporatian of factorization and
renormalization scales has been studied.

Calculations of resummation corrections not only of deegdastic processes, but also of benchmark
hadronic processes such as Drell-Yan, vector boson, hasnk @nd Higgs production are now possible and
should be explored.



2.2.2 The Ciafaloni-Colferai-Salam-Stasto (CCSS) Apgioa

The Ciafaloni-Colferai-Salam-Stasto (CCSS) resummadjmproach proposed in a series a papers [48,61-67]
is based on the few general principles:

We impose the so-called kinematical constraint [81-83) ¢iné real gluon emission terms in the BFKL
kernel. The effect of this constraint is to cut out the regiofi the phase space for whieff 1=z
wherek: ;k! are the transverse momenta of the exchanged gluons &nthe fraction of the longitu-
dinal momentum.

The matching with the DGLAP anomalous dimension is done updmext-to-leading order.
We impose the momentum sum rule onto the resummed anomadhassions.

Running coupling is included with the appropriate choicseadle. We take the argument of the running
coupling to be the transverse momentum squared of the ehglib®n in the BFKL ladder in the BFKL
part. For the part which multiplies the DGLAP terms in theagigalue equation we choose the scale to
be the maximal betweex? andk.?.

All the calculations are performed directly in momentumaarhis in particular enables easy imple-
mentation of the running of the coupling with the choice & #rguments as described above.

The implementation at the leading logarithmic level in BFEhd DGLAP (and in the single gluon
channel case) works as follows. It is convenient to go to tlediMspace representation where we denote by
and ! the Mellin variablgs conjugated tm kr and In 1=x respectively. The full evolution kernel can be
represented as a series= ot K, ( ;!). We take the resummed kernel at the lowest order level to be

n

2Ca

Ko( j1)=—— o( )+ [5°(1)

2C |
I E (12)

o )=2 (1) () 1 + 1)

is the leading logarithmic BFKL kernel eigenvalue with thedmatical constraint imposed. This is reflected
by the fact that the singularities in theplane at = 1 are shifted by the . This ensures the compatibility
with the DGLAP collinear poles, in the sense that we have simigle poles in . The function .( )is the
collinear part of the kernel

S)=

which includes only the leading collinear poles at= 0 or 1. All the higher twist poles are neglected for
this part of the kernel. This kernel eigenvalue is multigliey the non-singular (in) part of the DGLAP
anomalous dimension;?(!)  2C,=! where 29(!)is the full anomalous dimension at the leading order.
The next-to-leading parts both in BFKL and DGLAP are incllidie the second term in the expansion, i.e.
kernelx ;

Ki( ;!)= ~p )+ () o) (13)

where ~! () is the NLL in x part of the BFKL kernel eigenvalue with subtiaas. These subtractions are
necessary to avoid double counting: we need to subtractahble and triple collinear poles in which are
already included in the resummed expression (12) and wisictbe easily identified by expanding this expres-
sion in powers oft and using the LO relation = 5 ,( ). The term~” (! )in Eq. (I3) is chosen so that one
obtains the correct DGLAP anomalous dimension at a fixed-tweldading logarithmic level. The formalism
described above has been proven to work successfully inrtgkechannel case, that is for evolution of gluons
only. The solution was shown to be very stable with respetitéachanges of the resummation scheme.

The quarks are included in the CCSS approach by a matrix f@maThe basic assumptions in this
construction are:

Consistency with the collinear matrix factorization of fBBFs in the singlet evolution.
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Requirement that only single pole singularities in both iand ! are present in the kernel eigenvalues.
This assumption allows for the natural consistency with XBland BFKL respectively. Higher order
singularities can be generated at higher orders only thrahig subleading dependencies on these two
variables.

Ability to compute all the anomalous dimensions which cardiectly compared with the DGLAP
approach. This can be done by using set of recursive eqsatibith allow to calculate the anomalous
dimensions order by order from the kernel eigenvalues.

Impose the collinear-anticollinear symmetry of the kemmeltrix via the similarity transformation.
Incorporate NLLx BFKL and DGLAP up to NLO (and possibly NNLO)

The direct solutions to the matrix equations are the quark glmon Green’s functions. These are
presented in Fid.]6 for the case of the gluon-gluon and qghrén part. The resulting gluon-gluon part is
increasing exponentially with the logarithm of energys with an effective intercept of about 0:25. Itis
much suppressed with respect to the leading logarithmierokife also note that the single channel results and
the matrix results for the gluon-gluon Green'’s functionegey similar to each other. In Figl 6 we also present
the quark-gluon channel which is naturally suppressed imabtization with respect to the gluon-gluon one
by a factor of the strong coupling constant. This can be tinily understood as the (singlet) quarks are
radiatively generated from the gluons, and therefore thimmonent follows the gluon density very closely.
The yellow bands indicate the change of the Green'’s funstwith respect to the change of the scale.

In Fig.[4 we present all four splitting functions for fixed ual of scalep . Here, again the results
are very close to the previous single channel approach icdke of the gluon-gluon splitting function. The
gluon-quark channel is very close to the gluon-gluon onéh tie characteristic dip of this function at about
x 10°. The dip delays the onset of rise of the splitting functiomydo values of x of about.0 *. The
scale dependence growths with decreasirmt it is not larger than in the fixed NLO case. The quark-gluon
and quark-quark splitting functions tend to have slighéisger uncertainty due to the scale change but are also
slightly closer to the plain NLO calculation. They also teéndhave a less pronounced dip structure.
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2.2.3 The Thorne-White (TW) Approach
Substituting the LO running couplings (x?) into equation[{b) and performing a double Mellin transform
according to equatioi{6), the BFKL equatidn 5, as mention&kctior 2.2, becomes a differential equation:
d?f( ;N )
d 2

_ PE(08) 1 dl ol M) (
d 2 oN d 32y ¢

(N ); (14)

where ; ( ) are the Mellin transforms ok,.. The solution forf N ; ) of Eq. [14) has the following

form [62, 84]: z .

Xq1() A (~ )exp Xq1(~)
oN oN

fIN; )= exp d~: (15)

Up to power-suppressed corrections, one may shift the Idiwetr of the integral ! 0, so that the gluon
distribution factorises into the product of a perturbatared a non-perturbative piece. The nonperturbative
piece depends on the bare input gluon distribution and animgiple calculable hard contribution. However,
this latter part is rendered ambiguous by diffusion intoittieared, and in this approach is contaminated by in-
frared renormalon-type contributions. The perturbatiieee is safe from this and is sensitive to diffusion into
the ultraviolet region of weaker coupling. Substitutinguation [I5) into[(I¥), one finds that the perturbative
piece is given (after transforming back to momentum space):

“—exp t X N)=(oN)d ; (16)



1 80 -
X

> 0 60 | —
4L | 40 -
20 .

2 - 7 Q=1GeV
_3 |5||||u,|] |4f|||u,|] |3|||u_u] |2|||u_u] |l||||uu O |5|||u_u] |4f|||u,|] |3||||u1] |2|||u_u] |1||||u,u
10 10 10710710 1 10 10 10 10710 )1(

X

Fig. 8: Gluons arising from a global fit to scattering dataluding NLL small x resummations in the DIS) factorisation scheme
(solid). Also shown is the result from an NLO DGLAP fit in thexsa scheme.

where: 7

X1( N )= o)+ N

: o(~)

d~: (17)

Structure functiong ; also factorize, and the perturbative factors have a sirfolan to Eq. [I6), but involve an
additional impact factoh;( ;N ) in the integrand according to the-factorisation theorem [50]. Crucially,
coefficient functions and anomalous dimensions involveosabf the above quantities, such that the non-
perturbative factor cancels. Thus, once all the impacbfacare known, the complete set of coefficient and
splitting functions can be disentangled. Finally they carcbmbined with the standard NLO DGLAP results
(which are known to describe data well at higlkeralues) using the simple prescription:

h i
pWt:_ pNLL | pNLO pNLL(0) , pNLL(1) ; (18)

whereP is a splitting or coefficient function, and™ ** ® the o ( i) contribution to the resummed result
which is subtracted to avoid double-counting. It should beted that the method of subtraction of the re-
summed contribution in the matching is different to that thee ABF approach outlined after Eq. {11). For
example, at NLO in the resummation the BFKL equation pravideth the ;= part of P, and the part at

O ( g)constantasl ! 1 . Hence we choose to keep all terms constant as 1 generated by EqL{16),
with similar considerations for other splitting functioasd coefficient functions, though these can contain
terms/ N . Hence, we include terms which will have some influence oubtch higherx than in the ABF
approach.

In the TW manner of counting orders LL is defined as the firseomt which contributions appear,
so while for the gluon splitting function this is for; n™ (1=x) form = n 1 for impact factors this is
form = n 2. A potential problem therefore arises in that the NLL impfaitors are not known exactly.
However, the LL impact factors with conservation of enerfyhe gluon imposed are known in cases of both
massless and massive quarks [51,52], and are known to previgry good approximation to the fall( 2)
ando ( ) quark-gluon splitting functions and coefficient functidi@s], implying that they must contain
much of the important higher-order information. These daentbe used to calculate NLL coefficient and
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splitting functions within a particular factorisation srhe. One must also specify a general mass variable
number scheme for consistent implementation of heavy guads effects. Such a scheme (called the DJS(
scheme) has been given in [72, 73] up to NLL order in the higérggnexpansion, and NLO order in the fixed
order expansion.

The form of the resummed splitting functions shown in fiy. ® qualitatively consistent with those
from the ABF approach, figl4, and CCSS approachig. 7 (noteskiemthat in these plots the value of
is a little larger, and the scheme is different). This is dtesihe fact that the approach does not include the
explicit collinear resummation of the BFKL kernel adoptadhe other two approaches. It was maintained in
[70,71] that the diffusion into the ultraviolet, effectlyenaking the coupling weaker, hastens the perturbative
convergence for splitting functions, and the kernel neae 0, making this additional resummation less
necessary. There is no particular obstruction to includimg resummation in the approach, it is simply
cumbersome. Indeed, in Ref. [71] the effect was checked,namdifications found to be no greater than
generic NNLO corrections to the resummation, so it was @dit(Note that any process where there are two
hard scales, sensitive to 035, or attempted calculation of the hard input for the gluonridigtion, sensitive
to = 1, would find this resummation essential.) The main featurthefresummed splitting functions is
a significant dip below the NLO DGLAP results, followed by areetual rise at very lonk * 10 . This
behaviour drives a qualitative change in the gluon distidmy when implemented in a fit to data.

The combined NLO+NLL splitting and coefficient functions the TW approach) have been imple-
mented in a global fit to DIS and related data in the DIS§cheme, thus including smallresummations in
both the massless and massive quark sectors [73]. The bfiecalality was better than a standard NLO fit
in the same factorisation scheme, and a similar NLO fit in tligentonventionals S factorisation scheme.
The principal reason for this is the dip in the resummed dimhukernels, which allows the gluon distribution
to increase at both high and low valuesxof This reduces a tension that exists between the higt data
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of [86, 87] and the lonwx HERA data [18, 88-91]. The gluon distributions arising fréime NLL and NLO
fits are shown in figur€l8, for the starting scalé = 1GeV* and also for a higher value gf?. One sees
that whilst the NLO gluon wants to be negative at lewando 2, the resummed gluon is positive definite and
indeed growing slightly ag ! 0. The gluons agree well for highervalues (where the DGLAP description
is expected to dominate), but deviate for 102 . This can therefore be thought of as the valuex tielow
which resummation starts to become relevant.

The qualitatively different gluon from the resummed fit @tiger with the decreased evolution kernels
w.r.t. the fixed order description) has a number of phenorogical implications:

1. The longitudinal structure functian is sensible at smailt andg ¢ values, where the standard DGLAP
description shows a marked instability [92].

2. As a result of the predicted growth af at smallx the resummed result for the DIS reduced cross-
section shows a turnover at high inelasticjtyin agreement with the HERA data. This behaviour is not
correctly predicted by some fixed order fits.

3. The heavy flavour contribution (from charm and bottomyy tds reduced at highep ? in the resummed
approach, due mainly to the decreased evolution, as almeaigdyl in a full analysis in the fixed-order
expansion at NNLO [93]. Nevertheless, it remains a signii¢eaction of the total structure function at
smallx.

Other resummation approaches should see similar resuks wbnfronted with data, given the quali-
tative (and indeed quantitative) similarities betweengpliting functions. It is the decreased evolution with
respect to the DGLAP description that drives the qualieatittange in the gluon distribution. This is then the
source of any quantitative improvement in the descriptibdaia, and also the enhanced description of the
longitudinal structure function and reduced cross-sectio

The resummed prediction far;, is shown alongside the recent H1 data [94] in fidure 10, andoeoed
with an up-to-date NNLO fixed order result [95]. One sees thatdata cannot yet tell apart the predictions,
but that they are starting to diverge at levando ¢, such that data in this range may indeed be sensitive to the
differences between resummed and fixed order approaches.
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Fig. 11: The ratice ) “* =) “© in the ABF approach (left) and the TW approach (right), usmgPDFs, given in ed_20, calculated
as function ofx at fixed forQ # (upper ), and as a function of* at fixedx (lower).

2.2.4 Resummed structure functions: comparison of the ABH &\ approaches

In this section, we present an application of the ABF and T\Wre@ches to the resummed determination
of theF, andF;, deep-inelastic structure functions. The correspondirggase for the CCSS approach has
not yet been finalised. A direct comparison of the two apgnieads complicated by issues of factorisation
scheme dependence: whereas in the ABF approach resultserahtdined in any scheme, and in particular
theM s and closely related ,-M S scheme, in the TW formalism splitting functions and coediitifunctions
beyond NLO in ¢ are resummed in the o-DIS scheme [66, 96], which coincides with the standard DIS
scheme at large but differs from it at the resummed level; the scheme chamgeled in order to obtain the
coefficient functions from the DIS-scheme ones is performeattly up to NLO and approximately beyond
it. Thus, without a more precise definition of the relatiortiié scheme to1 S, one cannot compare splitting
and coefficient functions, which are factorisation schemgetident.

A useful compromise is to present the respective resultthforatio of structure function predictions:

NLL . 2
K. - F;LO(X,Q ); (19)
PR (x;02)

wherei 2 2;L, and ther; are calculated by convoluting the relevant coefficienthviADFs obtained by
perturbative evolution of a common set of of partons, defiteal starting scale af 2 = 4GeV?. The number

of flavors is fixed to three, to avoid ambiguities due to heawgrl effects. The initial PDFs are assumed to
be fixed (i.e., the same at the unresummed and unresumméxdtete DIS factorization scheme at the scale
0 ¢. Of course, in a realistic situation the data are fixed andPlDEs are determined by a fit to the data: hence
they are not the same at the resummed and unresummed lesgddo® Fig[ B above). However, in the DIS
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in the ABF approach (left) and the TW approach (right), usimgPDFs, given in ed_20, calculated
as function ofx at fixed forg  (upper ), and as a function of? at fixedx (lower).

factorization scheme the structure functionis simply proportional to the quark distribution, hence g
the PDFs in this scheme one ensures thais fixed at the starting scale.

This starting PDFs are constructed as follows: the quarkgdunah distributions are chosen to have the
representative form also used in Ref. [59]

xg(x) = kgxS (x)= kgx

0:18 (1

xV; xgy = k@(05(1

xJ; (20)

in theM s scheme, where (x) is the gluon,s (x) the sea quark distribution, andy, (x) denotes a valence
quark distribution. We choose, = 3, and then all other parameters are fixed by momentum and msubre
rules. Note that the gluon is the same as that used in thegue¢omparison of Ref. [1]. The PDFs dq.1(20)
are then transformed to the DIS factorization scheme [9ifjgughe NLO (unresummed) scheme change at
the scale . The result is then used as a fixed boundary condition foualldgsummed and resummed, ABF
and TW) calculations. In the TW approach, the DIS scheme rioesummed quantities andyRIS scheme
as discussed above is then used throughout. In the ABF agiprtiee fixed DIS-scheme boundary condition
is transformed to the (M s scheme [59, 98] (which at the unresummed level coincideB standards S)

by using the unresummed or resummed scheme change funstippeopriate, and then all calculations are
performed ing oM S. One might hope that most of the residual scheme dependemmels upon taking
the ratio of the NLL and NLO results, at least for schemes #ratwell defined and without unphysical

singularities.

The results fok , andk |, are shown in figurels 11 far, in the ABF and TW procedures respectively
and similarly in figure§112 for;, . One sees that for sufficiently small, and fop not too large, the resummed
F, is consistently lower than its fixed order counterpart inhb@pproaches, due to the decreased evolution of
the gluon, and also (in the s scheme) due to the fact that resummed coefficient functiomsnaich larger



than the NLO ones at smatland lowQ 2. Similarly the resummed , is larger than the fixed order at log/
and small enougk, but falls rapidly a) increases. However despite these superficial similaritiestwo
approaches differ quantitatively in several respects:

the ABF resummed matches well to the NLO fox > 10 ¢ at all scales, while the TW, shows a
rise aroundk ’ 10 2, which is largest at lovp . This may be due to the significant differences between
resummed and NLO splitting functions at very highn fig.[9. A similar mismatch may be seen at
x  0:dinther, K-factor.

at large scales the ABF resummation stabilises, due to theing of the coupling, so the K-factors
becomes rather flat: they grow only logarithmicallyiing . By contrast the TWr, K-factor still shows
a markedo ? dependence. This may be related to the fact that the TW restimmdoes not resum
the collinear singularities in the BFKL kernel, and to the Tohbice (see Sedif. 2.2.3) not to include
subtraction of terms induced by the resummation which dadnop at largex. This choice induces a
change in the PDFs at higheiin the TW approach, which results in effects which persigtigherg 2
at smallerx.

at the initial scaley the TW resummed';, grows much more strongly asdecreases than the ABF
resummedr;,. This is likely to be due to the different treatment of the fliocent functions: in this
respect, the fully consistent treatment of the factoramaticheme, the effect of collinear resummation,
and the different definitions of what is called resummed NLs@diby the two groups all play a part.

2.2.5 Conclusion

The problem of understanding the smalevolution of structure functions in the domainsofindo ? values

of relevance for HERA and LHC physics has by now reached asstahere all relevant physical ingredients
have been identified, even though not all groups have quitehexl the stage at which the formalism can be
transformed into a practical tool for a direct connectiohwthe data.

In this report we summarised the status of the three indeggerepproaches to this problem by ABF,
CCSS and TW, we discussed the differences in the adoptedguoes and finally we gave some recent results.
The most complete formalisms are those by ABF and CCSS whdel'WW approach is less comprehensive
but simpler to handle, and thus has been used in fit to data.e¢édl that, at the level of splitting functions
the ABF and CCSS have been compared in ref. [1] and found tm very good agreement. The singlet
splitting function obtained by TW was also compared with A@tel CCSS in ref. [73] and also found to be in
reasonable agreement, at least at small

Here we have shown the results of an application to the streiétinctionsr, andr;, of the ABF and
TW methods. The same input parton densities at the startialg @ , were adopted by these two groups
and thexk -factors for resummed versus fixed NLO perturbative stmgcfunctions were calculated using the
respective methods. The results obtained are in reasogahliative agreement far,, less so forr;, . Dis-
crepancies may in part be due to the choice of factorizatiierme, but our study suggests that the following
are also likely to make a quantitative difference: whethenat a resummation of collinear singularities in
the BFKL kernel is performed, whether contributions frore tesummation which persist at largeare sub-
tracted and whether the factorization scheme is conslgtdafined in the same way at resummed and NLO
levels.

2.3 Parton saturation and geometric scaling?

2.3.1 IntroductioR®

The degrees of freedom involved in hadronic collisions #iigantly high energy are partons, whose density
grows as the energy increases (i.e., whetheir momentum fraction, decreases). This growth of thalmer

of gluons in the hadronic wave functions is a phenomenon kvhas been well established at HERA. One
expects however that it should eventually “saturate” whem lmear QCD effects start to play a role.

22Contributing authors: G. Beuf, F. Caola, F. Gelis, L. Motyka Royon, D.éélek, A. M. Stasto
ZContributing authors: F. Gelis, A. M. Stasto



An important feature of partonic interactions is that thayolve only partons with comparable ra-
pidities. Consider the interaction between a hadron andesexternal probe (e.g. a virtual photon in Deep
Inelastic Scattering) and consider what happens when co&tdthe hadron, increasing its rapidity in succes-
sive steps. In the first step, the valence constituents bedmrentz contracted in the longitudinal direction
while the time scale of their internal motions is Lorentzatkld. In addition, the boost reveals new vacuum
fluctuations coupled to the boosted valence partons. Suctuditions are not Lorentz contracted in the longi-
tudinal direction, and represent the dynamical degreeseeflom; they are the partons that can interact with
the probe. Making an additional step in rapidity would fred¢lzese fluctuations, while making them Lorentz
contracted as well. But the additional boost also produess quantum fluctuations, which become the new
dynamical variables. This argument can be repeated, andrames at the picture of a high-energy projectile
containing a large number of frozen, Lorentz contractedgoar (the valence partons, plus all the quantum
fluctuations produced in the previous boosts), and partdnshahave a small rapidity, are not Lorentz con-
tracted and can interact with the probe. This space-timergti®on was developed before the advent of QCD
(see for instance [99]; in Bjorken’s lectures [100], one aatually foresee the modern interpretation of parton
evolution as a renormalization group evolution).

This space-time picture, which was deduced from rather

_ H1+ZEUS general considerations, can now be understood in terms of
O a0p  Qce R - QCD. In fact, shortly after QCD was established as the thebry
Pirst Gez00 0o . strong interaction, quantitative equations were establls de-
150 T exp. uncert scribing the phenomenon outlined above [42,101-105]. tn pa
sl oo ticular, the equation derived by Balitsky, Fadin, Kuraed &
R oy s shme patov [42,101] describes the growth of the non-integratadmy

oxp. uncert distribution in a hadron as it is boosted towards higherdapi
ties. Experimentally, an important increase of the numider o
gluons at smalk has indeed been observed in the DIS exper-
iments performed at HERA (see Fig.]13), downto 10%.
Such a growth raises a problem: if it were to continue to arbi-
10° 10 1o 107 trarily small %, it would induce an increase of hadronic cross-
sections as a power of the center of mass energy, in violafion
known unitarity bounds.

. ) L However, as noticed by Gribov, Levin and Ryskin in
Fig. 13: The gluon structure function in a proton mea- . . .
sured at HERA [106], the BFKL equation includes only branching processes

that increase the number of gluonsg ( gg for instance), but

not the recombination processes that could reduce the nurhbiions (likegg ! g). While it may be legiti-
mate to neglect the recombination process when the gluasitges small, this cannot remain so at arbitrarily
high density: a saturation mechanism of some kind must sdra&ating the partons as ordinary particles, one
can get a crude estimate of the onset of saturation, whiclreed:

XG (x;03)
RZ

The momentum scale that characterizes this new regimgs called the saturation momentum [107]. Partons

with transverse momentum > Q ¢ are in a dilute regime; those with < Q 4 are in the saturated regime.

The saturation momentum increases as the gluon densigases. This comes from an increase of the gluon

structure function as decreases. The increase of the density may also come froookiegent contributions

of several nucleons in a nucleus. In large nuclei, one egpett/ A '3, wherea is the number of nucleons

in the nucleus.

Note that at saturation, naive perturbation theory breakgnd even though (Q ) may be small if
0 is large: the saturation regime is a regime of weak coupling,large density. At saturation, the gluon
occupation number is proportional te- ;. In such conditions of large numbers of quanta, classicil fie
approximations become relevant to describe the nucleaevitactions.

Once one enters the saturated regime, the evolution of th@pdistributions can no longer be described
by a linear equation such as the BFKL equation. The colorsgtasidensate formalism (for a review, see

0%=02; wihQ? Q2) (21)



[108]), which relies on the separation of the degrees ofiiveein a high-energy hadron into frozen partons and
dynamical fields, as discussed above, provides the norr letgations that allow us to follow the evolution
of the partonic systems form the dilute regime to the densteirated, regime. For instance, the correlator
tr UY(x, )U (y, ) of two Wilson lines —which enters in the discussion of DISelegs according to the
Balitsky-Kovchegov [109, 110] equation:

(T U Wiy, ), o k7 v P
@ In(1=x) 22, (%, 2 Ply, ) _
: 1
Netr UY(x2 WUy, ), &wUYx:)U (27) twU¥(z; U (y,)  : (22)

(This equation reduces to the BFKL equation in the low dgnrisitit.)

