CERN LIBRARIES, GENEVA

CM-P00073900

MEMORANDUM ON T 16 EXPERIMENT

(CERN, TC Division)

It is the purpose of this note to outline a further point of interest in the T 16 experiment, of 7 GeV/c π^- in the Ecole Polytechnique H.L.B.C. with internal hydrogen target (1).

The proposal centres round the study of the radiative decay of the ρ - meson. Apart from establishing the branching ratio (r) for the decay in $\pi\gamma$ and $\pi\pi$ channels respectively, there is the possibility of making an estimate of the width of the ω -meson. The ratio, R, (= $\frac{\Gamma(\omega \to \pi\gamma)}{\Gamma(\rho \to \pi\gamma)}$), of the widths of the ω and ρ mesons for radiative decay can be calculated reliably (2). Then $\Gamma(\omega_{\gamma})$ is determined from

$$\Gamma(\omega_{\gamma}) = \frac{\mathbf{r}}{R} \cdot \Gamma(\rho \longrightarrow \pi\pi)$$

Thus a measurement of the branching ratio of the $\rho \longrightarrow \pi \gamma$ and $\rho \longrightarrow \pi \pi$ channels together with the width of the ρ - meson in the pion channels,(where the measurement error is a small fraction of the real width), determines the width of the ω - meson.

Secondly, the measurement of the branching ratio of $\rho \longrightarrow \pi\gamma$ and $\rho \longrightarrow \pi\pi$ allows some clarification of the problems in low energy pion photoproduction. There exists a large discrepancy between the theoretical predictions and experimental results in the threshold region for the process, even when allowance is made for the large direct interaction between the γ ray and pion fields at these low energies. This discrepancy has been attributed to a vertex

playing an important part in the ordinary photoproduction process

$$\gamma + p \longrightarrow \pi^+ + n.$$

62-49 19 Nov. 1962

W.B. Fretter 2 April 1962

⁽¹⁾ CERN/TC/COM 63-28 18 April 1963

⁽²⁾ Kobyarev, I. Yu. Private Communication. PS/3996/jc

It is difficult to make a good estimate of the strength of this vertex from the photoproduction experiments themselves, but in an investigation on the branching ratio discussed above, the strength of the $(\gamma \rho \pi)$ vertex may be directly evaluated.

Feasibility

The feasibility of such an experiment depends largely on the value of the branching ratio under examination. The theoretical estimates range from a few percent to 0.5 o/o, depending on the model under consideration (3). The only experimental evidence is due to Pevsner et al (4) who examined the reaction

$$\pi^- + n \longrightarrow p + X^0$$

looking at the missing mass to define X° . An analysis of their results yields an upper limit of a few percent on the ratio.

The T 16 experiment (at 7 GeV/c only) should yield around 8.000 ρ -meson in the reaction

$$\pi^{-} + p + \rho^{-} + p$$

thus some 50 - 100 events of $\rho \longrightarrow \pi \gamma$ should be detected if the branching ratio (r) is of the order of 1 o/o.

The range and angle of the proton determines the missing mass, and should permit selection of events within the ρ peak. The ρ \longrightarrow $\pi\gamma$ decay kinematics are defined by the angle and energy of the π , and line of flight of the materialised γ ray.

We would scan for events with

$$\pi^- + p \longrightarrow \pi^- + p + one or two \gamma - rays.$$

In many cases, (the fraction depending on the missing mass resolution), the separation between the $\rho \longrightarrow \pi^-\pi^0$ and $\pi^-\gamma$ may be made unambigiously. For the rest, the background of $\rho \longrightarrow \pi^-\pi^0$ events where only one of the γ 's is detected, can be subtracted out using the distribution from events in which both γ - rays from the π^0 materialise.

The analysis of this investigation could be undertaken in parallel with the already planned experiments with this film.

⁽³⁾ G. Feinberg, P.R.L. <u>8</u>, 151, 1962

M. Gell-Mann and F. Zacharisen, P.R. <u>125</u>, 953, 1961

P. Singer, Phys. Rev. <u>130</u>, 2441, 1963

⁽⁴⁾ Pevsner et al. Rochester Conference Report, CERN 1962.