The geometric scaling phenomenon was first introduced icdngext of the dipole picture of the deep
inelastic electron-proton scattering [111]. The procefsthe scattering of the virtual photon on a proton at
very small values ok can be conveniently formulated in the dipole model. In thisyse the photon fluctuates
into the quark-antiquark pair (dipole) and subsequentigracts with the target. In the smallregimes these
two processes factorize and they can be encoded into thiedgronula for the total p cross section

Z Z

1o (x;0%) = &r dzj g @z;00)F N x1) (23)

where 1 is the wave function for the photon andis the dipole cross sectiom.is the dipole size and is
the light-cone fraction of the longitudinal momentum ocadriby the quark (or antiquark). The photon wave
functions are known, the dipole cross section can be expressed in tfrthe correlator of Wilson lines
whose evolution is driven by Eq.(22) :
5 2 D E
2 r
“xpr)= —  dX tr'l U X +§)UY(X ) e (24)

C

NI R

Alternatively, it can be modeled or extracted from the détahe GBW model it was assumed that the dipole
cross section has a form
A= o1 exp( =R (x)%) (25)

whereRr o (x) = (x=xq) IS a saturation radius (its inverse is usually called tharssibn scale  (x)) and

o @ normalisation constant. One of the key properties of thdehwas the dependence on the dipole size
and the Bjorkenx through only one combined variabtéo 2 (x). This fact, combined with the property of the
dipole formula, allows to reformulate the total cross satias a function o =0 g (x) only. This feature is
known as the geometric scaling of the totab cross section. Initially postulated as a property of the GBW
model, it was then shown that the experimental data do indeleithit the aforementioned regularity in a rather
wide range of ? and for small values of Bjorken.

Although it is a postulate in the GBW model, this property tenderived from the smalt-behavior
of the solutions of Eq[{22) [112] : for a wide class of init@dnditions, the BK equation drives its solution
towards a function that obeys this scaling. Note also thas#iuration scale, introduced by hand in the GBW
model, is dynamically generated by the non linear evolutiescribed by Eq[{22). This suggested that the
regularity seen in the data could be explained by the scaliogerty of the solutions to the nonlinear equations
in the saturated regime - and thus may provide some indixedelece for gluon saturation.

Nevertheless, several important questions remained. ©Otiem, is the problem of the compatibility
of the DGLAP evolution with the property of the geometriclstg It is known from the global fits that the
standard DGLAP evolution works quite well for the descoptiof the of the deep inelastic data even in the
very low x andQ © regime. That suggests that the saturation should be continte very tight kinematic
regime, and it is therefore questionable whether the oleser@gularity could be attributed to the saturation at
all. In the present contribution we discuss several appresito this problem.



Fixed Coupling Fixed Coupling

o - |:A]
F all data ]

T

i

4
normalised

10*

0.4

107F ;“

r oz 2 0.2

L = © Q°>1GeV

i Q% <1GeV

A I I B ol Lo e L L

-4 -2 0 2 4 6 8 0 0.2 0.4 0.6 0.8

T A
Fig. 14: F, data: Scaling curve = ( )for “Fixed Cou- Fig. 15:DVCS data: Quality factor normalised to 1 plotted
pling”. A 02 > 1 GeV cut was applied to the data. against the parameter. Star denotes the fit result far,
data.

2.3.2 Phenomenolody

In order to compare the quality of different scaling lawsisituseful to use a quantity calleguality factor
(QF). It is also used to find the best parameters for a givelingcaln the following, this method is used to
compare the scaling results for the proton structure foncti, andr ¢, the deeply virtual Compton scattering,
the diffractive structure function, and the vector mesarssrsection data measured at HERA.

Quality Factor Given a set of data point® ?;x; = (Q?;x)) and a parametric scaling variable =
©?;Y; ) (withy = In1=x) we want to know whether the cross-section can be pararedtss a function
of the variable only. Since the function of that describes the data is not known, the has to be defined

independently of the form of that function.

For a set of pointgu; ;v;), whereu;'s are ordered and normalised between 0 and 1, we introduce
as follows [113]
X 2 1
(vi v1)
F = ; 26
oF ) (i w2+ 2 (26)

1
where is a small constant that prevents the sum from being infinitese of two points have the same value
of u. According to this definition, the contribution to the sum(28) is large when two successive points are
close inu and far inv. Therefore, a set of points lying close to a unique curve peeied to have largey F
(smaller sum in[(Z6)) compared to a situation where the pant more scattered.

Since the cross-section in data differs by orders of mageitand is more or less linear inog (Q?),
we decided to take; = ;( )andwv; = log( ;). This ensures that low ° data points contribute to ther
with a similar weight as highep  data points.

Fits to F, and DVCS Data We choose to consider all available data from H1, ZEUS, NM@ B665
experiments [18,89-91, 114-117] witl? in the range[1;150]1GeV? andx < 0:01%°. We exclude the data
with x > 10 ? since they are dominated by the valence quark densitieghafdrmalism of saturation does
not apply in this kinematical region. In the same way, theaugp’ cut is introduced while the lowey ? cut
ensures that we stay away from the soft QCD domain. We willvsimothe following that the data points
with 02 < 1 GeV? spoil the fit stability. Two kinds of fits to the scaling lawsegserformed, either in the

24Contributing authors: C. Royon, [alek
The data in the last ZEUS paper include contributionssforandxF 5 but those can be neglected within the kinematical domain
we consider.
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full mentionedg 2 range, or in a tightep ? range [3;150] GeV” to ensure that we are in the domain where
perturbative QCD applies.

Figure[14 shows the scaling plot for “Fixed Coupling” in thé range[1;150]1GeV?, which shows that
the lowesp ? points in grey have a tendency to lead to worse scaling. TheaQfes are similar for the “Fixed
Coupling”, “Running Coupling 1", and “Running Coupling &y — with a tendency to be slightly better for
“Running Coupling llbis” — and worse for diffusive scaling18].

The amount of the DVCS data [119, 120] measured by H1 and ZBUW$naller (34 points for H1
and ZEUS requiringz 0:01 as forF, data), therefore the precision on theparameter is weaker. The
kinematic coverage of the DVCS data covers smaller regionamdQ ? thanr,: 4 < 02 < 25 GeV? and
5 160 < x< 5 16. The DVCS data lead to similar values as in the', data (see Fid.15), showing
the consistency of the scalings. The values of the QF showdetey to favour “Fixed Coupling”, but all
different scalings (even “Diffusive Scaling”) lead to reaable values of QF.

Implications for Diffraction and Vector Mesons We used the values of the parameters obtained from the fit
to F, data to test the various scaling variables on the diffraatiwss section and vector meson data [121-123].
We tested both the fixed scaling behaviour ixp and the fixedks scaling behaviour in . At fixed , we

find a scaling behaviour up to = 0:65. At fixed x5, the scaling behaviour of the diffractive cross section as
afunction of andg? is far less obvious. This is not a surprise, as not enoughislatzilable in the genuine
small region. A sign of scaling is however observed for the = 0:03 bin.

Concerning , J=, and production [124-126], we found a reasonable scaling belavior all
tested scaling variables, with the hard saafe+ M Z, borrowed from vector mesons wave function studies.
Surprisingly, the best scaling is for all three vector mesthe “Diffusive scaling”.

Fits to F, and F 7 in QCD Parametrisations First we test the scaling properties using experimental
data. The requirements on the kinematical domain remaisdihee as in the case 8f, studies. The lower
02 > 3GeV cut also allows to remove eventual charm mass effects. Wehaseharme § measurements
from the H1 and ZEUS experiments [127—-130]. Only 25 datatpdia in the desired kinematical region.

Since the statistics in the data is low, the fit results arepmetise. Nevertheless, they still lead to
clear results that are comparableftg fits. The results are found similar between andr § (see Fig[1b).
All  parameters are similar far, andr § except for “Diffusive Scaling”. As in the case of tife scaling



analysis, “Fixed Coupling”, “Running Coupling I’ and “Ruimg Coupling II” give similar values of ¥, and
“Diffusive Scaling” is disfavoured.

The QCD parametrisations [131-133] of the structure fumctiave been tested using CTEQ, MRST,
GRV. The same ° andx points as in the experimental data were taken into accowaranfetrisations of ,
are able to reproduce the scaling results seen in the exget@indata. However, they are not successful in
describing the scaling properties in caserdt Fig.[17 shows the scaling curve of “Fixed Coupling” in the
MRST NNLO 2004 parametrisation 8f5 where the value of = 0:33isimposed (as seen in the experimental
data). The scaling curve is plotted with all the points usetheF , study. Therefore the fact that there is not
just a single scaling curve i parametrisation is not in direct disagreement with the dataith 25 point
only, the curves in parametrisation and data look similawkelver the fit values of are different.

The CTEQ, MRST or GRV parametrisations are unable to remedhe scaling properties inS. It
seems a sea-like intrinsic charm component like the one insETEQ 6.6 C4 helps to get results closer to a
single scaling curve [134]. Scaling is not present at alhemMRST or GRV parametrisations at law’.

2.3.3 Geometric scaling and evolution equations with setar?®

Let us now recall how scaling properties arise from satargtas shown in [112], using methods and results

from non-linear physics (see [135, 136] for alternative destrations). Our discussion, independent of the

precise saturation formalism, is valelg. for the JIMWLK and BK equations (see [108] and references

therein), at LL, NLL or even higher order ilvg (1=x). We will discuss separately the fixed and the running
s cases, as running coupling is the main effect which can maké discussion.

Saturation amounts to add a non-linear damping contributiothe BFKL evolution. One writes for-
mally the evolution equation at LL for the dipole-proton sssection* (23)

@y ~(Y;L) = ( @)~ (Y;L) non-lineartermsim (Y;L) ; (27)
wherey Iog(l=x), L logfr éCD yand ( )is the characteristic function of the BFKL kernel.
The nonlinear damping ensures that, for any~ (v ;L. ) grows at most as a power df for 1. ! 1 (i.e.

r ! +1 ). The color transparency property of the dipole cross eadthplies” (v;L.) / e® forL ! +1 .
Using a double Laplace transform with partial waves™* ' ¥ , the linear part of[(27) reduces to the BFKL
dispersion relation! = ( ), which gives the partial waves solutioes & ¢ 7*= 1 In the relevant
interval0< < 1, the phase velocity ( )= ( )= has one minimum, for the critical value= .’ 063
which is the solution of ( .)= . % ). Inthe presence of saturation terms in the evolution eqnathe
wave with = _is selected dynamically.

In order to understand the dynamics of the problem, let usidenan arbitrary initial condition, at some
rapidity Y = Y,. With the definition ¢¢ (L ;Y ) @ Iog(~ (Y;L)), erf (L;Yq) gives the exponential
slope of the initial condition in the vicinity of.. That vicinity will then propagates for Y, at a velocity

(ere (LY ) = (err (L;Y )= <t (L ;Y ). One finds easily that, if.c¢ (L ;Yo) is a growing function of
L, the regions of smaller velocity will spread during theevolution, and invade the regions of larger velocity.
Restricting ourselves to initial conditions verifying taturation at, ! 1 and the color transparency
at. ! +1 as discussed previously, one obtains that: (1. ;Y,) goes from0 at low L. to 1 at largeL.
At intermediateL, .¢¢ (L ;Yo) Will cross the value ., corresponding to the minimal velocity. =  ( o).
Hence, one conclude that, @sgrows, there is a larger and larger domairtirwhere ¢+ (L;Y )= .and
thus = .. Inthat domain, one has(y;L)/ e <® <¥) and hence the geometric scalingy ;L)

f(L Y)= £( bg(?QZ(x))), with a saturation scale 2 (x) = e <Y 2., = x © Z.,. One finds
that the geometric scaling window is limitedto< .Y + ¢ .)Y=2, and separated from the region
still influenced by the initial condition by a cross-overvdm by BFKL diffusion. So far, we discussed only
scaling properties of the dipole cross sectionAs explained in the introduction, they imply similar scaji
properties of the virtual photon-proton cross sectionhwhie replacement 7 1=0.

The mechanism of wave selection explained above happemdynirathe linear regim#, i.e. for small

2Contributing author: G. Beuf
2"\We call linear (non-linear ) regime the (Y,L) domain where #xplicit value of the non-linear terms [n{27) is (is notytigible
compared to the value of the linear terms.



~, or equivalentlyr smaller tharp 2 (x). However, the geometric scaling property stays also valithé non-
linear regimej.e. for r larger thang g (x), which is reached after a large enough evolutioryinThe only,
but decisive, role of saturation in the linear domain is tovte the following dynamical boundary condition
in the IR to the linear BFKL evolution: when is large, it should be quite flat {-- (L) * 0). Indeed, one
can simulate successfully the impact of saturation on thisa in the linear regime by studying the BFKL
evolution in the presence of an absorptive wall [136], sat atdependent and selfconsistently determined
position near the saturation scale.

At NLL and higher order level, the terms different from rungicoupling ones do not affect the previous
discussion. They just change the kernel eigenvalues) and thus shift the selected parameterand .. On
the contrary, going from fixed to running coupling brings ongant changes. As the mechanism of spreading
of smaller velocity regions of the solution towards largefocity ones is local, one expect that it holds in the
running coupling case. But it selects coupling-dependeidcity and shape of the front, the coupling itself
beingL.-dependent. Hence, the picture is the following. We stilththe formation of a specific traveling
wave front solution, which progressively loses memory fiiitial condition. However, the selected values of
the velocity and shape of the front drift as the front progadawards larger. (smallerr), due to asymptotic
freedom. So far, this running coupling case has been solvalgtically [112,136] only at large and largey ,
keeping the relevant geometric scaling variableog (£Q 2 (x)) finite. One finds that the evglution is slower

than in the fixed coupling case, as the largbehavior of the saturation scale is nQ\/@(x) e VeY=b SC Do
withb (33 28 )=36andv. 2 (.)= .. Inaddition, the geometric scaling window is narrower:rapy
totically in v, it is expected to hold only f6f L < = v.Y=b+ (§154) ( O )Y °=2b o ( o))°.
The convergence of the selected front towards this asyimsolution seems rather slow, which may weaken
its phenomenological relevance. The whole theoreticdupgcis nevertheless consistent with numerical sim-
ulations [137,138]. Both leads to a universal traveling ev&ont structure of the solution, implying scaling

properties also subasymptotically.
In order to do phenomenological studies, one can try to patede to finitel, andy the scaling behavior
found asymptotically. However, this extrapolation is notque [139]. There is indeed an infinite family of
scaling variables " #
Ve Y
bL 2

L; (28)

parameterized by, which are different from each other at finiteandy but all converge to the same asymp-
totic scaling previously mentioned. The paramete&eems quite unconstrained, both from the theory and from
the DIS data, as shown in the phenomenological section girgsent contribution. We considered as bench-
mark points in that family two specific choices of The choice = 1=2leads to the only scaling variable
of the family which is a genuine geometric scaling variabie,is equivalent to a scaling with*Q 2 (x). Itis
namedrunning coupling lin the phenomenological section. The choice- 1 leads to the scaling variable
obtained by substitution of the fixed coupling by the runntiogipling directly in the original fixed coupling
geometric scaling variable. It is callednning coupling Il

Finally, one expects scaling properties in any case frontutem equations with saturation, both in
the non-linear regime, and in a scaling window in the linemyime. In the linear regime, the solution still
obey the linearized equation, and saturation play onlydhleaf a dynamically generated boundary condition.
Hence, geometric scaling there, although generated byas@to, is not a hint against the validity of PDF
fits. However, geometric scaling occurs also in the nonalirregime, where the scaling function is no more a
solution of the linear BFKL or DGLAP equations.

2.3.4 DGLAP evolution and the saturation boundary condi®

One of the issues that could be studied in the context of thengéic scaling versus DGLAP evolution is
the possibility of the different boundary conditions foetDGLAP evolution equations. These boundary
conditions would incorporate the saturation effects angsps the scaling property. Typically, in the standard

28 | v 234is the rightmost zero of the Airy function.
2Contributing author: A. M. Stasto



approach, to obtain the solution to the linear DGLAP evolutequations, one imposes the initial conditions
onto the parton densities at fixed valuegof and then performs the evolution into the region of largeteal
of 0 2. However, in the presence of saturation these might notéedirect boundary conditions for DGLAP
equations. As mentioned earlier the saturation regime égifipd by the critical line, the saturation scale
Q s (x) which is a function ofx Bjorken and its value increases as the Bjorketfecreases (or as we go to yet
higher energies). In that case it seems legitimate to asit istthe behavior of the DGLAP solutions when
evolved from the saturation boundagy” = 02 (x) rather then from the fixed scalg? = 0. To answer
this question we imposed [140] the boundary condition ferghuon density at the saturation scalé= @2
which possesses the scaling property namelyg(x;0* = 0 Z(x)) = =r’x  (in the fixed coupling case).
The solution for the gluon density at smal(at fixed coupling) which can be derived from solving the DGLA
equations with this boundary is given by

(a=2 ) gg(l0) 1
s Xg(x;02) s Q2 s=¢ Jaglio

2 Q2 2 02(x)
where . is the gluon-gluon DGLAP anomalous dimension. This sotutiizarly has the geometrical scaling
property as it is only a function af =0 2 (x). It is interesting to note that there exists a critical vabfe
the exponent of the saturation scale which determines the existenceadingc For example in the double
leading logarithmic approximation the scaling is presemtréther large values of the exponent 4 , =3
whereas there is no scaling for smaller values ofThe formula shown above is however only approximate,
as in the derivation we included only the leading behavioictvishould be dominant at asymptotically small
values ofx. At any finite value ofx the scaling will be mildly violated by the nonleading ternfge checked
numerically that this is indeed the case, though the vimfatias very small. This analysis was extended for
the case of the more realistic DGLAP evolution with the rumgncoupling. As expected the presence of the
scale violation due to the running coupling will lead to thelation of the scaling. In this case the geometric
scaling is only approximate with the solution for the gluandity given by

(29)

s (02(x)) Pogl )1

2 .02 2
s@%)xg(x;i0%)  Q5() nR2=02(x)] ;

2 Q2 Q2 2 b

with b being the beta function of the QCD running coupling. Theiagahere is present provided we have
sQsx)MPR?=02(x)E(@2 b) 1. Thus the geometric scaling violating term can be factoratd o

In summary, this analysis shows that the geometric scalioggsty can be build into the DGLAP initial
conditions, and that the solution to the linear evolutiomagpn which do not include the parton saturation
effects can preserve the scaling even in the regime of diglialues, outside the saturation region.

2.3.5 Geometric scaling from DGLAP evoluti8n

From the DGLAP point of view there is another possible exatenm for geometric scaling: the scaling be-
haviour can be generated by the evolution itself, rathen thging a preserved boundary condition. In fact,
it is possible to show [141] both analytically and numefiicahat in the relevant HERA region approxi-
mate geometric scaling is a feature of the DGLAP evolution.older to see this, one has fig,t to rewrite
the DGLAP solution as a function af (t;x) Jog 1=x (“fixed-coupling scaling”) ort (t;x) logl=x
(“running-coupling scaling®!' . Then from the explicit form of the DGLAP solution it followthat in the rel-
evant kinematic region (t;x) is approximatively constant, leading tg s . a» (t;x) ncLap (B EX)).
Hence approximate geometric scaling in the HERA region eaéufre of the DGLAP evolution. Interestingly
enough, this DGLAP-generated geometric scaling is expetctdiold also at large  and relatively largex
(sayx < 0:1), in contrast with the saturation-based geometric scalihigh should be a small, small (or at
least moderate) ¢ effect.

In order to make more quantitative statements, one can esguthlity factor method introduced in Sec.
[2.3.2. As a starting point, one can consider the leadingosthallx DGLAP evolution of a flat boundary

30Contributing author: F. Caola
%1The labels “fixed-coupling” or “running-coupling” are heaebit misleading. In fact, all the results shown here areinbthwith
the full running-coupling DGLAP solution. We kept this ntiten only for comparison with saturation-based approaches
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Fig. 18: Scaling plot withx < 0:1. For the theoretical DGLAP curve, only points with’ > 1 GeV* were kept. Curves are offset
for clarity.

condition. At the level of accuracy of geometric scalings tapproximation should be accurate enough in a
wide kinematic region, sag > > 10 GeV?, x < 0: at HERA. Now, a quality-factor analysis shows that in
this region the leading-order smallIDGLAP solution has an excellent scaling behaviour, eveteb#tan the
scaling behaviour observed in HERA data. Also the DGLAP otezhs for the geometric slope perfectly
agree with the phenomenological values: from the DGLAP tgmluwe obtain 25%#F = 032  0:05

("fixed- coupling” scaling) and 2¢ 2P = 166  0:34 ("running-coupling” scaling), to be compared with

run

co =032 006, Dun = 162 025 Moreover, data exhibit geometric scaling also for largetarger
Q% (sayx < 0: at HERA), as predicted by the DGLAP evolution. All these tesare summarized in
Fig. I8, where we plot the theoretical and phenomenolotficabduced cross sections in function of the
"fixed-coupling” scaling variablen = t Inl=x, with = 0:32, in the HERA region with the cut
x < 0:d. An analogous plot can be obtained for the "running-cougliscaling [141]. We interpret these
results as striking evidence that for* > 10 GeV? the geometric scaling seen at HERA is generated by
the DGLAP evolution itself, without need of a peculiar sation ansatz or of a suitable scaling boundary

condition.

Foro? < 10 GeV” the leading-order DGLAP solution exhibits violations ofogeetric scaling at
smallx. However, in this region any fixed-order DGLAP calculati@ild because it does not resum small
logarithms. If one consider the DGLAP evolution at the resad level, geometric scaling reappears quite
naturally, both in the "fixed-coupling” and "running-coumd” forms [141]. Hence, smalk resummation
extends the region where geometric scaling is expectedites@fo ? lower than 10 GeV. However at low
0 2 sizeable higher twist and non perturbative effects can gp@universal behaviour of the DGLAP solution.
In this region hence the HERA scaling could still be genetdig some DGLAP evolution, but, differently
from theQ ? > 10 GeV” region, here there is no strong evidence that this is in feztase.

2.3.6 Saturation model and higher twikts

The QCD description of hard scattering processes withinQperator Product Expansion (OPE) approach
leads to the twist expansion of matrix elements of procesgaddent composite operators. Contributions of
emerging local operators with the increasing twistsare suppressed by increasing inverse powers of the hard
scale,0 2. In DIS, at the lowest order (i.e. when the anomalous dinwgrssvanish), the twist- contribution

to the DIS cross section scales@s . Therefore, at sufficiently large ? it is justified to neglect higher
twist effects, and retain only the leading twist-2 conttibn. This leads to the standard collinear factorisation
approach with universal parton density functions evolvaggording to the DGLAP evolution equation. It
should be kept in mind, however, that the higher twist effeltt not vanish completely and that they introduce
corrections to theoretical predictions based on the DGLpBr@ach. Thus, the higher twist corrections may
affect the determination of parton density functions. Timpadrtance of these corrections depends on the
level of precision required and on the kinematic domain. &ntipular, in the region of very smat the

%2|n fact, in order to make a more flexible analysis, we didné tiee actual HERA data but a neural network interpolation afidv
DIS data [142]. As long as one stays in the HERA region thewduipthe net is totally reliable.
33Contributing author: L. Motyka



higher twist effects are expected to be enhanced, so thanthg become significant at modergté. Thus,

it should be useful to obtain reliable estimates of highestwffects at smalk. In this section we shall
present higher twist corrections to-, F;, andF, structure functions following from the DGLAP improved
saturation model [143]. The results presented in this sediave been obtained in the course of an ongoing
study [144, 145]. The method applied to perform the twistomegosition of the DGLAP improved saturation
model is a generalisation of the Mellin space approach megdn Ref. [146].

A rigorous QCD analysis of the higher twist contributionshits at high energies is a complex task.
So far it has been performed for thegg operators [147], but the evolution of twist 4 purely gluonigera-
tors has not been resolved, — even the proper complete biagie operators has not been found yet. The
collinear evolution is known at all twists, however, for saled quasi-partonic operatorsfor which the twist
index is equal to the number of partons in thehannel [148]. Such operators should receive the stranges
enhancement from the QCD evolution. At the leading logarithapproximation the collinear evolution of
guasi-partonic operators is relatively simple — it is gi\npair-wise interactions between the partons in the
tchannel. The interactions are described by the non-faheBL AP kernel [148]. Within this formalism, the
evolution of four-gluon quasi-partonic operators was stigated in Ref. [149, 150] in the double logarithmic
approximation. At smalk the scattering amplitudes are driven by exchange of gluonisd t-channel, and
the quark exchanges are suppressed by powets ©hus we shall focus on the dominant contribution of the
multi-gluon exchanges in thechannel. In the larger .-limit, the dominant singularities of the four gluon
operator are those corresponding to states in which gluengaired into colour singlet states. In other words,
the four-gluon operator evolves like a product of two indsgent gluon densities. In general, foan . ! 0,
the 2n-gluon (twist2n) operator factorizes into the product oftwist-2 gluon densities. After suitable inclu-
sion of the AGK cutting rules and the symmetry factors.ef |, one arrives at the eikonal picture ofladder
exchange between the probe and the target. This is to beastedrwith the Balitsky-Kovchegov picture of
Pomeron fan diagrams, which was obtained as a result of mestion of the terms enhanced by powers of
large In (1=x) rather than by powers afi Q °.

The eikonal form of the multiple scattering was assumed éngéituration model proposed by Golec-
Biernat and Wusthoff (GBW) [151,152]. The dipole crosst&m given by Ed._25 has a natural interpretation
in terms of a resummation of multiple scattering amplitudé@$e scatters are assumed to be independent
of each other, and the contribution ofscatterings is proportional t@f2=RS(x)F . The connection of the
saturation model to the QCD evolution of quasi-partonicrafmes is further strengthened by the DGLAP
improvement of the dipole cross section [143]. In the DGLA#ioved saturation model the dipole cross
section depends on the collinear gluon density,

2r2
“xir)= o 1 exp SO Hxgx; B (30)
Nc o
where the scale ? depends on the dipole size? = c=r?for c=r* > 2,and ? = Zforc=r’ < 3.

The gluon density applied has been obtained from the LO DGk¥dtution without quarks, with the input
assumed at the scalé 34. Clearly, in Eq.[(3D) one sees an exact matching betweendiverpof > and the
power ofxg(x; ?)suggesting a correspondence between the teri . ( ?)xg(x; )T in the expansion

of ~ (x;r)and the twist2n contribution to the dipole cross section. Thus, we expeatithe saturation model
approximately represents higher twist contributions i@ tleep inelastic scattering generated by the gluonic
guasi-partonic operators.

The twist analysis of the DIS cross-section must includeatiment of the quark box that mediates the
coupling of the virtual photon, , to the =channel gluons. In the dipole model theg ! ggamplitude,
computed within QCD, is Fourier transformed (w.r.t. thengeerse momentum of the quark) to the coordinate
representation and appears as the photon wave functiorpareniq.[(2b). In more detail, one uses the
amplitude computed within the; -factorisation framework. This amplitude receives cdmitions from all
twists. The twist structure of the quark box is transpararithe space of Mellin moments, and the same is true

%4In the original DGLAP-improved model [143] a different défian of the scale was adopted? = c=r® + £, but this choice
is less convenient for the QCD analysis.



for the dipole cross-section. Thus we define,
z, z

Hep( 0%)=  dz  drfr®  1p(@zie?) 20 Y ; (31)
0 0

~(x; )= dr® ~ x; %)t P . (32)

It then follows from the Parsival formula that,
Z

d
1o x;0%) = ——Hrzg( 0°)"x; ): (33)
c2 1
For the massless quark case oneiyas, ( ;0%)= Hrz ( )0 ? . The contour of integratiors, in Eq.[33
belongs to the fundamental Mellin strip,1 < Re < 0.

In order to obtain the twist expansion of one extends the contodrin the complex -plane into a
contourc’ closed from the left-hand side. The Mellin integral in EglrBay be then decomposed into con-
tributions coming from singularities af 7 4, ( ;%) ™ (x; ). The functiors '+ ( )L ( )) has simple
poles at all negative integer values ofexceptof = 2( = 1), wheee; (H)is regular. The singular-
ity structure of the dipole cross section( ), depends on the specific form ofix ;7). For ~ (x;r*) used in
the GBW model, the* (x; )has simple poles at all negative integers. For the DGLAP improved form of
~ given by [[31),~ (x; ) has cut singularities that extend to the left from= k wherek = 1; 2; etc. The
leading behaviour of< around a branch point at = k is given by ¢( 12§, where the exponent(k)
is generated by the DGLAP evolution. As the cuts extend tddfiefrom the branch points, the dominant
contribution to the cross section at the given twist comesnfthe vicinity of the corresponding branch point.

The singularity structure of the quark box patt: ; ( ) plays the crucial role in understanding the
strength of the subleading twist effects. To see that onamdgii'r ;- () around the singular points, = 1
and = 2(recall that the argument @f; ; is in the Parsival formul&83)):

(2)

Hp( )= 2 P+ 0(  1);  H()=K'+o( 1) (34)

1

for twist-2, and

(4)

He()=8'+0( 2); H()=-t 2+b§“+o< 2); (35)

for twist-4. The singulan=( 1)andil=( 2)terms ibd#) and(35) generate an additional enhancement,
n(©Q?), of the corresponding twist-2 and twist-4 contributionstiie DIS cross-section. The constant

pieces, proportional ta”) andx!’) , produce no new logarithms (thus they are interpreted asieheto-

leading order (NLO) QCD corrections) and the higher termghanLaurent expansion give yet higher orders

in the perturbative expansion of the! g splitting functions and to the coefficient functions. We soamize
this discussion by displaying below the most leading cbatrons to 1 ; at twist-2 ( fﬂi) and at twist-4

( 1)) obtained in the DGLAP improved saturation model:

Z

(2) Q2 ® (2)
a do
R — 0Q%)xgx;0%); 2 —bLz @ %)xg(x;0%); (36)
02 2 0 0
for twist-2, and
(4) (4) Z 02 ®
4) by (4) a do
T o7l sQ%)xg(x;0%)7 ; N —QL4 . ool s@%)xg(x;0")7F ; (37)
0

for twist-4. These results imply that the the relative twdstorrection tor . is strongly suppressed w.r.t. the
twist-2 contribution, as the subleading twist-4 ternrin appears only at the NLO. On the contrary, far,



the leading twist term enters only at the NLO, and the thett#isorrection enters at the leading order. So, the
relative twist-4 effects irr;, are expected to be enhanced. Note, that both in the case ahdr, the twist-4
effects are enhanced w.r.t. the twist-2 contribution by dditional power of the gluon densityg(x;0 ?).

For the structure functiof, = F; + F, we expect small relative corrections from the higher twistsause

of the opposite sign of coefficients”’ andb; ', that leads to cancellations between the twist-4 conidbst
from £ andF; at moderate) . These conclusions about the importance of the higher twisections are
expected to be quite general, because they follow direatiy the twist structure of the quark box and do not
depend on the detailed form of the twist-4 gluon distribuaitio

Twist ratios: tw-4/tw-2 We performed [144, 145] an explicit numerical evalua-
tion of the twist-4 corrections tg, F;, andF, in the DGLAP
improved saturation model, and compared the results tdtsesu
obtained [146] within the GBW model without the DGLAP evo-
lution. The parameters of the DGLAP model were fitted to de-
scribe allF, data at smalk. In the model we took into account
three massless quark flavours and the massive charm quagk. Th
twist analysis, however, has been, so far, performed only fo
the massless quark contribution. The obtained relativetidi
corrections tor;, F, andf, are displayed in Fid. 2.3.6, as a
1 N function ofQ 2, forx = 3 1. The continuous curves corre-

N spond to the GBW model [146], and the dashed ones have been
obtained [144, 145] in the DGLAP improved saturation model.
Although there are some quantitative differences betwaen t
models, the qualitative picture is quite consistent andioos
the results of the analytic analysis outlined above. Thios, t
Q higher twist corrections are strongestsn, and much weaker
Fig. 19: The ratio of twist-4 to twist-2 components oin _FT .InF, t_her_e occurs a rather fine cancellation between the

Y N twist-4 contributions ta; andr, atallQ?, down to 1 GeV.

B F,L andF,z atx = 3 107 in the ,GBW model Although an effect of this kind was expected, it still rensin
(Co_nt'nuous lines) and_'n the DGLAP improved Satuéomewhat surprising that this cancellation works so wele W
ration model (dashed fines). estimate that, foxx = 3 16, the twist-4 relative correction
to F, is 2—4% atQ? = 10 GeV?, and smaller than 10% for afl * down to 1 GeV. ForF,, the relative
correction is  20% atQ? = 10 GeV?, and strongly increases with the decreasing scale, regichirs0s at
02 = 1GeV. Itimplies that the determination of parton densities friovist-2 F, data is safe even at smadl
and moderat@ ?. On the other hand;, at smallx may provide a sensitive probe of higher twist effects and
parton saturation.
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2.3.7 Conclusions

There are many possible explanations for the scaling ptiegeof HERA data, some of them based on sat-
uration effects and some others based on pure linear espluth order to separate between these different
explanations, it is fundamental to specify a kinematic wind

In particular, for large enough ? and not too smalk (sayQ ? > 10 GeV? in the HERA region) the
observed geometric scaling is determined by the DGLAP éamluirrespective of the boundary condition.
For smaller values af 2, the evolution of parton densities is still linear, but iasiéive to a boundary condition.
In an evolution toward smallet, like BFKL, this boundary condition is dynamically genemtoy saturation,
and it leads to the geometric scaling window. It is possibléake these effects into account also i &
evolution, like DGLAP, by imposing as initial condition tlsame boundary condition. We have seen that,
in this case, even the LO DGLAP equation is able to propagatengtric scaling towards larger?. In
that domain, although geometric scaling may arise as gsainraffect, the evolution is still linear, and thus
compatible with standard PDFs analysis. However, at yeetaw’ and x standard linear evolution is no
longer reliable. In particular, fop ? smaller than ax dependent saturation scafe, (x), the evolution of
parton densities becomes fully nonlinear, and this spbisactual determination of the PDFs. Results from



inclusive diffraction and vector meson exclusive productat HERA, and from dA collisions at RHIC all
suggest that in the kinematic accessibleegiong, 1 2 GeV.

In conclusion, we can say that for large enough> 10 GeV? geometric scaling is fully compatible
with linear DGLAP evolution. For smallep  the situation becomes more involved. Fof > 5 GeV?
the HERA scaling is still compatible with DGLAP, maybe withnse smallx resummation or some suitable
boundary condition. However, other effects may be relewattis region. For yet loweg ? andx the linear
theory becomes unreliable and saturation could be the exjiianation for geometric scaling. Unfortunately
at HERA we have too few data for a definitive explanation ofrgetiic scaling in the very smaill region,
since many different approaches lead approximatively éostime results and it is very difficult to separate
among them. For example, in the lowregion both saturation and perturbative resummations teaal
decrease of the gluon and to geometric scaling. At the LH@&revhigher center-of-mass energy is available,
the x region is significantly extended down to very small valuespétially in the fragmentation region the
typical values o which can be probed can reach dowrito® for partons with transverse momenta of about
few GeV. This fact combined with the very wide rapidity coage of the main LHC detectors opens up a
completely new window for the study of parton saturationd #@a relations with geometric scaling and linear
evolution will possibly be clarified.



3 BENCHMARKING OF PARTON DISTRIBUTIONS AND THEIR UNCERTAIN TIES?3®
3.1 Introduction

The proper treatment of uncertainties associated to théBiadon Distribution Functions (PDF) has become
a subject of great interest in the last few years. A simple afaynderstanding differences between available
approaches to parton fits is to fix some hypothesis (say, empetal data, QCD parameters, input parame-
terizations, error treatment), and check what is the effé¢he remaining assumptions. Such studies were
previously done in the framework of the first HERA-LHC workgh1].

In the following we will discuss three benchmark fits. Thetfioge is presented in Se€t. B.2. It is
based on the H12000 parton fit [18], and it compares a neworersithis fit, in which uncertainty bands are
determined [153, 154] using a Monte Carlo method, to theeefee fit, where uncertainty bands are obtained
using the standard Hessian method. The main motivation®bdgnchmark is to study the impact of possible
non-Gaussian behaviour of the data and, more generallgegpendence on the error treatment.

The second benchmark is presented in $ect. 3.3. It is bas#e@tudy performed by S. Alekhin and

R. Thorne in Ref. [1], which compared the fits by their respecgroups to a common reduced set of data with
common assumptions, and also to their respective refefghaeal) fits. This comparison is extended here in
two ways. First, the comparison is extended to include an DINF! to the same reduced set of data with the
same assumptions, and the NNPDF1.0 reference fit [155].nBecesults are also compared to a fit based on
the recent MSTW 2008 [39, 156] analysis. As in the Thorne herark fit, this uses slightly different data sets
and assumptions; it is furthermore modified to use the samg iparameterization and improved treatment
of uncertainties as MSTW. The main purpose of these congaits to answer the questions (a) to which
extent fit results from various groups obtained using défifermethodologies still differ from each other when
common or similar assumptions and a common or similar redlde¢aset are used and (b) how the fits to the
reduced dataset by each group compare to the fit to the fitdat

The third benchmark, discussed in Séct] 3.4, is a furthdsogddion on the benchmark presented in
Sect[3.2, extended to include the NNPDF fit, which also udé®@ie Carlo approach. The main purpose
of this benchmark is to compare two fits (H1 and NNPDF) whiclehtae same error treatment but different
parton parameterizations. The inclusion in this benchnmdirthe NNPDF fit is also interesting because it
allows a comparison of a fit based on a very consistent settafaeming from the H1 collaboration only, to
fits which include all DIS data sets, which are less compatiban the H1 sets alone.

3.1.1 Settings for the H1 benchmark

This analysis is based on all the DIS inclusive data by thedflatzoration from the HERA-I run. A kinematic
cutof 02 > 35 Gev?is applied to avoid any higher twist effect. The data poirgsclin the analysis are
summarized in Tablgl 1 and F[g.]20.

The theoretical assumptions are:
NLO perturbative QCD in the! s renormalization and factorization scheme;

zero-mass variable flavour number scheme with quark masses 4 Gev andm = 45G eV
the strong coupling fixed tgM ; )= 0:1185;

momentum and valence sum rules enforced;

starting scale for the evolution %tz 4Gev?;

strange contribution fixed as

s

sx;085)=s(x;08)= £sD (x;Q5) = - fsoux;Qé); (38)
withU = u+ candD = d+ s+ band withf; = 0:33;
charm contribution fixed as
fe
c(x;02%)= c(x;03)= fU (x;05) = - Qu(X;QS); (39)

5Contributing authors: R. D. Ball, L. Del Debbio, J. FeltesSeForte, A. Glazov, A. Guffanti, J. I. Latorre, A. Piccigné Rade-
scu, J. Rojo, R. S. Thorne, M. Ubiali, G. Watt



Data Set Data points| Observable| Ref.
H197mb 35| ~NCew [89]
H197lowQ2 80| ~NC# [89]
H197NC 130 | ~NC# [157]
H197CC 25 | ~CC [157]
H199NC 126 | ~NC7 [88]
H199CC 28 | ~CCi [88]
H199NChy 13| ~N€¢/ [88]
H100NC 147 | ~NC# [18]
H100CC 28 | ~CC# [18]
Total 612

Table 1: Data points used in the H1 benchmark after kinencatie ofQ ? > 3:5G ev 2.
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Fig. 20: The data used in the H1 benchmark and in the NNPDFerde fit.

with f. = 0:15;
five independent PDFs: gluon and D J, D (see definition above);

iterated solution for evolution (see, e.g. [158], Sect).1.3
Both the H1 and NNPDF methodologies are based on
Monte Carlo method to determine uncertainties. This methiticoe discussed in detail in S€ci3.2.2
below.
They differ in the way PDFs are parameterized:
H1 parameterizes PDFs as

xg(x;05) = Agx" (1 xFUI+ Dgxl;
xU (x;Q7) = AUXBU (1 X?U [+ Dyx+ FUX3];
xD (x;05) = Apx"° (1 xJ°[L+Dpx]; (40)
xU (x,QS) = AUXBU (1 X?U;
xD (x;03) = AyxPr (1 xfo;
(41)

which yields 10 free parameters after sum rules are imposed;
NNPDF parameterizes PDFs with a 2-5-3-1 neural networkckvimhplies 185 free parameters to be
fitted.
Because of the large number of parameters, the minimum oNtWEDF fit is determined using the stop-
ping criterion discussed in Sett. 313.2 below, while theimimrm of the H1 fit is determined as the standard
minimum 2 (or maximum likelihood) point of parameter space.



3.1.2 Settings for the HERA-LHC benchmark

This benchmark was first presented in Ref. [1], where itsrggtwere defined. In order to have a conservative
ensemble of experimental data and observables, only gteuftinction DIS data are used. Large kinematic
cuts are applied to avoid any higher twist effect. The datatpased in the Alekhin analysis are summarized
in Table[2 and Fid. 21.

Data Set | Data points| Observable| Ref.
ZEUS97 206 | F [91]
H1lowx97 77 | FY [89]
NMC 95 | FJ [116]
NMC_pd 73| FS=F7 [159]
BCDMS 322 | F2 [160]
Total 773

Table 2: Data points used in the HERA-LHC benchmark aftegiiatic cuts ob? > 9Gev? andw ° > 15G v * are applied.
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Fig. 21: The data used in the HERA-LHC benchmark and in the DINFference fit.

The theoretical assumptions are:
NLO perturbative QCD in the! s renormalization and factorization scheme;
zero-mass variable flavour number scheme with quark magsses5Gev andm , = 45G eV
<M ;) fitted: the best-fit values ai1110  0:0012 (Alekhin) and0:1132  0:0015 (Thorne);
momentum and valence sum rules imposed;
starting scale for evolutiogf = 1 G ev %,
four independent input PDFs @ndd valence, the sea and the gluon);
no light sea asymmetrya =d;
no independent strange PDF:

s(x;08)+ s(x;05)= 05 (x;Q8)+ d(x;08)); (42)

iterated solution of evolution equations;

The NNPDF analysis presented here is based on the same tatal tbeoretical assumptions, the only
difference being that the strong coupling is fixed toM ; ) = 0:112, i.e. the average of the fitted values of
S. Alekhin and R. Thorne.

The Thorne benchmark used somewhat different data setssanchations. Namely:



Data Set | Data points| Observable| Ref.
ZEUS97 206 | ~NC# [91]
H1lowx97 86 | ~NC# [89]
NMC 67 | FY [116]
NMC_pd 73| FS=F7 [159]
BCDMS 157 | £} [160]
Total 589

Table 3: Data points used in the MSTW benchmark fit after kiséorcuts ofp > > 9 G ev? andw ? > 15G v * are applied.

A somewhat different dataset is used, as displayed in[Table3 differs from the dataset of Talilé 2
and Figurd R because the NMC and BCDMS fixed-target data onsed are averaged over different
beam energies, and also, HERA reduced cross sections thtrerstructure function data are used,
resulting in an additional nine H1 points. Note that the Tigobenchmark in Ref. [1] also included the
F ¢ BCDMS deuterium data.

All correlations between systematics are neglected, aatistal and systematic errors are added in
quadrature.

Normalizations of individual data sets are fitted with a edisg of uncertainties to avoid systematic
bias.

Theg'=r ! data are corrected for nuclear shadowing effects [161].

The MSTW analysis presented here makes the same choicesEsdime benchmark, but with, M ; ) =
0:112, and additionally

a global correction of 3:4% is applied to the luminosity of the published H1 MB 97 datd f@lowing
a luminosity reanalysis [162].

a quartic penalty term in thé definition is given to normalizations which deviate from thentral
value.

3.2 Experimental Error Propagation3®
3.2.1

Standard error estimation of proton parton distributiondiions (PDFs) relies on the assumption that all
errors follow Gaussian (or normal) statistics. Howevels #ssumption may not always be correct. Some sys-
tematic uncertainties such as luminosity and detectorpanee follow rather a log-normal distribution (see
Sectior[4.]l). Compared to the Gaussian case, the lognoiistabdtion which has the same mean and root
mean square (RMS), is asymmetric and has a shifted peakoas shustratively in Figurd2R. Therefore,
the non-Gaussian behaviour of the experimental unceigaicbuld lead to an additional uncertainty of the
resulting PDFs. An alternative to the standard error pragiag is a toy Monte Carlo (MC) method. Here,
an implementation of the MC method is presented for estomadif the PDF uncertainties with various as-
sumptions for the error distribution. In addition, this MCethod provides an independent cross check of the
standard error propagation when assuming the Gaussiandéstobutions.

Introduction

3.2.2 Method

The Monte Carlo technique consists firstly in preparingicgd of the initial data sets which have the central
value of the cross sections;, fluctuating within its systematic and statistical uncetias taking into account
all point to point correlations. Various assumptions candrgsidered for the error distributions. When dealing
with the statistical and point to point uncorrelated errorge could allow each data point to randomly fluctuate
within its uncorrelated uncertainty assuming either Galagmormal, or any other desired form of the error
distribution. For example, for Gaussian errors

uncorr

i R ; (43)

i b+

%6Contributing authors: J. Feltesse, A. Glazov, V. Radescu



LogNormal

B3 Gauss

o=0.2

-1 -0.5 0 0.5 1 15 2 2.5 3

Fig. 22: Comparison of the lognormal (black, darker hatghiand Gaussian (red, lighter hatching) probability disttions. The
distributions are shown with mean equal to one, and two wiffechoices for the RMS (for both distribution): = 02 (top) and
= 0:5.

where "°°* corresponds to the uncorrelated uncertaintiesrand a random number chosen from a normal
distribution with a mean ob and a standard deviation af Hence, the central value of each cross section
point iis shifted by {"* R

For the systematic errors, the treatment is a bit more caaj@d than above. This is due to the cor-
relation between data points and that, in general, the datdaspare sensitive to the systematic sources with
a different strength ;5, where indexi () runs over all the cross section points (all systematic )t In
order to take this into account, for each systematic sou@eniformly distributediuctuation probabilityP ;
is selected. Then, for each data paitihe central value of cross section is shifted such that gitiyaof this
shift, which depends on;; and the exact form of the probability distribution functiemequalP 5 (for positive

i5)or (1 By) (for negative ;). In other words, each central value of the cross sectiohifsesl with the
same probability of the corresponding systematic shift.éxample for the Gaussian errors, this procedure is
equivalent to

0 1
Nesys
5 1 i@ 1+ Limcorr R+ ic;)rr %{A ; (44)
3
where in addition to the shifts for the uncorrelated erramvipusly explainedRr ; corresponds to another
random number chosen from a normal distribution with meanarid standard deviation afas a fluctuation
for the systematic source¢ Hence, the central values of the cross sections are shnifddition by &

for each systematic shift.

This preparation of the data is repeatedotimes, where high statistics is desirable for more accurate
results. For this study we used > 100 which proved to suffice. For each replica, a next to leadirdgor
(NLO) QCD fit is performed to extract the PDFs. The errors aBDFs are estimated from the RMS of the



spread of thel lines corresponding to the individual fits to extract PDF.

A fit to the published H1 HERA-I data of neutral and chargedenire p scattering cross sections [18]
using the settings discussed in SEct. 3.1.1 has been pedomsing the QCDNUM program [163].

3.2.3 Validation of the Method

The MC method is tested by comparing the standard error astimof the PDF uncertainties with the MC
techniques by assuming that all the errors (statisticalsystematic) follow Gaussian (normal) distribution.
Figure[23 shows good agreement between the methods.

Fit vs HLPDF2000, Q? = 4. GeV?
10 T

Fig. 23: Comparison between the standard error calculsthonl the Gauss error distribution is shown for the gluon R€en lines
represent the spread of Monte Carlo generated allowancésg@rrors, and the red lines are the RMS of this spread. THuok tines
correspond to the standard error calculations of the PDétrr

3.2.4 Test of various assumptions for the error distribogio

Two cases are considered which may represent most likelgrtioe distributions: (1) the lognormal distribu-
tion for the luminosity uncertainty and the rest of the esrare set to follow the Gauss shape, (2) the lognormal
distributions for all the systematic errors and the stiatisierrors are set to follow the Gauss distributions. The
results for the first case (1) are shown in Figliré 24. The texfl the tests for the case when lognormal
distributions for all the systematic uncertainties areuassd is shown in Figure_ 24. We observe that for the
precise H1 HERA-1 data the effect of using lognormal distiin, which is considered for some systematic
uncertainties more physical, is similar to the pure gaussidution case.

3.2.5 Conclusions

A simple method to estimate PDF uncertainties has beenwitiitn QCD Fit framework. Assuming only
gauss distribution of all errors, the results agree welhilite standard error estimation. This method allows to
check the effect of non- gauss assumptions for distribatadrithe experimental uncertainties. For the H1 data,
results are similar to the gauss case when using lognorni&.nfethod could be extended for other physical
variables (i.e. cross sections) for cross checks with thiedsird error evaluation.

3.3 HERA-LHC Benchmark

This benchmark is based on the Alekhin/Thorne benchmarkesdf R], whose settings has been given in
Sect[3.1.P. Both the Alekhin and Thorne fits had the follawi@atures:
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Fig. 24: Comparison between errors on PDFs obtained vialatdrerror calculation (black) where Gauss assumptionés,uand
errors obtained via Monte Carlo method (red) where lumityagicertainty is allowed to fluctuate according to lognardistributions
and all the other uncertainties follow the Gaussian disti@im (left), and where all the systematic uncertaintiesaiowed to fluctuate
according to lognormal distributions (right). Only the giuPDF is shown, where the errors are larger. The green lhms the spread
of theN individual fits.

uncertainties determined using the Hessian method with= 1;
input PDFs are parameterized using the following functidoian:

xfi(x;Q%)=Ai(l P+ x4+ x)x™ (45)

with ;and ; set to zero for the sea and gluon distributions. Hence, tivere a total of 13 free PDF
parameters pluss (M ; ) after imposing sum rules.

Here, we reanalyze it within the MSTW and NNPDF approachést,ive summarize the respective
MSTW and NNPDF approaches, and especially their differemdeen compared to the previous HERALHC
benchmark fits of Ref. [1]. Then, results for benchmark fitaoted with the various different approaches are
compared to each other. Finally, we compare each benchmaokits counterpart based on a wider range of
data, i.e. the NNPDF1.0 [155] reference and the MRSTO1 [284]MSTWO0S8 [39, 156] PDFs.

3.3.1 MSTW approadh

The benchmark analysis is now much more closely aligneddathbal analysis than was the case for the
Thorne benchmark compared to the MRST global analysis. llivis the general approach taken by the
MRST (or more recently, MSTW) group, and is similar to thasciébed in Ref. [164]. There are some new
features which are explained below.

- Input parameterizationWe take the input PDF parameterizatiorpgt= 1 GeV? to be:

XUy (x;05) = Aux (1 x)*(1+ LR ux); (46)
xd, (x;05) = Agx (1  x) 1+ dp§+ ax); (47)
xS (x;08) = AgxS(1  x)¥(1+ Sp§+ s X); (48)
xg(x;Q%) = Agxe(l x)9(1+ gp§+ gX)+ Agx®(1l  x)°; (49)

$7Contributing authors: R. S. Thorne, G. Watt



wheres = 2(u+ d+ s),s= s= 015 andd = u. The parameters ,, A5 andA ; are fixed by
sum rules, leaving potentially 19 free parameters. In jwacto reduce the number of highly correlated
parameters, making linear error propagation unreliabkegdetermine the central value of the benchmark
fit by freeing all 19 parameters, then fix 6 of those at the fiesglues when calculating the Hessian
matrix used to determine the PDF uncertainties, giving al tot 13 eigenvectors. This is the same
procedure as used inthe MSTW 2008 global fit [39,156], whegectare an additional 3 free parameters
associated witkhk v and an additional 4 free parameters associated with stn@sgegiving a total of
20 eigenvectors. Note that the parameterization used iprtheous Alekhin/Thorne benchmark fits was
considerably more restrictive, where thg, s, 5 and ; parameters were set to zero, and the second
(negative) gluon term was omitted entirely. In addition,was held fixed for the Thorne benchmark
fit, leaving a total of 12 eigenvectors. We find that the morgilile gluon parameterization, allowing
it to go negative at very smali, is very highly correlated with the value obtained fay, and a value

of oM )= 0:05is obtained if it is allowed to go free at the same time as tiheroparameters,
therefore we instead choose to fixitat(M , ) = 0:112 as in the NNPDF benchmark fit.

- Error propagation. Apart from the more flexible input parameterization, theestmajor difference in
the new MSTW version of the HERA—LEg-IC_benchmark fit, with restge the previous Thorne (MRST)
version, is the choice of tolerancg, = 2, The MRST benchmark fit used the standard choice
T = 1 for one-sigma uncertainties. More precisely, the distanal®mng each normalized eigenvector
direction was taken to be 1, and ideal quadr%[ic behavioautatihe minimum was assumed, giving
T t = 1. The MRST global fit used = 50 for a 90% confidence level (C.L.) uncertainty
band; however, this is not appropriate when fitting a smallember of data sets. Recently, a new
procedure has been developed [39, 156] which enabimamicdetermination of the tolerance for
each eigenvector direction, by demanding that each datmsst be described within its one-sigma
(or 90%) C.L. limits according to a hypothesis-testingesiitn, after rescaling the? for each data set
so that the value at the global minimum corresponds to thd prokable value. Application of this
procedure to the MSTW benchmark fit gives 3 for one-sigma uncertainties armd 5 for 90%
C.L. uncertainties. For the MSTW global fit, the typical veduof T required are slightly larger, with
more variation between different eigenvector directiofise increase it in the global fit is mainly due
to the inclusion of some less compatible data sets, whilgibater variation irr between eigenvectors
is due to the fact that some parameters, particularly thesecéated withs and s, are constrained by
far fewer data sets than others. In the MSTW fits, the data aehalizations are allowed to vary,
with the aforementioned penalty term, when determining R uncertainties. For global fits this
automatically leads to a small increase in uncertainty amegbto the MRST determinations, where data
set normalisations were held fixed when calculating the idas®satrix used for error propagation. In
the MRST benchmark fit the data set normalizations were alibte vary. To calculate the uncertainty
bands from the eigenvector PDF sets, we use the formula yonagtric errors given, for example, in
Eq. (13) of Ref. [164].

3.3.2 NNPDF approadh

The NNPDF approach was proposed in Ref. [165], and it wasexpfhere and in Ref. [142] to the param-
eterization of the structure functian, (x ;0 ?) with only two or more experimental data sets respectivaty. |
Ref. [166] it was first used for the determination of a singl@F(the isotriplet quark distribution), and in
Ref. [155] a full set of PDFs fit based on DIS data (NNPDF1.03 me&sented. Because the method has been
discussed extensively in these references, here we onlgnatiae briefly its main features.

- Error propagation We make a Monte Carlo sample of the probability distributiad the experimental
data by generating an ensemblerofreplicas of artificial data following a multi-gaussian distition
centered on each data point with full inclusion of the expental covariance matrix. Each replica is
used to construct a set of PDFs, thereby propagating thststal properties of the data Monte Carlo
sample to a final Monte Carlo sample of PDFs. Here we shallitake 100. The method is the same
as discussed in Se¢t._3.2.2, the only difference being trantrent of normalization errors: relative

%8Contributing authors: R. D. Ball, L. Del Debbio, S. Forte,@uffanti, J. I. Latorre, A. Piccione, J. Rojo, M. Ubiali



normalizations are fitted in the H1 approach, while they actuided among the systematic errors in the
Monte Carlo data generation in the NNPDF approach (see R&fs155] for details of the respective
procedures) .

- Input parameterization Each PDF is parameterized with a functional form providgdameural net-
work. The architecture for the neural network is the sameafbPDFs, and yields a parameterization
with 37 free parameters for each PDF. This is a very redungarameterization, it is chosen in or-
der to avoid parameterization bias; neural networks arericpkarly convenient way of dealing with
redundant parameterizations. Note that sum rules areralgosed.

- Minimization A redundant parameterization allows for fitting not only thnderlying physical be-
haviour, but also statistical noise. Therefore, the mimation is stopped not at the absolute minimum
ofthe 2, but rather before one starts fitting noise. This optimabgiing point is determined as follows:
the data in each replica are randomly assigned either tarangaor to a validation set. The fit is per-
formed on data of the training set only, while the validats®t is used as a monitor. The fit is stopped
when the quality of the fit to the training set keeps improyigt the quality of the fit to the validation
set deteriorates.

3.3.3 Comparison between the Benchmark Parton Distribatio

Data Set 2 N dam ébbafN data
ZEUS97 1.09 1.18
H1lowx97 1.03 1.00
NMC 1.40 1.45
NMC_pd 1.24 1.32
BCDMS 1.21 1.98
Total 1.19 1.53

Table 4: NNPDF “ for the total and each single data set, both for the benchanaalkglobal fit.

Data set iiﬂqzﬂ dotn ;‘jljgaf:N dotn
ZEUS97 0.76 0.79
H1lowx97 0.53 0.54
NMC 1.08 1.11
NMC_pd 0.78 0.89
BCDMS 0.74 1.13
Total 0.76 0.89

Table 5: MSTW ? for the total and each single data set, both for the bencharatiglobal fit. Notice that statistical and systematic
errors are added in quadrature and that relative data setatiaations are fitted.

The 2 per data point for the NNPDF and MSTW fits are shown in Table d{Znespectively. Note
that in the MSTW fit statistical and systematic errors areeadith quadrature, so the quantity shown is the
diagonal contribution to the?. The quality of the NNPDF is seen to be uniformly good. Thelipaf the
MSTW is also uniform, though it cannot be compared directigduse of the different way systematics are
treated. The comparison of each benchmark fit to the correipg global fit will be discussed in Sett. 313.4
below.

In Fig.[28 the PDFs from the NNPDF and MSTW benchmark fits prieskhere are compared to those
by Thorne from Ref. [1] at the same reference scal@ 6f= 20 G v 2 used there (denoted as MRSTO1 in
the figure). The benchmark fit by Alekhin [1] is not shown asRiRFs are very close to the those by Thorne
displayed in Fig[Zb.
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Fig. 25: Comparison of the NNPDF, MRST and MSTW benchmarkffitsthe gluon,d-sea,u-valence andi-valence atp? =
20 G ev ?. All uncertainties shown correspond to onebands.

For PDFs and kinematical regions where data are availabli@ety the smalke gluon and sea quark
and the large= u, distributions, the central values of the NNPDF fit are quitese to those of the MRST
and MSTW fits, despite the differences in methodology. Thereévalues of the PDFs are slightly different
for the MRST and MSTW benchmark fits due to the use of BCD®Sdata in the former, which affects
mainly valence quarks. Where extrapolation is needed, agdbr thed, distribution, which is constrained
only by the small amount of data on the ratig=F ?, or the largex sea quark, central values are rather more
different (though the AlekhinfMRST/MSTW benchmark cehtralues are within the NNPDF error band).
The exception is the smallestgluon, where the form of the MSTW parameterization resuita very sharp
turn-over. However, even here the uncertainty bands asedlmoverlapping.

Differences are sizeable in the estimation of uncertantigrstly, uncertainty bands for NNPDF bench-
mark are significantly larger than for the MSTW benchmarkjolhin turn are in general somewhat larger
than those for the MRST benchmark. The difference betwee®™M&d MSTW, which are based on similar
methodology, is due to use of a dynamic tolerance and a matiblggluon parameterization in MSTW (see
Sect[3.3.11). Secondly, the width of the uncertainty bamd\fldPDF benchmark varies rather more than that
of the MRST benchmark according to the PDF and the kinemeagjion, though this is not quite so much the
case comparing to MSTW benchmark. Indeed, the NNPDF uricgem are quite small in the region between
x = 001 andx = 0:1 (where there is the bulk of HERA and fixed-target data), wthiey blow up in the
largex region for the sea quark or the smallgluon, where there is less or no experimental informatidme T
smallness of the uncertainty band for MSTW for the smaallalence quarks may be partially due to the lack
of flexibility in the parameterization: note that becauseuwin rules, the size of uncertainties in the data and



extrapolation region are correlated.

Finally, the MRST/MSTW central value generally falls withihe NNPDF uncertainty band, but the
NNPDF central value tends to fall outside the MRST/MSTW utzinty band whenever the central values
differ significantly.

3.3.4 Comparison of the Benchmark Parton Distributions @&hobal Fits
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Fig. 26: Comparison of the NNPDF benchmark and referencéofithe gluon,d-sea,u-valence andi-valence ap “ = 20 G ev .

In Fig.[26 we compare the NNPDF benchmark fit to the NNPDF Xeéreace fit of Ref. [155] (NNPDF
global, henceforth), while in Fig. 27 we compare the MSTW dbenark fit to the MRSTO1 [164] (MRST
global, henceforth) and MSTWO08 [39, 156] global fits (MSTV@lgl, henceforth).

The 2 of the NNPDF benchmark and global fits are compared in Tdblehile those of the MSTW
benchmark and global fits are compared in Table 5. Note thathés NNPDF fits the 2 is computed us-
ing the full covariance matrix, while for the MSTW fits systatic and statistical uncertainties are added in
guadrature. Note also that the MRST and MSTW global fits améechout in a general-mass variable flavour
number scheme rather than the zero-mass variable flavoubeuscheme used in the corresponding bench-
mark fits, whereas for NNPDF both global and benchmark fitsdamee with a zero-mass variable flavour
number scheme. Comparison of the quality of each benchnoattiket corresponding global fit to the same
points in Tablé b shows a significant deterioration in theliquaf the fit (total 2 1), especially for the
BCDMSF /! data. All fits appear to be acceptable for all data sets: fstaimce, even though the’ of the
NNPDF global fit for the benchmark subset of data 183, it is equal tol 59 [155] for the full BCDMS set of
data. However, the increase it suggests that there might be data inconsistencies.
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Fig. 27: Comparison of the MSTW benchmark and MRST/MSTW gldiis for the gluon,d-sea,u-valence andi-valence at
Q%= 20Gev?. All uncertainties shown correspond to onebands.

Let us now compare each pair of benchmark and global fits. F¢PDIF, the difference in central
value between benchmark and reference is comparable tdoilwvad between the MRST or Alekhin global
fits and their benchmark counterparts in Ref. [1]. Howeves, KNPDF global and benchmark fits remain
compatible within their respective error bands. Indeed, MINPDF benchmark fit has a rather larger error
band than the reference, as one would expect from a fit basedratiher smaller set of (compatible) data.
Such a behaviour was however not observed in the comparistvebn global and benchmark MRST and
Alekhin fits of Ref. [1].

It is interesting to observe that the gluon shape atowf the benchmark and global NNPDF disagree
at the one level (though they agree at twg). This can be understood as a consequence of the fact that the
value of  in the two fits is sizably different (; = 0:112vs. = 0:119). Theoretical uncertainties related
to the value of . were shown in Ref. [155] to be negligible and thus not inctuaethe NNPDF error band,
but of course they become relevant if is varied by several standard deviations (3,9n this case).

Coming now to MSTW, we first notice that, as discussed in &8t3, the MSTW benchmark set has
somewhat larger uncertainty bands than the MRST benchneadasl thus also than each of the sets obtained
from global fits. Consequently, the MSTW benchmark PDFs aretally far more consistent with the MSTW
global fit sets than the corresponding comparison betweeSMstnchmark PDFs and global fit PDFs shown
in Ref. [1], largely due to the more realistic uncertainiiethe MSTW benchmark. Comparing central values
we see exactly the same feature in the gluon distributioh@dINPDF group, and the explanation is likewise
the same, highlighting possible difficulties in comparirigH3 obtained with different values of; (M , ).
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Fig. 28: Comparison of the NNPDF benchmark and referencéofithe gluon,d-sea,u, andd, atQ* = 4G ev 2.

Unlike for the NNPDF group, the MSTW group sees some degreeompatibility between the bench-
mark PDFs and the global fit PDFs for the valence quarks,quéatily in the case of the down valence. This
may be related to the assumptior= d, which constrains valence quarks and sea quarks in an @ltifi@nner
since there is less flexibility to alter each independeritigeed, in the global fits there is an excessi alver
u which maximizes ak = 0:1. Forcing equivalence of antiquark distributions mightréiere lead to a deficit
of down sea quarks and a corresponding excess of up sea gaadkalso, for the same reason, to an excess of
down valence quarks. These are indeed seen both in the NNRDMETW benchmark fits when compared
to the respective global fits. The effect is however well witthe uncertainty bands for NNPDF, which indeed
do not observe any statistically significant differencentsstn results of a fit to the reduced benchmark data
set with theu = d assumption (as presented in Higl 26) or without it (as ptesein Ref. [155], Fig. 12).

As well as this important effect one sees that the main disgrey atx = 0:1 for down valence quarks
is greater when comparing the benchmark fits to the global WSIt than to the global MRST fit. This is
because recent new Tevatron datazorapidity distributions and lepton asymmetry fram decays provide
a strong constraint on the down quark, and some of this nesvstaiws considerable tension with other data
sets.

3.4 H1Benchmark

We now discuss the extension of the fit using the settings of. 8.1 to also include the NNPDF approach.
Results are compared both to those of the NNPDF refereneafitio those obtained by the H1 fit of Séct] 3.2
to the same data. We then compare the NNPDF benchmark amelrede with the specific aim of addressing



the issue of the dependence of the results on the size of thesea(H1 dataset vs. the HERA-LHC dataset
of Sect[3.B). Finally, the H1 and NNPDF benchmark fits are mamed to each other with the purpose of
understanding the impact of the respective methodologies.

3.4.1 NNPDF analyst®
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Fig. 29: Left: NNPDF benchmark and reference fitspa?ﬁ = 301G ev compared to H1 charged current data. Center: NNPDF
reference fit compared to H1 and ZEUS neutral current daghtRNNPDF benchmark fit compared to H1 neutral current data.

The results of the NNPDF benchmark are compared to the NNRE#Fence fit results in Fig. P8.
The general features of the benchmark are analogous to tfidke HERA-LHC benchmark discussed in
Sectior 3.3.4, with some effects being more pronouncedusecthe benchmark dataset is now even smaller.
Specifically, we observe that uncertainties bands blow ugnidata are removed: this is very clear for instance
in the d distribution at larges, as a consequence of the fact that the benchmark dataseblefTraoes not
include deuterium data. The negative value of this PDF gelaris presumably unphysical and it would
disappear if positivity of charged current cross sectioesanmposed, including also the (anti-)neutrino ones.
The only positivity constraint in the NNPDF fit is imposed de ', structure function [155], because this is
the only DIS observable whose positivity is not constraibgdhe full data set.

It is interesting to note however that this effect is not absd for theu, distribution, where instead

the benchmark and the reference fit show almost equal uimtégta In order to understand this, in Fig.] 29
we compare two situations with or without error shrinking, éxamining the predictions obtained using the
benchmark and reference fits for some observables to thespmnding data. A first plot (left) shows the
shrinking of the uncertainty on the prediction for the clekgcurrent cross section in the reference fit. This
is mostly due to the CHORUS neutrino data, which are in theregice and not in the benchmark. These data
are clearly consistent with the H1 data shown in the plot. Jitesequent pair of plots compares (center) the
prediction for the neutral—current cross section from #fenence fit compared to H1 and ZEUS data (both of
which are used for the reference fit), and (right) from thedemark fit to the H1 data only (which are the only
ones used in the benchmark fit). The uncertainty bands inttbdits are similar size: indeed, the ZEUS and
H1 data display a systematic disagreement which is appeeimthe size of this uncertainty band. Hence,
the (small but significant) systematic inconsistency betwthe ZEUS and H1 data prevents reduction of the
uncertainty band when the ZEUS data are added to the fit, beiy@nsize of this discrepancy. Therefore, the
NNPDF methodology leads to combined uncertainties fornsigient data which are similar to those obtained
with the so—called PDG (or scale-factor) method [167].

Notice that if relative normalization are fitted (as done bythie H1 approach of Se¢f. 8.2) instead of
being treated simply as a source of systematics, this sgsiemconsistency would be significantly reduced

%9Contributing authors R. D. Ball, L. Del Debbio, S. Forte, Auf@anti, J. |. Latorre, A. Piccione, J. Rojo, M. Ubiali
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Table 6: H1 and NNPDF “ for the total and each single data set. Cross correlatiomsgrdata sets are neglected to evaluate the

of a single data set.

in the best-fit. The associate uncertainty however thenappes an addition source of systematics. This
happens when H1 and ZEUS data are combined in a single déaseSectiof 411 below). In the NNPDF
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Data Set 2 Naata | fwpprNdata
H197mb 0.83 0.82
H197lowQ2 0.90 0.87
H197NC 0.69 0.80
H197CC 0.73 0.97
H199NC 0.88 1.01
H199CC 0.62 0.84
H199NChy 0.35 0.35
H100NC 0.97 1.00
H100CC 1.07 1.38
Total 0.88 0.96

approach, instead, this systematics is produced by theévidatlo procedure.
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3.4.2 Comparison between the Benchmark Parton Distribstio

The 2 of the H1 and NNPDF benchmarks are given in Table 6, while tmeesponding PDFs are compared
in Fig.[30. Furthermore, in Fig. 31 we show the respectiveNldnte Carlo PDF sets in the case of the gluon
distribution.

The quality of the two fits is comparable, the differences irbeing compatible with statistical fluctua-
tions. In the region where experimental information is mosbncentrated, specifically for the, distribution
over all thex-range and for thel and thed,, distributions in the smalk range, the results of the two fits are in
good agreement, though the H1 uncertainty bands are ggnesahewhat smaller.

In the region where experimental information is scarce @sinig, sizable differences are found, similar
to those observed when comparing the MRST/MSTW bench andNN$&nch to the HERA-LHC bench-
mark of Sect[[3.3]3. Specifically, in these regions NNPDFeuainties are generally larger than H1 bands:
the width of the uncertainty band for the H1 fit varies muclslbstween the data and extrapolation regions
than that of the NNPDF bench. Also, the H1 central value adafails within the NNPDF uncertainty band,
but the NNPDF central value tends to fall outside the H1 uag®tly band whenever the central values differ
significantly. Figurd 3l suggests that this may be due to thater flexibility of the functional form in the
NNPDF fit. Specifically, thel quark distribution at large: does not become negative in the H1 fit, because
this behaviour is not allowed by the parameterization.



4 DETERMINATION OF PARTON DISTRIBUTIONS

4.1 Extraction of the proton PDFs from a combined fit of H1 and ZEUS inclusive DIS cross section®
4.1.1 Introduction

The kinematics of lepton hadron scattering is describeeims of the variables 2, the invariant mass of
the exchanged vector boson, Bjorkenthe fraction of the momentum of the incoming nucleon takgithie
struck quark (in the quark-parton model), apdvhich measures the energy transfer between the lepton and
hadron systems. The differential cross-section for tharakaurrent (NC) process is given in terms of the
structure functions by

&> ep 2 °

— .02 .02 A2y .
dxdQ 2 - 0 4x Y, Fo(x;Q7) YZFL(X,Q ) Y xXF3(x;07) ;

wherey = 1 (1 vy3 The structure functions, andxF- are directly related to quark distributions,
and theirg > dependence, or scaling violation, is predicted by pertivéaQCD. For lowx, x 107, F,

is sea quark dominated, but its’ evolution is controlled by the gluon contribution, suchtthHEERA data
provide crucial information on lows sea-quark and gluon distributions. At high?, the structure function
xF3 becomes increasingly important, and gives information alence quark distributions. The charged
current (CC) interactions also enable us to separate theuflasf the valence distributions at high-since
their (LO) cross-sections are given by,

& G2M 4
ddeZP): QTrmz g At BT yidrs)
d* (e p) G2M
a0’ T @iemiyz Rt @O @ yides)

Parton Density Function (PDF) determinations are usuditgiaed in global NLO QCD fits [168—170],
which use fixed target DIS data as well as HERA data. In suclyses the high statistics HERA N€ p
data have determined the laxvsea and gluon distributions, whereas the fixed target datdetermined the
valence distributions. Now that high?¢ HERA data on NC and CE" pande pinclusive double differential
cross-sections are available, PDF fits can be made to HER¥attate, since the HERA high? cross-section
data can be used to determine the valence distributions. s the advantage that it eliminates the need for
heavy target corrections, which must be applied to thee and D fixed target data. Furthermore there is
no need to assume isospin symmetry, i.e. that the proton is the same asin the neutron, since the
distribution can be obtained directly from G€ p data.

The H1 and ZEUS collaborations have both used their data ke lRBF fits [170], [18]. Both of these
data sets have very small statistical uncertainties, ddttkeacontribution of systematic uncertainties becomes
dominant and consideration of point to point correlatioesaeen systematic uncertainties is essential. The
ZEUS analysis takes account of correlated experimenté&tsyeic errors by the Offset Method, whereas H1
uses the Hessian method [171]. Whereas the resulting ZEDd$arPDFs are compatible, the gluon PDFs
have rather different shapes, see[Ei§ 38, and the uncegrtzamids spanned by these analyses are comparable
to those of the global fits.

It is possible to improve on this situation since ZEUS and Il raeasuring the same physics in the
same kinematic region. These data have been combined ushepey-free’ Hessian fit in which the only as-
sumption is that there is a true value of the cross-sectmrgdch process, at eagho  point [172]. Thus each
experiment has been calibrated to the other. This workslveglause the sources of systematic uncertainty in
each experiment are rather different, such that all theegyatic uncertainties are re-evaluated. The resulting
correlated systematic uncertainties on each of the cordlaaga points are significantly smaller than the sta-
tistical errors. This combined data set has been used aspbeto an NLO QCD PDF fit. The consistency of
the input data set and its small systematic uncertaintiablegs us to calculate the experimental uncertainties
on the PDFs using the® tolerance, 2 = 1. This represents a further advantage compared to the diiobal
analyses where increased tolerances of = 50 100 are used to account for data inconsistencies.

40Contributing authors: A. Cooper-Sarkar, A. Glazov, G. Lifee H1-ZEUS combination group.
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For the HERAPDFO.1 fit presented here, the role of correlaiesiematic uncertainties is no longer
crucial since these uncertainties are relatively smalls €hsures that similar results are obtained using either
Offset or Hessian methods, or by simply combining stat$@nd systematic uncertainties in quadrature. The

2 per degree of freedom for a Hessian fitis3=562 and for a quadrature fit it is28=562. For our central fit
we have chosen to combine the 43 systematic uncertaintieh wdsult from the separate ZEUS and H1 data
sets in quadrature, and to Offset the 4 sources of uncertaihich result from the combination procedure.
The 2 per degree of freedom for this fit &577=562. This procedure results in the most conservative estimates
on the resulting PDFs as illustrated in Higl 32 which compdine PDFs and their experimental uncertainties
as evaluated by the procedure of our central fit and as eealust treating the 47 systematic uncertainties by
the Hessian method.

Despite this conservative procedure, the experimentatrtmiaties on the resulting PDFs are impres-
sively small and a thorough consideration of further uraiaties due to model assumptions is necessary. In
Sectior 4.1.2 we briefly describe the data combination ghoee In Sectiof 4.713 we describe the NLO QCD
analysis and model assumptions. In Sedfion #.1.4 we givdtsesn Sectioh 4.1]5 we give a summary of the
fit results and specifications for release of the HERAPDF®IHAPDF. In Sectioh 4.1]6 we investigate the
predictions of the HERAPDFO.1 for andz cross-sections at the LHC.

4.1.2 Data Combination

The data combination is based on assumption that the H1 aklEZ&&periments measure the same cross
section at the same kinematic points. The systematic waiotes of the measurements are separated, fol-
lowing the prescription given by the H1 and ZEUS, into pompbint correlated sources; and uncorrelated
systematic uncertainty, which is added to the statistinakdainty in quadrature to result in total uncorrelated
uncertainty ; for each bini The correlated systematic sources are considered to lmrelated between
H1 and ZEUS. All uncertainties are treated as multiplietie. proportional to the central values, which is a
good approximation for the measurement of the cross section

A correlated probability distribution function for the phigal cross section® %€ and systematic
uncertainties ;... for a single experiment corresponds to &function:

M irtrue MiJrP.@MiMi"tlue

5 istrie B X J @ 5 Mt J e X ( j;true)2 ‘ 50
exp M 7 gjtrue T N irme > + — 5 ’ ( )
i i " - j b

whereM *are the central values measured by the experingenti=@¢ 5 are the sensitivities to the correlated
systematic uncertainties and, are the uncertainties of the systematic sources. For manethe experiment,
total 7, can be represented as a sum ¢f . The combination procedure allows to represent, in the



following form:

P QM i;aveM iftrue

X M ijtrue M lave 5 Q@ - M iave ( j,tme) X ( ) 2

2 M itrue, | _ 2+ J n j;true) .

tot 7 Jirue 0 ' M ifue 2 . - 2
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(51)

Here the sum runs over a union set of the cross section biresvdlbe of the 2, at the minimum, 2, quan-
tifies consistency of the experiments. =7 are the average values of the cross sections grmbrrespond
to the new systematic sources which can be obtained fromrtbmal sources 5 through the action of an
orthogonal matrix. In essence, the average of several é&teaaiows one to represent the totalin a form
which is similar to that corresponding to a single data sgt[d8, but with modified systematic sources.

The combination is applied to NC and CC cross section datatalithe” ande beams simultaneously
to take into account correlation of the systematic uncetites. The data taken with proton beam energies of
E, = 820 GeV andE, = 920 GeV are combined together for inelasticity< 0:35, for this a small center
of mass energy correction is applied. For the combined dstthere are 596 data points and 43 experimental
systematic sources. Theézdof = 510=599 is below 1, which indicates conservative estimation of the
uncorrelated systematics.

Besides the experimental uncertainties, four additioomalrses related to the assumptions made for
the systematic uncertainties are considered. Two of thesdurces deal with correlation of the H1 and
ZEUS data for estimation of the photoproduction backgroand simulation of hadronic energy scale. These
sources introduce additional 1% uncertainty fory > 06 andy < 0:02 data. The third source covers
uncertainty arising from the center of mass correction bying F, = F°“° to ¥, = 0. The resulting
uncertainty reaches few per mille level for 0:35. Finally, some of the systematic uncertainties, for
example background subtraction, may not be necessaryptiedtive but rather additive, independent of the
cross section central values. The effect of additive assiomfor the errors is evaluated by comparing the
average obtained using Hg.]50 and an average in whi¢free=v *2v¢ scaling is removed for all but global
normalization errors.

4.1.3 QCD Analysis

The QCD predictions for the structure functions are obthimgsolving the DGLAP evolution equations [102,
104,105] at NLO in the1 s scheme with the renormalisation and factorization scaiesen to be 2 41, The
DGLAP equations yield the PDFs at all valuesgof provided they are input as functions ofat some input
scaleQ 2. This scale has been chosen todg = 4GeV? and variation of this choice is considered as one
of the model uncertainties. The resulting PDFs are thenalated with NLO coefficient functions to give
the structure functions which enter into the expressionshie cross-sections. The choice of the heavy quark
massesisy .= 1:4;m, = 4:75GeV, and variation of these choices is included in the modeértainties. For
this preliminary analysis, the heavy quark coefficient fiorts have been calculated in the zero-mass variable
flavour number scheme. The strong coupling constant wasfiixed® 2 )= 0:1176 [167], and variations in
this value of 0:002 have also been considered.

The fitis made at leading twist. The HERA data have a minimwmariant mass of the hadronic system,
w 2, ofw 2, = 300GeV? and a maximunx, x, ., = 0%5, such that they are in a kinematic region where
there is no sensitivity to target mass and larghligher twist contributions. However a minimum? cut
is imposed to remain in the kinematic region where pertiwba®CD should be applicable. This has been
chosentobe Z, = 3:5GeV~. Variation of this cut is included as one of the model undeties.

A further model uncertainty is the choice of the initial paeterization at) 5. Three types of pa-
rameterization have been considered. For each of theseeshthie PDFs are parameterized by the generic
form

xf(x)=Ax>(1 x§F(1+Dx+Ex’+ Fx°); (52)

“1The programme QCDNUM [163] has been used and checked agjaéngtogramme QCDfit [173].



and the number of parameters is chosen by 'saturation oftheuch that parameters ;& ;F are only varied
if this brings significant improvement to the’. Otherwise they are set to zero.

The first parameterization considered follows that usedheyZEUS collaboration. The PDFs far
valence xu, (x), d valence xd, (x), total seaxs (x), the gluon,xg(x), and the difference between theand
u contributions to the se&, (x)= x(d u), are parameterized.

XUy (X) = Auva‘“’ (1 x?“v (1+ Dyux+ Euvxz)

xdy ()= Agyx" (1 x¥
xS (x) = ASXBS (1 st

Xg(x) = Z—\ngg (1 x?g (1+ Dgx)
X (x)= A x5 (1 x?

The total sea is given byS = 2x(u+ d+ s+ c+ b), whereqg= g, for each flavouru = u, + uge,;d =
dy, + deea @Ndqg = g, for all other flavours. There is no information on the shapé¢hefx distribution
in a fit to HERA data alone and so this distribution has its petrs fixed, such that its shape is consistent
with Drell-Yan data and its normalization is consistenthwiihe size of the Gottfried sum-rule violation. A
suppression of the strange sea with respect to the norgstisea of a factor of 2 gt?, is imposed consistent
with neutrino induced dimuon data from NuTeV. The normaigaparametersy ., ;A 4, ;A 4, are constrained
to impose the number sum-rules and momentum sum-ruleBTperameterss ., ands 4, are set equal, since
there is no information to constrain any difference. Fydflis ZEUS-style parameterization has eleven free
parameters.

The second parameterization considered follows that dfith€ollaboration The choice of quark PDFs
which are parameterized is different. The quarks are censttlas:-type andd-type,xU = x (uy + Uges + C),
XD = x(dy + deea + 8), xU = x(u+ c)andxD = x(d+ s), assumMingy,.. = g, as usual. These four
(anti-)quark distributions are parameterized separately

xU (x) = AUXBU (1 fo (1+ Dyx+ EUx2+ FUx3)

xD (x)= Apx°? (1 xY° (1+ Dpx)
xU (x)= Ayx-0 (1 xJv
xD (x)=ADxBD (1 fo
xg(x)= Agx (1 xJ°

Since the valence distributions must vanishkas 0, the parametersy andB are set equal foxU andxU ;

Ay = Ay,By = By, andforxD andxD; Ap = A,,Bp = B, . Since there is no information on the
flavour structure of the sea it is also necessary t®set B, , such that there is a singte parameter for all
four quark distributions. The normalisation, of the gluon is determined from the momentum sum-rule and
the parameters ; andD , are determined by the number sum-rules. Assuming that thags and charm
quark distributions can be expressedkandependent fractions, = 0:33 andf. = 0:15, of thed andu type
sea respectively, gives the further constraint= 2, (1 £)=(1  £), which ensures that = d at low x.
Finally this H1-style parameterization has 10 free paranset

The third parameterization we have considered combinesdiseé features of the previous two. It
has less model dependence than the ZEUS-style paraméterizathat it makes fewer assumptions on the
form of sea quark asymmetry , and it has less model dependence than the H1-style pamd@agt in
that it does not assume equality of allparameters. Furthermore, although all types of paranzeittoin give
acceptable ¢ values, the third parameterization has the bésind it gives the most conservative experimental
errors. This is the parameterization which we chose for eutral fit. The PDFs which are parameterized are
XUy, xdy, xgandxU, xD .

XUy (X) = Auva‘“’ (1 x?“v (1+ Dyux+ Euvxz)
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Fig. 33: HERAPDFsxu, ;xd, ;xS ;xg and their uncertainties at> = 10GeV*. (Left) for the central fit; (centre) for the ZEUS-style
parameterization; (right) for the H1-style parameteiiaat

Model variation| Standard valug Upper Limit | Lower limit
m . 14 1:35 15
my 4:75 43 50
02 . 35 25 5:0
02 4:0 2:0 6:0
fs 0:33 025 0:40
fe 0:15 0:12 0:18

Table 7: Standard values of input parameters and cuts, ahtfations considered to evaluate model uncertainty

xdy (x) = AdeBdV (1 xfdv
xU (x)=AUxBU (1 X?U

xD (x) = ADXBD (1 fo
Xg(x) = Angg(l x?g

The normalisation parameters,,, ;2 4, ;A 4, are constrained to impose the number sum-rules and momentu
sum-rule. Thes parametersp,, andB 4, are set equal3 ,, = By, and theB parameters ; andB, are
alsosetequab = B, such that there is a singke parameter for the valence and another different siagle
parameter for the sea distributions. Assuming that thexggand charm quark distributions can be expressed
asx independent fractions;; = 033 andf. = 0:15, of thed andu type sea, gives the further constraint
Ay = A, (1 £)=@1 £). Thevalue off; = 0:33 has been chosen to be consistent with determinations
of this fraction using neutrino induced di-muon productiofhis value has been varied to evaluate model
uncertainties. The charm fraction has been set to be censiglith dynamic generation of charm from the
start point ofo 2 = m 2, in a zero-mass-variable-flavour-number scheme. A smaittian of the value oft.

is included in the model uncertainties. Finally this partarization has 11 free parameters.

It is well known that the choice of parameterization canctfteoth PDF shapes and the size of the PDF
uncertainties. Fig 33 compares the PDFs and their uncéesias evaluated using these three different param-
eterizations. As mentioned earlier, the third paramed¢ion results in the most conservative uncertainties.

We present results for the HERA PDFs based on the third typamimeterization, including six sources
of model uncertainty as specified in Table 7. We also commaresults obtained by varyings  ? ) and by
varying the choice of parameterization to those of the ZEW&the H1 styles of parameterization.

4.1.4 Results
In Fig.[34 we show the HERAPDFO.1 superimposed on the cordhila¢a set for NC data and CC data. In
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Fig[33 we show the NC data at loy?, and we illustrate scaling violation by showing the reduceaks-
section vs.Q ? for a few representative bins. The predictions of the HERAPDFO.1 fit are superimppsed
together with the predictions of the ZEUS-JETS and H1PDBZPDFs.

Fig. shows the HERAPDFO.1 PDFsy, ;xd, ;xS ;xg, as a function ofx at the starting scale
0% = 4GeV’and atp? = 10 GeV?. Fig.[37 shows the same PDFs at the scalés= 100;10000 GeV-.
Fractional uncertainty bands are shown beneath each PCEeXjerimental and model uncertainties are
shown separately. As the PDFs evolve withthe total uncertainty becomes impressively small.

The total uncertainty of the PDFs obtained from the HERA cioidb data set is much reduced com-
pared to the PDFs extracted from the analyses of the sepgdfatend ZEUS data sets, as can be seen from
the summary plot Fig._38, where these new HERAPDFO0.1 PDF<ampared to the ZEUS-JETS and
H1PDF2000 PDFs. It is also interesting to compare the ptedd&RAPDFO0.1 analysis of the combined
HERA-I data set with an analysis of the separate data setshwiges the same parameterization and as-
sumptions. Fidg 39 makes this comparison. It is clear that the data combination, and not the choice of
parameterization and assumptions, which has resulteddurcesl uncertainties for the low-gluon and sea
PDFs.

The break-up of the HERAPDFs into different flavours is iltated in Fig[4D, where the PDRsJ,
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xD, xU, xD andxu;xd;xc;xs are shown ap? = 10 GeV”. The model uncertainty on these PDFs from
variation of0 2 . , 02, m . andm ,is modest. The model uncertainty from variationfofandx. is also modest
except for its obvious effect on the charm and strange quiatkilolitions.

It is also interesting to look at the results obtained frormgghe ZEUS-style and H1 style param-
eterizations described in Sectibn 411.3. In Figl 41 thess=radtive parameterizations are shown as a blue
line superimposed on the HERAPDFO0.1 PDFs. These variatioparameterization produce changes in the
resulting PDFs which are comparable to the experimentatiaiaties in the measured kinematic range. A
further variation of parameterization originates from faet that, if theD parameter for the gluon is allowed
to be non-zero, then each type of parameterization yieldsuld minimum in 2 such that the gluon may
take a smooth or a 'humpy’ shape. Although the lowéris obtained for the for the smooth shape, the
for the "humpy’ shape is still acceptable. The PDFs for themipy’ version of our chosen form of parame-
terization are compared to the standard version in[Eify. 4&revthey are shown as a blue line superimposed
on the HERAPDFO0.1 PDFs. This comparison is shown at 4GeV?, where the difference is the greatest.
Nevertheless the resulting PDFs are comparable to tho$e stéandard choice. This explains a long-standing
disagreement in the shape of the gluon obtained by the depaEAJS-JETS and H1IPDF200 analyses. The
ZEUS data favoured the smooth shape and the H1 data favcheeédumpy’ shape. However the precision
of the combined data set results in PDFs for these shapes atemot significantly different in the measured
kinematic region.
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Fig. 44: HERAPDFs ap * = 10GeV’ compared to the PDFs from CTEQ6.1 and MRSTO01

Itis also interesting to compare the PDFs for the standanitetho those obtained with a different input
value of ;M 2). The uncertainty on the current PDG value oftt 2)is  0:002and thus we vary our central
choice by this amount. The results are shown in [Eig. 43, wiverean see that this variation only affects the
gluon PDF, such that the larger(smaller) value ofv ? ) results in a harder(softer) gluon as predicted by the
DGLAP equations. The change is outside total uncertaintydbaf the standard fit. Finally, Figs.144 and
[45 compare the HERAPDFO.1 PDFs to those of the CTEQ and the TWNRSTW groups respectively. The
uncertainty bands of the CTEQ and MRST/MSTW analyses hage bealed to represeass CL limits for
direct comparability to the HERAPDFO0.1. The HERAPDFO.1lgsia has much improved precision on the
low-x gluon.

4.1.5 Summary of HERAPDFO.1 results

Now that highg > HERA data on NC and C@&" p ande p inclusive double differential cross-sections are
available, PDF fits can be made to HERA data alone, since tHeAHlfigh 0 % cross-section data can be
used to determine the valence distributions and HERA ¢otacross-section data can be used to determine
the Sea and gluon distributions. The combined HERA-I datacseneutral and charged current inclusive
cross-sections foe" p ande p scattering, has been used as the sole input for an NLO QCD RDi-thie
DGLAP formalism. The consistent treatment of systematiceutainties in the joint data set ensures that
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experimental uncertainties on the PDFs can be calculatétbutineed for an increased tolerance. This
results in PDFs with greatly reduced experimental uncetiees compared to the separate analyses of the ZEUS
and H1 experiments. Model uncertainties, including thassrg from parameterization dependence, have
also been carefully considered. The resulting HERAPDHe@&#ERAPDFO0.1) have improved precision at
low-x compared to the global fits. this will be important for prditins of thew andz cross-sections at the
LHC, as explored in the next Section.

These PDFs have been released on LHAPDF in version LHAP&RI&ey consist of a central value
and 22 experimental eigenvectors plus 12 model alterrativiEhe user should sum over Nmem=1,22 for
experimental uncertainties and over Nmem=1,34 for totakuminties.

4.1.6 Predictions fow andz cross-sections at the LHC using the HERAPDFO.1

At leading order (LO)w andz production occur by the procesgy ! W =7, and the momentum fractions
of the partons participating in this subprocess are givem by = %Xl—sexp( v), whereM is the centre of mass

energy of the subprocess, = My oruM ,, P 5 is the centre of mass energy of the reactigns(= 14 TeV

at the LHC) andy = %]n EE +p}§) gives the parton rapidity. The kinematic plane for LHC partanematics
is shown in Fig[[4b. Thus, at central rapidity, the partitipg partons have small momentum fractions,
x  0:005. Moving away from central rapidity sends one parton to lowend one to highex, but over the
central rapidity rangejyj< 2:5, x values remain in the rangé, 10% < x < 5 102. Thus, in contrast

to the situation at the Tevatron, the scattering is hapmgemainly between sea quarks. Furthermore, the high
scale of the procesg? = M ? 10;000 GeV ensures that the gluon is the dominant parton, se€ Fig. 46,
so that these sea quarks have mostly been generated by ter fldnd g | g splitting process. Thus the
precision of our knowledge af andz cross-sections at the LHC is crucially dependent on the rteiogy

on the momentum distribution of the lowgluon.

HERA data have already dramatically improved our knowleaolgthe low gluon, as discussed in ear-
lier proceedings of the HERALHC workshop [1]. Now that thegsion of HERA data at smal-have been
dramatically improved by the combination of H1 and ZEUS HER#ata, we re-investigate the consequences
for predictions ofw ;Z production at the LHC.

Predictions for thei =z cross-sections, decaying to the lepton decay mode, usittfQCZEUS PDFs
and the HERAPDFO0.1 are summarised in Tdlle 8. Note that tobertainties of CTEQ PDFS have been
rescaled to represess CL, in order to be comparable to the HERA PDF uncertaintieise precision on
the predictions of the global fits (CTEQ6.1/5 and ZEUS-20@2)Xhe totalw =z cross-sections is 3% at
68% CL. The precision of the ZEUS-2005 PDF fit prediction, whiged only ZEUS data, is comparable,
since information on the low- gluon is coming from HERA data alone. The increased precisibthe
HERAPDFO.1 lowx gluon PDF results in increased precision ofthez cross-section predictions of 1% .
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PDF Set Ww*)Bw* ! I ) w H)yBwW ! 1 ;) (Z)B(@Z ! I'l)
CTEQ6.1 1161 0:34nb 8:54 0:26nb 1:89 0:05nb
CTEQ6.5 12:47 028nb 914 022nb 2:03 0:04nb
ZEUS-2002 1207 0#41nb 8:76 030nb 1:89 0:06nb
ZEUS-2005 1187 0:45nb 8:74 0:31nb 197 0:06nb
HERAPDFO0.1 12:14 0:13nb 9:08 0:d4nb 199 0:025nb

Table 8: LHCw =z cross-sections for decay via the lepton mode, for variouBWith68% CL uncertainties.

It is interesting to consider the predictions as a functiémapidity. Fig[47 shows the predictions
forw *;w ;Z production as a function of rapidity from the HERAPDFO0.1 Pfitfand compares them
to the predictions from a PDF fit, using the same paramet@izand assumptions, to the H1 and ZEUS
data from HERA-I uncombined. The increase precision dudéocbmbination is impressive. F[g.]48 show
the predictions fomr * ;w  ;z production as a function of rapidity from the CTEQ®6.1, 6.6 aMRSTO1
PDF fits for comparison. The uncertainties on the CTEQ and MRBF predictions have been rescaled to
represent8s CL limits, for direct comparability to the HERAPDFO.1 untanties. At central rapidity these
limits give an uncertainty on the boson cross-sections 0f%, (3% ),( 2%) for CTEQG6.1, (CTEQ6.6),
(MRSTO1) compared to 1% for the HERAPDFO.1.

So far, only experimental uncertainties have been includedese evaluations. It is also necessary to
include model uncertainties. Fig.]49 shows the ;w ;Zz rapidity distributions including the six sources
of model uncertainty detailed in Sectibn 4]1.3. These maodekrtainties increase the total uncertainty at
central rapidity to 2% . Further uncertainty due to the choice g™ ; ) is small because, although a lower
(higher) choice results in a larger (smaller) gluon at kovthe rate of QCD evolution is lower (higher) and this
largely compensates. Uncertainties due to the choice ahpeterization also have little impact on the boson
rapidity spectra in the central region as illustrated in. B by the superimposed blue line, which represents
the alternative 'humpy’ gluon parameterization (see Sec4s.

Since the PDF uncertainty feeding into the* ;w and z production is mostly coming from the
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gluon PDF, for all three processes, there is a strong caiwalan their uncertainties, which can be removed
by taking ratios. Figs. 47, 48 ahd]49 also showitheasymmetry

Ay =W " W =W "+wW ):

The experimental PDF uncertainty on the asymmetry is lgrgerss for both CTEQ and HERAPDFs, 7%

for the MRSTO1 PDFs) than that on the individual distriboficand the variation between PDF sets is also
larger - compare the central values of the CTEQ and MRST gtieds, which are almost5% discrepant.
This is because the asymmetry is sensitive to the differente valence PDFs;, 4, in the low= region,

5 10% < x< 5 10%,where there is no constraint from current data. To see thmsider that at LO,

Ay (W du)=(w+ du+ cs+ sc)

and thatd  u at low-x. (Note that the=s and sc contributions cancel out in the numerator). The discrepanc
between the CTEQ and MRSTO01 asymmetry predictions=ato can be quantitatively understood by consid-
ering their different valence PDFs (see Figd.[44, 45 in SdcdX In fact a measurement of the asymmetry at
the LHC will provide new information to constrain these PDFs

By contrast, the ratio
Ry =2=0W "+ W );

also shown in Fig$. 47, #8 ahdl49, has very small PDF uncégasitboth experimental and model) and there
is no significant variation between PDF sets. To understaiscconsider that at LO

Ryw = (Wu+ dd+ cc+ ss)=(ud+ du+ cs+ sc)

(modulo electroweak couplings) and that u at low-x“2. This will be a crucial measurement for our
understanding of Standard Model Physics at the LHC.

However, whereas the rapidity distribution can be fully reconstructed from itsay leptons, this is
not possible for ther rapidity distribution, because the leptonic decay chammdlich we use to identify the
W ’s have missing neutrinos. Thus we actually measureiti®decay lepton rapidity spectra rather than the

42There is some small model dependence from the strange s#iarfraccounted for in both HERAPDFO0.1 and in CTEQ6.6 PDFs.



W rapidity spectra. Fid. 49 also shows the rapidity spectrepfisitive and negative leptons from * and
W decay, the lepton asymmetry,
A= (I 1)=(I' +1)

and the ratio
Ry1=2=(1 +1)

A cut of, py > 25 GeV, has been applied on the decay lepton, since it will ngdssible to trigger on leptons
with smallpa. A particular lepton rapidity can be fed from a rangerofrapidities so that the contributions
of partons at differenk values is smeared out in the lepton spectra, but the broadrésaof thew spectra
remain.

In summary, these investigations indicate that PDF uniceiega, deriving from experimental error, on
predictions for thev ;7 rapidity spectra in the central region, have reached a gicetiof %, due to the
input of the combined HERA-I data. This level of precisiommaintained when using the leptons from the
w decay and gives us hope that we could use these processeasiassity monitoré3. However, model
dependent uncertainties must now be considered very dlgrefthe current study will be repeated using a
general-mass variable-flavour scheme for heavy quarks.

The predicted precision on the raties,; , R ;1 IS even better since model uncertainties are also very
small giving a total uncertainty of 1% . This measurement may be used as a SM benchmark. However the
w and lepton asymmetries have larger uncertainties (7% ). A measurement of these quantities would give
new information on valence distributions at small-

4.2 Measurements of the Proton Structure Functiore; at HERA 44
4.2.1 Introduction

The inclusive deep inelastiep scattering (DIS) cross section can at low be written in terms of the two
structure functionsy, andr;,, in reduced form as
d? 0%x

2

2 2 Yy

Q7 = Fa(x; P
r(Xi0%5y) o 02 2 Zv. 2(x;07) Y.

F(x;0%); (53)

whereQ? =  d is the negative of the square of the four-momentum traresfelbetween the electrbhand
the proton, anc = 0 ?=2gP denotes the Bjorken variable, whereis the four-momentum of the proton. The
two variables are related through the inelasticity of thattecing processy = 0 ?=sx, wheres = 4E.E,

is the centre-of-mass energy squared determined from éo¢reh and proton beam energies, andE . In
eq[53, denotes the fine structure constant and= 1+ (1 y¥.

The two proton structure functiorss, andr;, are related to the cross sections of the transversely and
longitudinally polarised virtual photons interacting tviprotons, ; and -, according torF;, / 1 and
F, / (L + 1) Therefore the relation i, F, holds. In the Quark Parton Model (QPM); is
the sum of the quark and anti-quaxkdistributions, weighted by the square of the electric quarkrges,
whereas the value af;, is zero [174]. The latter follows from the fact that a quarkfwipin% cannot absorb
a longitudinally polarised photon.

In Quantum Chromodynamics (QCL¥;, differs from zero, receiving contributions from quarks and
from gluons [175]. At lowsx and in theQ  region of deep inelastic scattering the gluon contributiogatly
exceeds the quark contribution. Therefare is a direct measure of the gluon distribution to a very good
approximation. The gluon distribution is also constrairmdthe scaling violations of , as described by
the DGLAP QCD evolution equations [102—-105, 176]. An indefent measurement 8f, at HERA, and its
comparison with predictions derived from the gluon disttibn extracted from the 2 evolution off, (x ;0 ?),

43A caveat is that the current study has been performed usirfg $&s which are extracted using NLO QCD in the DGLAP
formalism. The extension to NNLO gives small corrections % . However, there may be much larger uncertainties in thertieal
calculations because the kinematic region involves jowFhere may be a need to account far1=x) resummation or high gluon
density effects.

4Contributing authors: J. Grebenyuk, V. Lendermann

“The term electron is used here to denote both electrons asitigres unless the charge state is specified explicitly.



thus represents a crucial test on the validity of pertuviea@®CD (pQCD) at lonx. Moreover, depending on
the particular theoretical approach adopted, whether i figed order pQCD calculation, a re-summation
scheme, or a color dipole ansatz, there appear to be sigriifitfferences in the predicted magnituderof at
low 0 ?. A measurement af;, may be able to distinguish between these approaches.

Previously the structure functian;, was extracted by the H1 collaboration from inclusive dathigi
y using indirect methods, as discussed in $ect.1.2.2. Ampirgdiry measurement was also presented by the
ZEUS collaboration using initial state radiation (ISR) etgg177], although the precision of this measurement
was limited.

To make a direct measurementmof, reduced cross sections must be measured at the sameQ °
but with differenty values. This can be seen from Eg. 53 which statesrthak ;0 ?) is equal to the partial
derivative@ . (x;0?;v)=@ (y°=Y, ). Due to the relationshig = 0 ?=xs this requires data to be collected at
different beam-beam centre-of-mass energies, which was ildhe last year of HERA running. To maximize
the precision of this procedure, the measurable rangé-ef . had to be maximised for each fixedando 2.
This was achieved by operating HERA at the lowest attainadigre-of-mass energy and by measuring this
data up to the highest possible valueyofAn intermediate HERA centre-of-mass energy was also c¢hdse
improve the precision of ;, extraction and to act as a consistency check. More spedjifitatween March
and June 2007, HERA was operated with proton beam enerjies,460 GeV and 575 GeV, compared to the
previous nominal value of 920 GeV. The electron beam ene@y unaltered at . = 276 GeV. Thus, three
data sets, referred to the high- (HER), middle- (MER) and-éwergy running (LER) samples, were collected
with pé = 318 GeV, 251 GeV and 225 GeV, respectively. The integratedriasities of the data sets used
by ZEUS (H1) to measure;, are 32.8(21.6) pd for HER, 6 (6.2) pb* for MER and 14 (12.4) pid for
LER. The specific issues of the recent H1 and ZEUS analysedismassed in Se¢t. 4.2.3, and the results are
presented in Se¢t. 4.2.4.

4.2.2 Indirectr;, Extraction by H1

H1 extracted;, from inclusive data using several indirect methods, whigbl@t the turn over of the reduced
cross section at higkr due to ther;, contribution. The basic principle is the following. Firshe reduced
neutral current cross section is measured in & range, where the:, contribution is negligible and thus the
relation , = F, holds very well. Afterward, based on some theoretical aggiom, the knowledge of ; is
extrapolated towards higj Finally F;, is extracted from the difference between the predictiorefoand the
measurement of . at highy.

In the analyses at ? & 10 GeV [18, 89, 178] the “extrapolation” method is used. In this hogt, an
NLO QCD PDF fit to H1 HERA I data is performed at< 0.35, and the results are extrapolated to higher
using the DGLAP evolution equations:;, is then extracted at a fixed = 0.75 and ap ? up to 700 GeV
using eq.BB. The extracted values are shown inEig. 50 fohitfeo  analysis [18].

At low 0 ?, extrapolations of DGLAP fits become uncertain. Bor . 2 Ge\?, as the strong coupling
constant . (Q ?)increases, the higher order corrections to the perturbatipansion become large and lead to
the breakdown of the pQCD calculations. Therefore othehouis are used in the H1 loy# data analyses.

The “shape method”, as used in the last H1 lpwstudy of HERA | data [179], exploits the shape of
- inagiveng ? bin. Theg ? dependence at highis driven by the kinematic factor’=y. (eq[53), and to
a lesser extent by, (x;0?). On the other hand, the gluon dominance at loguggests that;, may exhibit
an x dependence similar t8,. Therefore it is assumed that, is proportional tor, and the coefficient of
proportionality depends only ap?. In the extraction procedure one uses the ratiof the cross sections of
the transversely and longitudinally polarised photons
Fr

T
R=—= 54
L Fo, K (54)

which is thus assumed to depend only®mh The reduced cross section is fitted by

v> R(Q?)

Y. 1+RrR@Q2) ' (55)

r=F2
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Fig. 51: 0 ? dependence df . (x;Q %) at fixedy = 0.75, extracted from the preliminary H1 log? data. The solid line shows the
prediction of the fractal fit with a constant.

where some phenomenological model foris chosen.

An example of such an extraction using a fractal fitfor[180] is shown in Fig. 51, where preliminary
H1 results [179] forr,, aty = 0.75 in the range of 0.35 @ 8.5 GeV are presented. The data favour a
positive, not smalf;, atlowo . A drawback of this method is that it reveals a considerablgeddence af
on the choice of the', model.

In the derivative method [89,179;, is extracted from the partial derivative of the reduced sisEction
ony at fixedQ 2
@ . BF> 2y°(2 ) v @Fy,

= FL X

56
Chy - @x Y2 Y, @x (56)
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which is dominated by the -dependent term at high. The term proportional t@®F; =@x is negligible
for moderately varying parametrisations pf . For low 0 ? values the rise of', is weak. The change
of the termx@F,=@x for the two assumptions: no rise at low i.e. @F,=@x = 0, andF, / x is
numerically significantly smaller than the experimentatqision for@ ,=e ny. Therefore the derivative
methods provides a means for determiningat low ¢ 2 with minimal phenomenological assumption. On the
other hand, the errors obtained with the derivative methioa out to be significantly larger than those from
the shape method.

The preliminary results of';, extraction from H1 HERAI data [179] are presented in Eig. 3he
residual dependence of the measurement on the assumptaba fora , is estimated by a comparison with
results obtained assuming an which is flat iny. The lower bound om;, obtained this way is depicted as a
solid band in the figure.

4.2.3 Details of Direct;, Measurements

The H1 and ZEUS analysis procedures involve a measuremém giclusive cross section at> 0.1. In this
range, the kinematic variables y andg ¢ are most accurately reconstructed using the polar anglend the
energy,k 2, of the scattered electron according to

EO E 02gin2 2
y=1 —Ssh®=%; @?=—=""_°%; X:Q_: (57)
Ee 2 1 vy yS

Reaching the higly values necessary for thg, determination requires a measurement of the scattered elec
tron with energy down to a few GeV. The electron candidatelisded as an isolated electromagnetic energy
deposition (cluster) in a calorimeter. The crucial anayssue at high-y region is the identification of the scat-
tered electron, and the estimation of the hadronic backgfravhich occurs when a particle from the hadronic
final state mimics the electron signal. Most of backgrourehés are photoproduction f) events withp? 0

in which the final state electron is scattered at low anglagh(h)*® and thus escapes through the beam pipe.

The pbackground suppression is performed in several stepglyi-ralorimeter shower estimators are
utilised which exploit the different profiles of electronmeagic and hadronic showers. Secondly, background

“The z axis of the right-handed coordinate systems used by H1 atiS7E defined by the direction of the incident proton beam
with the origin at the nomina¢p interaction vertex. Consequently, small scattering aglethe final state particles correspond to
large polar angles in the coordinate system.
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coming from neutral particles, such ag, can be rejected by requiring a track associated to therefect
candidate. Furthermore,p events are suppressed by utilising the energy-momentursecaation. For that,
the variablek e = i(E:i R, is exploited, where the sum runs over energiesand longitudinal
momentum components, ; of all particles in the final state. The requirement p > 35(42)GeV in
the H1 (ZEUS) analysis removes events where the escapinyalecarries a significant momentum. It also
suppresses events with hard initial state photon radiation

However, at lowne ? the remaining background contribution after such a seladti of a size comparable
to or even exceeding the genuine DIS signal. The furtheryarsasteps differ for the H1 and ZEUS analyses
as discussed in the following.

ZEUS Analysis Procedure The electron candidates are selected as compact electnetiagnergy depo-
sitions in the Uranium Calorimeter (UCal). The position bétcandidate is reconstructed using either the
Small Angle Rear Tracking Detector (SRTD), which is a highrgilarity lead-scintillator calorimeter, or with
the Hadron-Electron Separator (HES), which is a silicorecketr located in the electromagnetic section of the
UCal. The candidates are selected suchitfat 6 GeV*'.

The candidates are validated using information from thekirey devices. The acceptance region for
ZEUS tracking is limited to polar angles . 154 . The tracking detectors do provide some coverage beyond
=154 upto . 168, however the number of tracking layers is too sparse fortfattk reconstruction.
The hit information from the tracking detectors can stilldsed. To do this, a “road” is created between the
measured interaction vertex and the position of the eleatemdidate in the calorimeter. Hits in the tracking
layers along the road are then counted and compared to thienmnaxpossible number of hits. If too few hits

YCut of £ ? > 4GeV is used for the event selection, although the binning fomeasurement is chosen such thdt> 6 GeV.
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are found, the candidate is assumed to be a neutral partidlé & rejected. To ensure the reliability of this
method, the scattered electron is required to exit the akdtift chamber at a radiug > 20 cm. Given that
E2 > 6GeV, this effectively limits the maximalto y < 0.8 and the minimung ? achievable at lovy. In the
HES analysis, events are measured down 00.2 roughly translating to the ? region,Q > 24 Ge\. No
background treatment based on the charge of the candidag¢efsmed.

The remaining p background is estimated using Monte Carlo (MC) simulatidnrder to minimise
the model uncertainty of thep simulation, a pure photoproduction sample is selectedjumirelectron tagger
placed close to the beam pipe about 6 meters away from theatiten point in the rear direction. It tags,
with almost perfect efficiency and purity, the scattereatns in such events which are not identified in the
main detector and escape down the beam pipe. Photoprodidois verified against and normalised to this
sample. The normalisation factor is found to be D.1 for all data sets.

Figure[53 shows, as an example, comparisons of the 575 GeMwitt simulated distributions, for
the energy of the scattered electron, tatal p, polar angle of the scattered electron, angle of the hadroni
final state and the coordinate of the interaction vertex. A good descriptiorite@ data by the simulation is
observed. A similar level of agreement was found for bothR-ad LER data sets.

A full set of systematic uncertainties is evaluated for thess section measurements. The largest
single contribution comes from the electron energy scaleedainty, which is known to within 1% for
E2 > 10GeV, increasing to 3% ate! = 5GeV. Other significant contributions are due to thel0% un-
certainty in verifying the Pythia prediction of thep cross section using the electron tagger. The systematic
uncertainty due to the luminosity measurement was redugeaddding the three cross sections relative to each
other. The spread of relative hormalisation factor was tbtmbe within the expected level of uncorrelated
systematic uncertainty.

H1 Analysis Procedure The H1 measurements Bf are performed in separate analyses involving different
detector components and thus covering differ@rtranges. In the higlp-? analysis the electron candidate is
selected as an isolated electromagnetic energy deposittbe Liquid Argon (LAr) calorimeter which covers
the polar angle range 4< < 153. The selected cluster is further validated by a matchingktracon-
structed in the central tracking device (CT) with an angaleceptance of5 < < 165. In the medium

0 2 analysis the electron candidate is selected in the backeadatdimeter SpaCal covering the angular range
153 < < 177.5 and is also validated by a CT track. Lowgr values are expected to be accessed in the
third analysis, in which the SpaCal cluster is validated liyaak in the Backward Silicon Tracker reaching
the highest . The first measurement ef at mediumg ? is already published [181], and preliminary results
of the combined medium-high+ analysis are available.

The remaining p background is subtracted on statistical basis. The methbdakground subtraction
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relies on the determination of the electric charge of theteda candidate from the curvature of the associated
track.

Figurd 54 shows the =p distribution of the scattered electron candidates feom interactions with the
energyE measured in the SpaCal and the momentuai the linked track determined by the CT. The good
momentum resolution leads to a clear distinction betweem#gative and positive charge distributions. The
smaller peak corresponds to tracks with negative chargdhtargdrepresents almost pure background. These
tracks are termed wrong sign tracks and events with suchdated are rejected. The higher peak, due to right
sign tracks, contains the genuine DIS signal superimposetthe remaining positive background. The size
of the latter to first approximation equals the wrong signkigacund. The principal method of background
subtraction, and thus of measuring the DIS cross section yg t0.9, consists of the subtraction of the wrong
sign from the right sign event distribution in eagho ? interval.

The background subtraction based on the charge measureetgrnites a correction for a small but
non-negligible charge asymmetry in the negative and pesitackground samples, as has been observed pre-
viously by H1 [89]. The main cause for this asymmetry liesha €nhanced energy deposited by anti-protons
compared to protons at low energies. The most precise mexasuit of the background charge asymmetry
has been obtained from comparisons of samples of negadigkstine” p scattering with samples of positive
tracks ine pscattering. An asymmetry ratio of negative to positive ksaof 1:06 is measured using the high
statisticse p data collected by H1 in 2003-2006. This result is verifiedhgghotoproduction events with a
scattered electron tagged in a subdetector of the lumineg#tem.

Figure[5h shows, as an example, comparisons of the 460 GéM/higta with simulated distributions,
for the energy and the polar angle of the scattered electrion {@ and after subtraction of the background,
which is determined using wrong sign data events.

The measurement af, as described below relies on an accurate determinationeofdhation of the
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cross section for a giver andg ? at different beam energies. In order to reduce the uncéytaatated to the
luminosity measurement, which presently is known to 5% #&mteproton beam energy of the 2007 data, the
three data samples are normalised relatively to each oftmerrenormalisation factors are determined at low
y, Where the cross section is determinedehyonly, apart from a small correction due f,. The relative
normalisation is known to within 1.6%.

All correlated and uncorrelated systematic errors combiwéh the statistical error lead to an uncer-
tainty on the measured cross sections at Rigi 3 to 5%, excluding the common luminosity error.

4.2.4 Measurements &f, (x;0 )by H1 and ZEUS

The longitudinal structure function is extracted from theasurements of the reduced cross section as the
slope of . versusy“=Y,, as can be seen in €q]53. This procedure is illustrated ifBBig The central

F;, values are determined in straight-line fits to(x ;0 ?;y) as a function of/’=y, using the statistical and
uncorrelated systematic errors.

The first published H1 measurementraf (x ;0 #) is shown in Figl. 57, the preliminary ZEUS measure-
ment is presented in Fig.b8. The H1 measured values, odire compared with the H1 PDF 2000 fit [18],
while the ZEUSF;, values are compared to the ZEUS-JETS PDF fit [170]. Both nreasents are consistent
and show a non-zerp,.

The H1 results were further averaged oweat fixedQ ¢, as shown in the left panel of F[g.59. The
averaging is performed taking thedependent correlations between the systematic errorsagtount. The
averaged values af; are compared with H1 PDF 2000 fit and with the expectations fghobal parton
distribution fits at higher order perturbation theory penied by the MSTW [182] and the CTEQ [131, 169]
groups. Within the experimental uncertainties the dat@ansistent with these predictions. The measurement
is also consistent with previous indirect determinatiohs o by H1.

In the combined medium-high? analysis by H1 th@ ? range is extended up to? = 800 GeV. The

preliminary results are shown in the right panel of Eid. 59.sbmeQ ? bins there is an overlap between the
SpaCal and LAr measurements which improves the precisiadheof ;, extraction as compared to the pure
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SpaCal analysis.

4.2.5 Summary

Direct measurements of the proton structure funcignhave been performed in deep inelasticscattering

at low x at HERA. TheF, values are extracted by the H1 and ZEUS collaborations ftmrctoss sections
measured at fixest andQ ? but differenty values. This is achieved by using data sets collected witteth
different proton beam energies. The H1 and ZEUS results @msistent with each other and exhibit a non-
zeroF;. The measurements are also consistent with the previouredhdieterminations of;, by H1. The
results confirm DGLAP NLO and NNLO QCD predictions foy, (x;0 ?), derived from previous HERA data,



H1 Preliminary F

(G\
R o N . — H1 PDF 2000
q 11— ® H1 Data i H1 PDF 2000 < 15-_ ._Hl (Prelim.) ~ CTEQ®66
\>_<: L E,= 460,575,920 Gev o EAEI_:-I_SVGOG; E - E; =460, 575, 920 GeV -- MSTW
* i B IEIB 83 ¢ B X 382 BR B
xFEEE & @ % Ixg888 E85 £ 88288 8588
0.5 0.5 i 5
B B : Q
C - =
I S I ¢! -
i o : 3 =
N - SpaCal {SpaCal+LAr{ LAr <
o § f | ?
o .05~ ‘ R ——
20 40 60 80 10 10° 10°
Q% 1 GeV? Q?/Gev?

Fig. 59: The proton structure functian, shown as a function af * at the given values of: a) first direct measurement at HERA by
H1; b) preliminary H1 results combining SpaCal and LAr asaly. The inner error bars denote the statistical error therfror bars
include the systematic errors. The luminosity uncertaistyot included in the error bars. The solid curve describeseixpectation
onfF; fromthe H1 PDF 2000 fit using NLO QCD. The dashed (dasheddptiurve depicts the expectation of the MSTW (CTEQ)
group using NNLO (NLO) QCD. The theory curves connect prediis at the givenx ;Q *) values by linear extrapolation.

which are dominated by a large gluon density at kow



5 PROTON-PROTON LUMINOSITY, STANDARD CANDLES AND PDFS AT TH E LHC*8
5.1 Introduction

The Large Hadron Collider (LHC) is expected to start coliglproton beams in 2009, and is expected to reach
design parameters in energy and luminosity sometime laigidaliver a fewrb * per year of data at the 14
TeV collision energy.

During the past 15 years many theoretical calculations apdranental simulations have demonstrated
a huge potential to perform many accurate tests of the Stddiadel (SM) with LHC data, which could yield
insight into new physics mechanisms.

To make these tests, the experiments identify a particidgastire X and observe, using a variety of
selection criteria, a certain number of events in a givema daking period. After correcting this event rate
for backgrounds and the selection efficiency, the numbeonsearted into a cross section. The cross section,

ool x can be compared with theoretical predictibhaccording to the formulal o, ecea = ppt x Lop
whereL ., is the recorded proton proton luminosity.

Besides the statistical errors of a measurement, the sgsiteatror is related to the uncertainties from
the L, determination, the background and efficiency correctioitbiwthe detector acceptance and from ex-
trapolations into the uncovered very forward rapidity megi. The interpretation of an observed cross section
within the SM requires further the knowledge of the theaadticross section. Thus the uncertainties of the
proton parton distribution function (PDF) have to be coasdl also.

In this Section we describe the status and perspectiveg &fthAS, CMS and LHCDb, the three LHC pp
collision detectors [183], to determine the proton protaminosity normalization. The investigated methods
are known and studied since many years and can be separtetthenabsolute (1) direct and (2) indirect
proton proton luminosity determination. A third approa®) {fies to measure and calculate final states only
relative to well understood reactions which depend on théopgparton luminosity and are as such largely
independent of the knowledge of the pp luminosity.

Absolute, direct or indirect, proton proton luminosity nwlization: If the absolute approach is used,
the interpretations of a measured reaction cross sectipandis still on the knowledge of parton distri-

bution function (PDF), which must be obtained from othereskpents. Examples are:
— The proton proton luminosity normalization is based on treasurements of the beam currents

and shapes. While the beam currents can be accurately de¢eimsing beam transformers,
the beam profiles are more difficult to determine directly arsdially constitute the dominant
source of uncertainty on a luminosity measurement usirgjtdghnique. The use of the machine
luminosity determination using beam parameter measureni&d4] and [185] will be described
in Sectio 5.3.11. Alternatively one can try to measure thanprofiles also within the experiments
using the precision vertex detectors. A short descriptibthis idea, currently pursued within the
LHCb collaboration, is also given in Sectibn 5]3.1.

— The simultaneous measurements of a pair of cross sectiansté connected with each other
quadratically via the optical theorem. A well known exampfehis is the measurement of the
total inelastic cross section and the elastic cross seatiorry high pseudorapidities § 9 and
will be described in Sectidn 5.3.3.

So called instantaneous or real time luminosity measuré&name based on “stable” high rate
measurements of particular final state reactions. Oncestiie of such reactions to the pp lumi-
nosity determination has been measured, those reactiorsecsubsequently used as independent
luminosity monitors. Some possibilities are discussedaati®n5.3.4.

— The indirect absolute proton proton luminosity normalizatis based on the theoretically well
understood “two photon” reactiopp ! pp  [186, 187] (Sectiol 5.35). This reaction could
perhaps be considered as the equivalent of the luminosiptog ine" e experiments using
forward Bhabha scattering.

48Contributing authors: J. Anderson, M. Boonekamp, H. Burha\. Dittmar, V. Halyo, T. Petersen
“SAlternatively, one can also apply a Monte Carlo simulatiotite theoretical prediction and compare the number of backgl
corrected events directly.



Indirect pp luminosity measurements use final states, deccétandard candles”, with well known
theoretical cross sections (Section]5.4).
Obviously, the resulting proton proton luminosity can ob&/as good as the theoretical and experimen-
tal knowledge of the “standard candle” reaction. The thiécaily and experimentally best understood
LHC reactions are the inclusive production of W and Z bosoitk subsequent leptonic decays. Their
large cross section combined with experimentally well defifinal states, e.g. almost background free
Z and W event samples can be selected over a relative larggétyamnge, makes them the preferred
LHC “standard candle” reaction. Other interesting cantidare the high. jet - boson (= , W or Z)
final states. The indirect luminosity method requires alsna knowledge of the PDFs, and of course,
if one follows this approach, the cross section of the “staddandle” reaction becomes an input and
can not be measured anymore. Thus, only well understoodaaacshould be considered as candidate
reactions.

pp luminosity independent relative rate measurementgusiandard candle” reactions.
In addition to the above indirect pp luminosity determioas, “standard candle” reactions allow to
perform luminosity independent relative event rate cattahs and measurements. This approach has
already been used successfully in the past and more deitsdiscussed during the past HERA-LHC
workshop meetings [1]. For some reactions, this approapkag to be much easier and more accurate
than standard cross section measurements and their itigipns. Perhaps the best known example at
hadron colliders is the measurement and its interpretaifdhe production ratio for Z and W events,
where Tevatron experiments have reached accuracies of akithh [188, 189]. Another example is
related to relative branching ratio and lifetime measunetsi@s used for b-flavored hadrons.

Furthermore the rapidity distributions of leptonic W and &cdys at the LHC are very sensitive to the
PDF parameterization and, as was pointed out 10 years a@f [dr8: can use these reactions to determine the
parton luminosity directly and very accurately over a laxge parton momentum/proton momentum) range.
In fact, W and Z production with low transverse momentum wetend in this analysis to be very sensitive
to gg luminosities, and the jet-boson final states, e.g. the jef; W final states at high transverse momentum
are sensitive to the gluon luminosity.

In the following we attempt to describe the preparations thiedstatus of the different luminosity mea-
surements and their expected accuracies within ATLAS, CM& laHCb. Obviously, all these direct and
indirect methods should and will be pursued. In Sediioh ®=%wmpare the advantages and disadvantages of
the different methods. Even though some methods look mteesisting and rewarding than others, it should
be clear from the beginning that as many independent pp hsitindeterminations as possible need to be
performed by the experiments.

We also try to quantify the systematic accuracies which tiighachieved over the next few years. As
these errors depend somewhat on the overall achieved lgitynae need in addition a hypothetical working
scenario for the first 4 LHC years. We thus assume that duhiaditst year, hopefully 2009, data at different
center of mass energies can be collected by ATLAS and CMSnBtine following three physics years we
expect that 10 TeV will be the highest collision energy inryleand that at most 100 pb can be collected.
We assume further that during the following two years thaegiesnergy of 14 TeV can be achieved and that
a luminosity of about 1 for and 10 fb* can be collected respectively per year. During the first fearg
similar numbers are expected for the LHCb experiment. Hawence the LHC reaches the first and second
phase design luminosity afo*3/cm?/sec andL0°*/cm?/sec it is expected that the LHCh experiment will run
at an average luminosity of  16?/cm?/sec (resulting in about 2b * /per year).

5.2 Luminosity relevant design of ATLAS/CMS and LHCDb

In the following we give a short description of the expectedi@rmance with respect to lepton and jet identi-
fication capabilities. Especially the electron and muonsuesment capabilities are important for the identi-
fication of events with leptonic decays of W and Z bosons.

Both ATLAS and CMS are large so called omni purpose experimevith a large acceptance and
precision measurement capabilities for highelectrons, muons and photons. Currently, the simulations



of both experiments show very similar performance for adavgriety of LHC physics reactions with and
without jets. For the purpose of this Section we focus on thesibility to identify the production of inclusive
W and Z decays with subsequent decays to electrons and mBotis.experiments expect excellent trigger
accuracies for isolated leptons and it is expected thatrelexz and muons with momenta above 20-25 GeV
can be triggered with high efficiency and up fojof about 2.5. The special design of the ATLAS forward
muon spectrometer should allow to detect muons with goodracg even up tg jof 2.7.

The operation of ALFA, a very far forward detector placed ath®40 m down the beam line, is en-
visaged by the ATLAS collaboration to provide an absolutmihosity measurement, either using special
optics LHC running and the use of the optical theorem or ufiegiotal cross section measurement from the
dedicated TOTEM experiment installed near CMS; resultmftbis device can be expected from 2010 and
on-wards. In addition to absolute luminosity measureméwois ALFA the two detectors LUCID and the
Zero-Degree-Calorimeter (CDC) [191] are sensitive to #lative luminosity at time scales of single bunch
crossings.

A similar approach for absolute and relative luminosity sw@aments is foreseen by the CMS experi-
ment. Here it is planned that dedicated forward detectbhesHadron Forward Calorimeter (HF) and the ZDC
device provide similar results as the ones in ATLAS.

Another technique that is expected to be available early aluminosity-independent measurement of
the pp total cross section. This will be done using a forward detelotiilt by the TOTEM experiment [192].

The LHCb experiment [193] has been designed to search forlNewics at the LHC through precision
measurements of CP violating observables and the studyeoflezays in the b-quark sector. Sincelthpairs
resulting from the proton-proton collisions at the LHC valbbth be produced at small polar angles and in the
same forward or backward cone, LHCb has been designed agle-aim forward spectrometer covering the
pseudo rapidity range 9 < < 49. The LHCb tracking system, which is composed of a silicorteser
detector, a warm dipole magnet and four planar trackingostst will provide a momentum resolution of

P=P = (0:3+ 0:0014P=G &V )% [194]. Muon identification is primarily achieved using a séfive planar
multi-wire proportional chambers, one placed in front o ttelorimeter system and four behind, and it is
expected that for the momenta range 3-150GeV/c an idetiificafficiency of 98% and an associated pion
dis-identification rate of 1% will be achieved. The reconstruction of primary and seleoy vertices, a task
of crucial importance at b physics experiments, will beuaity impossible in the high particle multiplicity
environment present with the nominal LHC running lumingsif 10°*an ? s * - LHCb has therefore been
designed to run at the lower luminosity of 1G%an ?s *.

Recent LHCb simulations have shown that leptonic W and Zydet@amuons can be identified with
a small background in the forward and very forward rapidégion starting from of 1.9 and up to values
larger than 4. As will be discussed later in more detail, timon muon acceptance region for the three LHC
experiments between 1.9 and about 2.5 will allow to crosgklaad normalize the W and Z measurements
in this region. Consequently the unique large rapidity fra to 4.9 can be used by LHCb to investigate the
very low x range of the PDFs for the first time.

The absolute luminosity at LHCb will be obtained either dilg by making measurements of the beam
parameters, or indirectly via a measurement of the eveataigan accurately predicted physics process.

As will be explained in the following Sections, all experimte will try to perform as many as possible
direct and indirect absolute and relative luminosity measients and will, if available, at least during the first
years, also use luminosity numbers from the machine group.

5.2.1 Lepton triggering and W/Z identification.

Generally, the lepton trigger selections depend on thamaheous luminosity and some pre-scaling might
eventually needed. However, current simulations by aleexpents show that the envisagedjandyp. thresh-
olds will not limit the measurement accuracies of leptoriginating from W and Z decays.

The lepton trigger selections that generally perceivedetaiged for most W and Z related analysis are
very similar in ATLAS and CMS as indicated in Taljle 9.

Trigger and reconstruction efficiencies for leptonic W andecays within the acceptance of the detec-



Trigger selectiore  Trigger selection

Experiment Pr J 3 er J 3
ATLAS 25 G &7 2.5 20G &7 2.7
CMS 20G &7 2.5 20G &7 2.1
LHCb - - 256G« 1.9-4.9

Table 9: For ATLAS and CMS the lepton trigger/selectigrthresholds are given for single isolated leptoriSor the LHCb threshold
is given for the muon pair mass instead of single muons angpoditive values of are covered.

tors have been estimated for ATLAS to be 97.7% and 80.0% &wmtieins and 84.3% and 95.1% for muons,
respectively. The reconstruction efficiency includes tigger efficiencies and the off-line electron and muon
selections used later to identify clean inclusive W and Zhegamples [195].

The current equivalent trigger and off-line efficiencies @MS are about 85% and 77% for electrons
and combined about 85% for single muons [196]. Similar efficky numbers for muons from W and Z decays
are expected within the LHCb acceptance region [197]. @insgnulations show that these numbers can be
determined with high accuracies, reaching perhaps 1% ¢erbet least for isolated leptatfswhich have a
transverse momentum some GeV above the trigger threshetatdower momenta near the thresholds or for
additional special trigger conditions somewhat largetesystic uncertainties can be expected.

5.3 Direct and indirect absolute pp luminosity measuremerg

Three different absolute proton proton luminosity measwaets are discussed in this Section. (1) The machine
luminosity determination using beam parameter measurenj£®8], (2) the luminosity independent total pp
cross section measurement combined with the measureméhe @lastic pp scattering rate [192] and (3)
the measurement of the “two photon” reaction ! pp  [186, 187]. As will be discussed in more detalil
in Section[5.b, only method (3) can be performed during thenab collision data taking. For method (1)
some special methods, which take the actual detector peafuze during each run into account, need to be
developed. Method 2 uses a two phase approach (a) a spedhinmaptics run with low luminosity to
determine the total cross section and (b) a normalizaticsotoe high rate final state reactions which can be
counted during normal physics runs.

5.3.1 Proton-proton luminosity from machine parameters

The luminosity for colliding beams can be directly obtairfemim geometry and numbers of particles flowing
per time unit [184]. This can be used to determine the absdlttC luminosity from machine parameters
without prior knowledge of pp scattering cross sectionse phinciple is briefly outlined here. More details
can be found in [185].

Interaction
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N1 — Effectiveéea A —
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Fig. 60: Luminosity from particles flux and geometry.
For two bunches ofl ; andN ;, particles colliding head-on in an interaction region agced in Fid.60

with the frequencyt the luminosity is given as

L = N.N2f . (58)
Ag

%0As isolated highp. photons are triggered essentially like electrons simitausacies for both particle types can be assumed.
SIContributing author: H. Burkhardt



A is the effective transverse areia which the collisions take place. For a uniform transvepseticle
distribution,2 . would be directly equal to the transverse beam cross sedhiitmme generally, the effective
area can be calculated from the overlap integral of the ta@nsiverse beam distributions (x;v), g, (x;v)
according to 7

1
o= Giv)oxiy)dxdy (59)
e
For equal Gaussian beams " 4
1 %2 y2
- g, = — = 60
e T A B 2 (60)

we obtain for head-on collisio’s. = 4 .  sothat

NN, f
L=-—- 2", (61)

4 Ly

The collision frequency is accurately known. The number of particles circulatinguistorage ring is mea-
sured using beam current transformers to roughly 1% p@ti§l98].
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Fig. 61: Schematic view of the steps involved in an ortho§jseaaration scan proposed for the LHC (left) and a poss#éselt in
one direction (based on early LEP data) shown on the right.

The main uncertainty in the absolute luminosity deterniamafrom machine parameters is expected to
originate in the knowledge of the transverse beam dimessi@afe operation of the LHC requires a rather
good knowledge of the optics and beam sizes and we expedhitahould already allow a determination of
the luminosity from machine parameters to abdoit 30 percent. A much better accuracy can be obtained
when the size of the overlap region at the interaction pagietermined by measuring the relative luminosity
as a function of lateral beam separation, as illustratedgrig. This technique was pioneered at the ISR [199]
and allowed to reduce the uncertainty to below 1%, [200,201]

For the more complicated LHC and early operation, a 10% divereertainty in the absolute LHC
machine luminosity calibration should be a realistic goBlhe actual precision will depend on the running
time and effort which is invested. A relatively small numlzérscans under favorable beam conditions will
in principle be sufficient to obtain and verify the reprodilify in the absolute luminosity calibration. While
fast scans may always be useful to optimize collisions, veeirag that any dedicated, detailed luminosity
scans will become obsolete when the other, cross secti@udbasinosity determinations described in these
proceedings allow for smaller uncertainties.



Optimal running conditions are moderate bunch intensitage bunch spacings, no crossing angle and
= 2m or larger. These conditions are in fact what is proposed amyfar the initial LHC operation with
43 — 156 bunches per beam. Statistics are not expected toroblam. For early operation at top energy (10
- 14 TeV) with 43 bunches antl 10 particles per bunch, before beams are squeezed. atallim, we
already expect luminosities of the orderiaf® an 2 s ' resulting in event rates afo* H z, for a cross section

of 0.01 barn as typical for the low angle luminosity monitors

From the LHC injectors, we expect bunch by bunch variatiohabmut 10% in intensity and 20% in
emittance. For the large spacing between bunches in thatigemwith up to 156 bunches, there is no need
for crossing angles at the interaction points. Parasitanbé&eam effects will be negligible. All bunches in
each beam will follow the same equilibrium orbit and collatethe same central position.

Calibration runs require good running conditions and intipatar good beam lifetimes. Bunch by bunch
differences are not expected to change significantly dusisgan. Storing bunch intensities at the beginning
and end of a scan and using one set of timed averaged bundisitige for a scan should be sufficient. To
avoid any bias, it will be important to use the correct pagrof bunch intensities and relative luminosities
in the calculation of absolute bunch luminosities accaydm Eq[58, before any summing or averaging over
different bunches.

We are currently preparing an on-line application for auttimluminosity scar®. Scan parameters
like range, step size and duration can be set before theatdre scan. Once the parameters are defined, it
is possible to launch automatic horizontal and verticabsajion scans in the LHC interactions regions. For
a detailed scan, we may choose a range from -4 to +#4 nominal beam size in steps of 0.5 resulting in
17 equidistant points. If we wait 1 s between points to allomthe magnets to change and for 2 s integration
time, the scan time would still be below a minute per planetalsare currently being worked out in close
collaboration with the experiments. Exchanging all datadiiby-bunch at a 1 Hz rate between the machine
control room (CCC) and the experiments would be rather deiingrand risks to saturate current capacities.

For the initial running, it will be sufficient to exchange aage values at about 1 Hz rate. It allows
guality monitoring and the determination of the peak poaitiFor the detailed off line analysis, we only have
to rely on local logging and timing information synchrortzto at least 1 s precision at the beginning of the
scan. With fixed time interval defined and saved before tha,dtés allows for off-line synchronization of
the detailed data and a complete bunch by bunch analysis.

5.3.2 Direct measurements of the absolute luminosity atlhHC

LHCb plans to measure the absolute luminosity using bothvire Der Meer scan, [199], and beam-gas
techniques following a more recently proposed method [202¢re one tries to determine the transverse
beam profiles at colliding beam experiments utilizing thegsion vertex detectors found at modern HEP
experiments to reconstruct beam gas interactions nearegi@$ crossing point. The vertex resolution in the
transverse direction at LHCb can be parameterized by ta¢ioal

100 m
_ (62)

N tracks

Xy

whereN ...« IS the number of tracks originating from the vertex. Sinoelominal transverse bunch size at
LHCb will be 100 m , the reconstruction of beam-gas vertices’s, which willdavtrack multiplicity of 10,

will enable the measurement of the colliding bunch profiled the beam overlap integral. This method is
currently under investigation by the LHCb collaboratiordamexpected to result in a luminosity measurement
with an associated uncertainty of 3-5%.

5.3.3 Absolute pp luminosity from specialized detectogsfesm the total cross section measurement

ATLAS and CMS are planning to perform absolute and relatpduminosity measurements using dedicated
luminosity instruments.

52Done by Simon White, as part of his PhD thesis work on the LHEhima luminosity determination



Three particular luminosity instruments will operate arduhe ATLAS interaction point.
The absolute luminosity measurement will be provided by Al[E91] placed 240m down the beam line and
due to operate in 2010. This measurement requires somekpptcs low luminosity running of the LHC and
should be able to measure the very low angle Coulomb saajtesgaction. The expected precision is of the
order 3%, depending on yet unknown LHC parameters duringingn The ALFA detector can also measure
the absolute luminosity using the optical theorem if the G region can not be reached. Extrapolating the
elastic cross section to very low momentum transfer 0 and using the total cross section as measured by
TOTEM [192] (located at the CMS interaction point) curreimiglations indicate that a precision of about 3%
might also be reached with this method. In addition to alisdiuminosity measurements from ALFA, LUCID
and a Zero-Degree-Calorimeter (ZDC) [191] are sensitivehéorelative single bunch crossings luminosity.
LUCID and zDC will however not give absolute measurements.

A similar approach is currently foreseen by the CMS collaion [203].

5.3.4 Real time relative luminosity measurements

A large number of instantaneous relative luminosity measients have been discussed during the past years
by ATLAS, CMS and LHCb and more details can be found in theghmesentations given during the “stan-
dard candle” session of this workshop [204]. As an exampleuwine in the following some ideas discussed
within CMS.

Multiple techniques capable of providing suitable lumitp@formation in real time have been identi-
fied in CMS. One technique employs signals from the forwaudtdwa calorimeter (HF) while another, called
the Pixel Luminosity Telescope (PLT), uses a set of purfmsk-particle tracking telescopes based on single-
crystal diamond pixel detectors. At this writing, the PLTsh#ot been formally approved, but is under study.
The methods based on signals from the HF described are tlsebeireg most vigorously pursued.

Two methods for extracting a real-time relative instantarssluminosity with the HF have been studied.
The first method is based on “zero counting,” in which the agerfraction of empty towers is used to infer
the mean number of interactions per bunch crossing. Thendeoethod called “EtSum method” exploits the
linear relationship between the average transverse epeigipwer and the luminosity.

Outputs of the QIE chips used to digitize the signals fromkfePMTs on a bunch-by-bunch basis
are routed to a set of 36 HCAL Trigger and Readout (HTR) bgagdsh of which services 24 HF physical
channels. In order to derive a luminosity signal from the H&R additional mezzanine board called the HF
luminosity transmitter (HLX) is mounted on each of the HTRalis. The HLX collects channel occupancy
andE ; sum data to create eight histograms: two sets of three oncygastograms, ong - -sum histogram,
and one additional occupancy histogram. These histogramgrise about 70 KB of data, which is transmit-
ted at a rate of approximately 1.6 Mbps to a dedicated lunitynesrver via an Ethernet switch that aggregates
the data from multiple HLX boards for further processing.

Although all HF channels can be read by the HLX, MC studiedcimtg that the best linearity is
obtained using only the inner four rings. The algorithm has been optimized to minimize sensitito
pedestal drifts, gain changes and other related effectth ‘B@ro Counting” and the “EtSum” method have
demonstrated linearity up to LHC design luminosity. A stfidal error of aboutts will be achieved at
fewtimes 10'am ?s ! Hence the dominant error on the absolute luminosity willleom the normal-
ization of the online relative luminosity.

5.3.5 Proton-proton luminosity from the reactiop ! pp

The QED processp ! pp © ,wherea *  pairis produced via photon-photon scattering, was first pro
posed for luminosity measurements at hadron colliders86]1At the LHC such pairs will be predominantly
produced with small transverse momenta, at small polaresreghd in the same forward or backward cone.

All three experiments are considering to use the well catedcp ! pp  process for measuring ab-
solute luminosity. The theoretical understanding of thiEldphoton-photon scattering reactions is considered
to be accurate to better than 1%. Consequently this finad sahus often considered to be the perfect the-
oretical luminosity process. However, the experimenteahidication of this process requires to select muon



pairs with low mass and within a well understood acceptafi¢e measurement of this reaction at a hadron
collider appears to be much more difficult than the corredpanmeasurements of the reactien ! ee
at LEP. The systematic measurement error for example in d3aéter several years of data taking was about
3% [205]
Current simulations by the three LHC experiments indichtg the final state can be identified using
straight forward criteria. For ATLAS and CMS one finds thabab1000 accepted events could at best be
expected for an integrated luminosity of 1 fiy resulting in a statistical error of about 3%.

For example the ATLAS study selects oppositely charged dadlack muon tracks with; > 6 G &/
andj j< 22 with an invariant mass less than 6057 and a common vertex with no other tracks originating
from it (isolation), yields a cross section of 1.33 pb. Thalsput 1300 events can be expected for running
periods with a luminosity of 1 fd and yielding a potential statistical error of 3%. Howeveckgrounds
not only from pile up events will be a critical issue. Sometprotagging with high luminosity roman pots is
currently investigated but this will certainly reduce tleepted cross section and introduce additional accep-
tance errors. Similar conclusions have been reached byations performed within the CMS collaboration.
Consequently, both experiments expect that, during tharampgears, this reaction will be mainly used as a
cross check of the other methods.

The cross section for this process where both muons lieértsid LHCb acceptance and have a com-
bined invariant mass greater than 2.5GeV is38 pb. The expected uncertainty is perhaps 1% or smaller and
comes mainly from rescattering corrections [187], i.eomsty interactions between the interacting protons.

The feasibility of using the elastic two photon procegs! p+ *  + pto make luminosity mea-
surements at LHCb was first explored in [206] and has recdygtin investigated in more detail by members
of the LHCb collaboration [207]. A variety of background pesses have been studied: dimuons produced via
inelastic two-photon fusion and double pomeron excharme;rhass Drell-Yan pairs; QCD processes such
astb ! + X ; and the combinatoric backgrounds caused by Kiis-identification. A simple offline
selection has been developed that requires: the dimuorirpagverse momentum to be less than 50MeV/c;
the dimuon invariant mass to be in the rarmgec ev=c> < M < 20G eV=c?; and a charged particle mul-
tiplicity of less than 3 (i.e. the event should contain‘a  pair and no other charged particles). These
criteria select 27% of the signal events that pass the trigger and are recomtetrand result in a background
contamination that ig4:1 0:5(stat:) 1:0(syst:))s of the signal level with the dominant contribution
due K/ mis-identification. Overall it is expected that 1¢ pp ! p+ * + pevents will be triggered,
reconstructed and selected at LHCb during one nominal yfedata taking ¢£b ' ). Systematic uncertainties
on a luminosity measurement at LHCb using this channel dnm&®d to be 1:31% and are dominated by
the uncertainty on the predicted cross section for eventsagung dimuons produced via double pomeron
exchange, an uncertainty that is expected to be reducecinghr future. A measurement of the absolute
luminosity at LHCb using this channel and a datasetf * will therefore be possible with an associated
uncertainty of 1:5%.

In summary, the accurate measurement of this theoretioedly understood reaction looks like an
interesting challenge for the LHC experiments. Intergstasults can be expected once integrated luminosities
of 5 fb ' and more can be accumulated for ATLAS and CMS and about 41 for LHCb. Of course, it
remains to be proven, if the systematic uncertainties ureldrdata taking conditions can indeed be reduced
to the interesting 1% level.

5.4 Indirect and relative pp luminosity measurements
The methods to measure the absolute proton proton lumynasi their limitations have been described in
the previous chapter.

In this Section we will describe the possibilities to measiiwe luminosity indirectly using well defined

processes, so called “Standard Candles” and their usetteefuzonstrain the PDFs and discuss the possibility
to “measure” directly the parton-parton luminosities.

Before describing the details of these indirect approachesialitative comparison of luminosity mea-
surements at* e colliders and hadron colliders might be useful. The mostartamt difference appears



to be that in thes* e case one studies point like parton parton interactions. olrirast, at hadron hadron
interactions one studies the collision of protons and ottaerons made of quarks and gluons. As a result,
in one case the Bhabha elastic scattering reaction ! e"e atlowQ? reaction can be calculated to
high accuracy and the observed rate can be used as a luminosihalization tool. In contrast, the elastic
proton proton scattering cross section can not be calaukttéhe LHC nor at any other hadron colliders. As a
conseguence, absolute normalization procedures depeagisabn the measurement accuracy of the pp total
cross section. Even though it is in principle possible tedatne the pp total cross section in a luminosity
independent way using special forward detectors like g@drny the TOTEM or the ALFA experiments, the
accuracy will be limited ultimately and after a few years ¢i1C operation to perhaps a few %.

Furthermore, as essentially all interesting high LHC reactions are parton parton collisions, the ma-
jority of experimental results and their interpretatiomuee the knowledge of parton distribution functions
and thus the parton luminosities.

Following this reasoning, more than 10 years ago, the in@ugroduction of W and Z bosons with
subsequent leptonic decays has been proposed as the alpneaision parton parton luminosity monitor at
the LHC [190]. The following points summarize the argumemksy W and Z production are indeed the ideal
“Standard Candles” at the LHC.

The electroweak couplings of W and Z bosons to quarks andrneptre known from the LEP mea-
surements to accuracies smaller than 1% and the large @ossrsof leptonic decays W and Z bosons
allows that these final states can be identified over a langeitg range with large essentially back-
ground free samples.

Systematic, efficiency corrected counting accuraciesiwithe detector acceptance of 1% or better
might be envisioned during the early LHC running. In factibelieved that the relative production rate
of W and Z can be measured within the detector acceptanceaadtlracies well below 1%.

Theoretical calculations for the W and Z resonance prodaocéire the most advanced and accurately
known LHC processes. Other potentially more interestingCLigactions, like various diboson pair
production final states are expected to have always lardberestatistical or systematic, experimental
and theoretical uncertainties than the W and Z production.

The current PDF accuracies, using the latest results frolRAIBNd other experiments demonstrate
that the knowledge of the quark and anti quark accuracieslegady allowing to predict the W and
Z cross at 14 TeV center of mass energies to perhaps 5% or.bé&tte measurable rapidity ans
distributions of the Z boson and the corresponding onesieicharged leptons from W decays can be
used to improve the corresponding parton luminosity fuomi

Obviously, the use of W and Z bosons as a luminosity tool reguihat the absolute cross section
becomes an input, thus it can not be measured anymore. Aslattés method has been criticized as being
“a quick hack at best”. In contrast, advocates of this methmdt out that this would not be a noticeable loss
for the LHC physics program.

5.4.1 Usingthereactiopp! z ! “‘ tomeasure.

Very similar and straight forward selection criteria foretlidentification of leptonicz decays, depending
somewhat on the detector details and the acceptance regeapplied by ATLAS, CMS and LHCb. In the
following the current selection strategy in ATLAS and LHQOle @escribed.

5.4.2 Measuring Z and W production, experimental approa¢hTLAS

The ATLAS W and Z cross section measurements are based ooltbwihg selections in the electron and
muon channels:

A typical selection ofi ! e requires that events with “good” electrons have to fulfik #additional
kinematic acceptance criteria:
pr> 25G&/,j j< 1370r152< j j< 24.



The criteria forw ! muons are similar wherg: > 25 Gev andj j< 25. is required. Further-
more, in order to classify the event asiaevent, the reconstructed missing transverse momentum and
the transverse mass should fulfill m iss) > 256 eV andm ¢ (W ) > 40 G &/.

The selection oz ! ecandz ! requires that a pair of oppositely charged electrons or rauon
is found. Due to lower background the electrons should have 15 Ge&7 andj j< 2:4 and their
invariant mass should be between 80-100 GeV.

Similar criteria are applied for the muons with > 15 G &/ andj j< 2:5. The reconstructed mass
should be between 71-111 GeV.

Following this selection and some standard Monte Carlo kitins, the expected number of recon-
structed events per 10 pb at P s = 14 TeV are about 45000, 5500 for W and Z decays to electrons and
60000, and 5000 for the decays to muons, respectively. Eves, with a small data sample of only 10 pb
the statistical uncertainty for the counting comes close to 1% in each channel.

Systematic uncertainties from the experimental sele@m@ndominated by the Z efficiency determina-
tion and from backgrounds in the W selection. Other souréescertainties originate from the knowledge
of energy scale and the resolution. The lepton efficiendiese®aluated by considering ! ‘ events and
using the so called “tag and probe” method, like for examplecdbed by the DO experiment [188, 189]. The
efficiency uncertainty associated with the precision of thiethod has been estimated for a data sample of 50
pb! (1fb ') of data to be 2% (0.4%) for W and 3% (0.7%) for Z events. The&kgemnds for W events are
of the order 4% in the electron channel and 7% in the muon akarie main contributions are from other
W or Z decays, and are thus well understood, leading to backgl uncertainties of the order 4% for both
channels if a sample 50 pbis analyzed. For much larger samples it is expected thatrtaictes at or below
1% can be achieved. The backgrounds for the Z decays arewety; and can be determined accurately from
mass spectrum, and hence does not carry any sizable untgrainas been demonstrated, that the detector
scales and resolutions can be determined very accurat@b},[And the associated uncertainties are therefore
also close to negligible.

Some detailed studies demonstrate that eventually theragsic error between 1-2% or even smaller might
be achieved for the W and Z counting and within the detectoejiance up to rapidities of about 2.5.

In order to use this number for the pp luminosity determimrathe total inclusive W and Z cross-section
at NNLO can be used. These have been calculated to be 205100 @O &5pb, respectively [208]. Variations in
models, floating parameters, and other theoretical urinéga lead to significant variations in the estimates.
The uncertainties on these calculation are estimated to%b@i5smaller. This uncertainty appears to be
currently dominated by the PDF uncertainties needed t@patate to the experimentally uncovered large
rapidity region. More discussions about these uncerggntan be found for example at [209] and [210].

It can be assumed that the detailed studies of the rapidityitalitions within the acceptance region with
W and Z decays might eventually lead to further error reaunsti

5.4.3 Measuring Z production, experimental approach in ItHC

The uncertainty on the predicted Z production cross sediothe LHC comes from two sources: the un-

certainty on the NNLO partonic cross section prediction82@vhich contributes an uncertainty ef 1%,

and uncertainties in our understanding of the proton Pdbistribution Functions (PDFs) which, for the lat-

est MSTW fit [39], contribute an uncertainty of 3% for Z bosons produced with rapidities in the range
5< y< 5.

A measurement of the Z production rate at LHCb via the chamnel * |, which provides a final
state that is both clean and fully reconstructible, can eeaed with high efficiency and little background
contamination. In addition, since the dimuon trigger streat LHCb [211] requires two muons with an
invariant mass larger than 2.5GeV and a summed transversgentam ¢} + P ?) greater than 1.4GeV, a
high trigger efficiency of 95% is expected for these events. A variety of background seuehis channel
have been investigated: other electroweak processes sucha *  where both taus decay to muons and
neutrinos; QCD processes sucltad *  + X ; and events where two hadrons with an invariant mass near
the Z mass are both mis-identified as muons. To deal with thaskgrounds an off-line selection has been
developed [212] that requires: the dimuon invariant madsetavithin 20 GeV of the Z mass; the higher and



lower transverse momentum muons to be greater than 20 GeVs=@e@V respectively; the impact parameter
of both muons is consistent with the primary vertex; and buotions have associated hadronic energy that
is less than 50 GeV. Far ! ° events that are triggered and reconstructed at LHCDb, thiisme
selection criteria will selece1 1% of the signal events while reducing the background® 2:9)% of
the signal level with the dominant contribution due to thenbmatoric backgrounds from pion and kaon mis-
identification. It is expected that these backgrounds cawddeunderstood from real data or removed using
muon isolation criteria. Overall it is expected that! events will be triggered, reconstructed and
selected at LHCDb at a rate of 190evts=pb! . Systematic uncertainties have also been investigatedt &nd
expected that with as little &b ' of data the experimental efficiency (trigger, tracking, muentification
etc.) can be measured with an uncertainty ofL :5% enabling a luminosity measurement with an uncertainty
of 35%.

5.4.4 PDF and relative parton-parton luminosity measuratae

Theoretically well understood reactions at the LHC offex ffossibility to use their rapidity distributions to
improve todays knowledge of PDFs. Especially the resonanoguction of W and Z bosons with leptonic
decays with low and high transverse momentum and the prioducf isolated highp. -Jet events have
been demonstrated to be very sensitive to the relative paistribution functions. Simulations from ATLAS
and CMS have shown that experimental errors on these rapiliions up tojyjof about 2.5 can proba-
bly performed with accuracies eventually reaching perhieysor better. The possibility to cross-check the
measurements with W and Z decays to (a) electron(s) and (bh(auand between both experiments will of
course help to reach the accuracy.

During the past years simulation studies from the LHCb talfation have shown that the experiment
has a unique potential to extend the acceptance region fldoAS and CMS for muons up to rapidity values
at least up to 4.5. Furthermore, the existing overlap refpory between 1.9 and 2.5 should allow to reduce
normalisation uncertainties. Obviously, these rapiddjues are understood as being reasonably accurate but
gualitative values and more precise values will be define oeal data will allow to define a well understood
fiducial volume of the detectors.

In addition, the LHCb collaboration has investigated thesitality to identify clean samples of very low
mass Drell-Yan mu-pair events. The results indicate thelh pairs can be measured within their acceptance
region down to masses of 5 GeV. Such a measurement wouldicijple allow to measure PDFs farvalues
approaching extremely low values of ¢ for the first time [213].

It should be clear that such measurements, which are knowe teery sensitive to quark, antiquark
and gluon relative parton luminosities will not allow an alge PDF normalisation. Such an improvement of
absolute PDF normalisation would require the accurate kewye of the proton-proton luminosity to better
than todays perhaps 3% PDF accuracy obtained from the HERA measurements ovege Jarange and
obviously lowerg 2. The alternative approach to combine the relative partonirosities over the larger;0 ?
range using the sum rules has, to our knowledge, so far not$tedied in sufficient detail.

A more detailed analysis of the different experimental apphes to improve the PDFs are interesting
but are beyond the scope of this note about the luminosityweiigeless we hope that the experimentalists
of the three collaboration will start to combine their etfoand will pursue the PDF measurements, in direct
collaboration with theorists, during the coming years.

5.5 Comparing the different pp luminosity measurements

A relatively large number of pp luminosity measurementshiieen proposed and the most relevant have been
discussed in this note. Here we try to give a critical ovewid the different methods and their potential
problems. Despite these advantages and disadvantageultghm clear that it is important to perform as
many as possible independent luminosity methods duringdheng years.

The machine luminosity determination using beam parametes:
This method will be pursued independently of the experimemtd its main purpose will be to opti-
mize the performance of the LHC and thus providing a maximwmlmer of physics collisions for the



experiments. The potential to use this number as an almsistntaneous absolute luminosity number
with uncertainties of perhaps 10% (and eventually 5%), assuming that non gaussian tails of the
beam can be controlled to this accuracy will certainly befulge the experiments. Of course the ex-
periments would lose somewhat their “independence” atichsgd to combine this number with their
actual active running time.

However, one should remember that the Tevatron experindidtaot use this method for their mea-
surements.

The method to determine the beam size using the LHCb preci&dex detector look very promising
and it is hoped that their approach might result in a pp lusilgomeasurement with an associated
uncertainty of 3-5%.

Total cross section and absolute luminosity normalisationwith specialized far forward Detectors:
The luminosity independent total pp cross section measemein planned by the TOTEM collaboration
and by the ALFA detector. Using these numbers both ATLAS aktB@Ilan to obtain the pp luminosity
from the counting of the pp elastic scattering counting neralirom the forward detectors which thus
depend on the knowledge of the total cross section measntetmeorder to obtain this number some
few weeks of special optics and low luminosity LHC running aequired. As all LHC experiments
are very keen to obtain as quickly as possible some reasohafinosity at 14 TeV center of mass
energy it is not likely that those special LHC data takingl Wwappen during the first year(s) of data
taking. Furthermore, despite the hope that the total crestsos can be determined in principle with an
interesting accuracy of 1%, it remains to be demonstrated with real LHC running. s thspect it
is worth remembering that the two independent measurenoéith® total cross section at the Tevatron
differed by 12% while much smaller errors were obtained leyitidividual experiments. As a result the
average value with an error of 6% was used for the luminosity normalisation.

Luminosity determination usingz ! ““

This method provides an accurate large statistic relatim@nosity number. It will be as accurate as the
theoretical cross section calculation, which is based eratisolute knowledge of the PDFs from other
experiments, from unknown higher order corrections anit theomplete Monte Carlo implementation.
Todays uncertainties are estimated to be about 5%. It has dsénated, assuming the experiments
perform as expected, that the potential Z counting accuveitlyin the acceptance region including
efficiency corrections might quickly reach 1%. The extrapolation to the uncovered rapidity space,
mainly due to the worse knowledge of the PDFs in this regiotrgases the error to perhaps 3%. Taking
other theoretical uncertainties into account an error &% is currently estimated. Of course, advocates
of the Z normalisation method like to point out that the realvpr of this method starts once relative
measurements, covering similar partons and similar rangése parton distribution functions will be
performed with statistical errors below 5%. Examples whaieh a normalization procedure looks
especially interesting are the relative cross section oreasents ofv (7 )= W ), N W “)=N W ),
high mass Drell-Yan events with respect to Z events and dibdisal states decaying to leptons. Of
course, correlations and anticorrelations between quadk gluon dominated production rates exist
and need to be carefully investigated before similar achged for the gluon PDFs can eventually be
exploited. The loss of an independent Z cross section meamnt would of course be a fact of life.

pp luminosity from the reaction pp ! pp
A measurement of this reaction offers in principle a direct! dheoretically accurate proton proton
luminosity value. Unfortunately current simulations frahe experiments indicate that the accepted
cross section is relatively small and only a few 1000 eveats lie expected per fb. The different
simulation results indicate that the backgrounds can bpregped sufficiently without increasing the
experimental systematics too much. The current simulagsalts indicate that small systematic errors
of perhaps 1-2% might eventually be achievablence a yearly luminosity of 5-10 fb in ATLAS and
CMS (2 fb* for LHCb) might be recorded. It remains to be seen if muon$ wiinsverse momenta
well below 20 GeV can indeed be measured as accurately assmitintransverse momenta above 25
GeV.

31t might be interesting to study the experience from simiteasurements at the experimentally ideal conditions of, WiRere
uncertainties above 3% have been reported [205].



5.5.1 Which luminosity accuracy might be achievable andwhe

Of course the potential time dependent accuracy of therdifteluminosity methods can only be guessed
today as such numbers depend obviously on the LHC machiferpemce during the coming years. For the
purpose of this Section we are mainly interested in measem&rat the 14 TeV center of mass energy and
assume that the following “data samples” would define su@aty’. Of course, it could be hoped that the
luminosity and energy increase would go much faster regylti “some” shorter LHC years. Thus we assume
that the first 14 TeV year, currently expected to be 2010, edlrespond to 0.1 fi3 , followed by a 1 fb*
year. During the third and fourth year ATLAS and CMS expectatiect about 5 fb* and 10 fb! while
LHCb expects to collect roughly 2 fb per year. We assume further that the special optics low lasiiy
data taking periods requiring perhaps a few weeks for TOTHid similar for ALFA will take only place
during the year when more than 1 foper year or more can be expected.

As a result, for the first two 14 TeV running years, realistiminosity numbers could come from (1)
the machine group and (2) from the indirect method usingrhkisive production of Z events with leptonic
decays.

As has been pointed out in Section 513.1 the method (1) wovithput any additional efforts by the
machine group, allow a first estimate with a20-30% luminosity accuracy. We assume however that, due to
the delay of the real 14 TeV start to 2010, enough resourcekl d® found that people within the machine
group could carefully prepare for the necessary beam pdeanmmeeasurements and that the experiments will
do the corresponding efforts to correct such a machine lasityy number for real detector data taking one
could hope for a 10% measurement for 2010 and a 5% accura@pidr.

In contrast, method (2) would by definition be an integratad pf any imaginable experimental LHC
data taking period. In fact, if enough attention is put ifte & counting method, the data expected during
2010 running might already reach statistical errors 02% per 5 pld periods. Thus perhaps about 10-20
such periods could be defined during the entire year andragsie errors for the lepton efficiency correction
within the detector acceptance could reach similar2-3% accuracies. During the following years these
errors might decrease further to 1% or better. Once the faémy “stable” simple high rate final states and
even trigger rates relative to tte counting rate has been determined, such relative evers caire be used
subsequently to track the “run” luminosity and even the tisaé luminosity with similar accuracy.

Theoretical limitations of the cross section knowledgd,expected to improve without LHC data tak-
ing, would limit the accuracy to about 5%. The expected detailed analysis of the 2010 rapidityidigtons
of W, Z and -jet events will allow some improvements for the years 20id beyond. We can thus expect
that appropriate ratio measurements like the cross seditim measurements af=w  andw =w * will
already reach systematic accuracies ofl-2% during 2010 and 1% or better in the following years. Mea-
surement of b physics, either in LHCb or in ATLAS and CMS mighéany case prefer to perform luminosity
independent measurements and relate any of the “new” neasuais to some relatively well known and
measurable B-hadron decays.

It is also worth pointing out that currently no other hight reaction has been envisioned, which might
be measurable to a systematic precision of better than 5dif¥@ luminosity of up to 1fl3 . In addition,
most of the interesting high ? electroweak final states will unfortunately even be limifedthe first few
LHC years to statistical accuracies to 5% or more.

The prospect for the other luminosity measurements stdretmme at earliest interesting only once a
few 100 pb® can be recorded. Consequently one can expect to obtainististdtinteresting accuracy from
the reactionpp ! pp  after 2010. Similar, it looks unlikely that low luminosityscial optics run will
be performed before 2011. Consequently one might hope ¢waf4é accurate total cross section numbers
become available before the 2012 data taking period wilt.sta

5.6 Summary and Outlook

A large variety of potentially interesting pp luminosity asirements, proposed during the past 10-15 years,
are presented in this Section.

Realistically only the machine luminosity measurement dredcounting of the Z production might



reach interesting accuracies of 5% before 2011. For alltigalgourposes it looks that both methods should
be prepared in great detail before the data taking at 14 Té\gion energies will start in 2010.

We believe that a working group, consisting of interestedniners of the three pp collider experiments
and interested theorists, should be formed to prepare ttessary Monte Carlo tools to make the best possible
use of the soon expected W and Z data, not only for the pp Iusitinaormalization but even more for the
detailed investigations of the parton parton luminositiedmination and their use to predict other event rates
for diboson production processes and high mass Drell-Yantsv



6 OUTLOOK: THE PDF4LHC INITIATIVE 54

This document demonstrates the vast amount of progressabasken place in the last years on pinning down
the PDFs of the proton, as well as the dramatic increase imessas of the impact of PDFs on the physics
program of LHC experiments. The HERALHC workshop has acted gegular forum for working meetings
between the experiments, PDF phenomenologists and ttedrighe course of this workshop, it was realized
that the momentum on the PDF studies should be kept and peevap focused more on the LHC, in order
to continue the discussions, investigations and furthekwawvards improving our knowledge on the PDFs.

Clearly, LHC will need the best PDFs, especially for pramismeasurements, setting of limits in
searches, and even for discoveries. ldeally the ATLAS andSGkhd LHCb and ALICE) analyses should
follow a common procedure for using PDFs and their uncetitgsnin their key analyses. Such a common
procedure, across the experiments, is being used in otinéexts, such as significance estimates in searches.
Also, changing frequently the PDFs in the software of thesgeixpents, e.g. for cross—checks or the determina-
tion of error bands, is often non-trivial (e.g. due to theemtonnection with parameter choices for underlying
event modeling, showering parameters and so on) and soegeiinpractical if CPU intensive detector simu-
lations are involved. LHC studies therefore will need batlod) central values for the PDFs to start with, and
a good estimate of the associated uncertainties.

This has triggered the so called PDF4LHC initiative. PDF4@Lbffers a discussion forum for PDF
studies and information exchange between all stake-I®litethe field: the PDF global fitter groups, such
as CTEQ and MSTW, the current experiments, such as the HERIATamatron ones; QCD theorists and
the LHC experimental community. The PDF4LHC initiativerstd in 2008. More details and links to the
meetings so far can be found on the PDF4LHC web site [214].

The mission statement of PDF4LHC is:
Getting the best PDFs, including the PDF uncertaintiesedbas the present data.
Devise strategies to use future LHC data to improve the PDFs.

All this needs a close collaboration between theorists hode that are preparing to make the measurements.
In order to reach the first goal, the PDF4ALHC forum aims to gtate discussions and trigger further compar-
ison exercises across the PDF community, in order to sefexbpa limited number of possible strategies that
can be adapted to determine and use PDFs. For the secon®Béal_.HC should also be a forum for discus-
sions on how to include measurements from the LHC to coms®&iFs: what should be measured at LHC,
and correspondingly calculated in theory. Such measurtsmecludew andz production and asymmetries,
di-jet production, hard prompt photons, Drell-Yan prodoef bottom and top quark production, Z-shape fits
and Z+jets measurements. One expects that some of theseethaan already be studied with first data,
hence we need to prepare for that well in advance.

The following issues are part of the program for in depth ulsions via topical workshops, some of
which took place already in 2008 [214].

Data to be included in the PDFs. Would we get better resullis avselection of data to be used? New
data will become available such Bs (x ;0 ?), and combined data from H1/ZEUS. Can we extract more
from the data?

Determination of PDF uncertainties, including the statittreatment of the data.

Theoretical uncertainties and regions/processes whexe rifatter: higher—order corrections; heavy
flavour treatment; lowk (and highx) resummation; other PDFs like unintegrated PDFs (and GPDs)

PDFs for usage Monte Carlo generators.

One can expect that the LHC experiments most likely will begigor most of their studies the PDF
sets and errors that are delivered by either one of the CTERISFW family. Hence it is important that
the lessons learned from exercises on studies of the syStsnmmen PDFs will be adapted by these main
global PDF providers. PDF4LHC aims to advice the experisménthe use for PDFs for the LHC, based on
the discussions, results and future consensus at the farbeexperience and results from HERAPDFs, and
PDFs from other groups, like the Neural Net or Alekhin onesextremely valuable in this discussion and will
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serve as crucial input in studies to demonstrate how well egadly know the parton distributions. Several
important benchmark exercises have been already perfoameédre reported in section 3 of this report.

A special case are the PDFs for Monte Carlo generators. Fmerements it is important that gener-
ated events be kinematically distributed close to the ibigion of the real data, such that the simulated and
reconstructed Monte Carlo events can be used in a straiglaifd way to calculate efficiencies for e.g. experi-
mental cuts in an analysis. In case the initially generatsiiilbution does not resemble the data close enough,
the Monte Carlo samples need to be reweighted, with all issipte drawbacks. Since calculations based on
LO Matrix Elements and LO PDFs are known not to describe tha dell, and NLO Matrix Element based
generators to date have so far only a restricted number aegees implemented, studies are ongoing on so
called “improved LO” PDFs, which try to cure some of the LO P@xawbacks. Examples are given in [215].
This is yet another part of the discussions in the PDF4LHGrfor

In short, it is crucial that the work started here continuggh discussions and studies on PDFs and
their uncertainties, the impact of the upcoming data onrfuRDF determinations and more, all with special
focus on the needs for the LHC. The PDF4LHC initiative willewvfa framework to do all this.
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