
  

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH 
CERN – AB DEPARTMENT 

 
 
 

CERN-AB-2008-045 
  
  
  

 

TRANSVERSE IMPEDANCE OF A RESISTIVE CYLINDER OF 
FINITE |LENGTH 

 
 

Robert L. Gluckstern  
Physics Department, University of Maryland 

and 
Bruno Zotter 

AB Department, CERN 
 
 
 
 
 
 
 

Abstract 
 

 In this report we calculate the transverse impedance of a charged particle beam, displaced 
from the axis of a circular cylindrical beam pipe which has finite resistivity only over a finite 
length. For this purpose we replace it with a cavity filled with the resistive material and connected 
to the region surrounding the beam by a gap of the same length. Matching of the electro-magnetic 
fields on both sides of the gap leads to an infinite set of linear equations for the field expansion 
coefficients with terms given by infinite sums over integrals which are evaluated by summing over 
their residues. By truncating these sums one can determine the transverse impedance and evaluate it 
numerically. Keeping only the lowest terms gives simple approximate expressions which are often 
sufficient to estimate the values and parameter dependence of the impedance. 
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1 Introduction

Nearly all of the numerous publications on the transverse resistive wall impedance in charged particle
accelerators[1, 2, 3, 4, 5, 6] analyze walls of infinite length, which is usually a good approximation for
the effect of structures whose length is large compared to the distance from the beam. Exceptions treat-
ing resistive walls of finite length are ref[7] which uses the simplified Leontovich boundary conditions
which are not always good approximations for all frequency regions, and ref[8] which uses the same
approximations and is limited to the longitudinal impedance. Here we derive exact expressions for the
transverse impedance of a resistive wall of finite length using field matching.

Walls of infinite length are usually a good approximation for the effect of structures whose length is
large compared to the distance from the beam to the vacuum chamber wall. In particular for the LHC
collimators, whose transverse impedance was recently a source of much concern for beam stability as
it can become quite large when the highly resistive graphite jaws approach the beam to a distance of
only millimeters, the effect of their finite length was hoped to reduce their impedance[9]. However, the
length of these collimators is half a meter or more; hence the ratio length to transverse distance is so
large that the use of the infinite length approximation for the estimate of their impedances[10, 11, 12]
appears well justified.

Nevertheless, this concern was the reason for starting the present analysis, the results of which have
now been found to be more important for the calculation of the impedance of a number of kickers which
were recently installed in the PS and SPS for CNGS ans LHC operation. They have larger openings and
thus their walls do not come very close to the beam, but their lengths are subdivided into short sections
for which the ratio of length to transverse distance becomes quite small and needs to be taken into
account in the calculation of their impedance which should be low enough to permit injection of rather
strong beam currents. A similar subdivision has recently also been proposed for the LHC collimators
and its effect therefore needs to be considered[13].

Here we calculate the transverse impedance for a model geometry consisting of an infinitesimally
thin, annular beam of radius a, surrounded by a perfectly conducting, axially aligned, semi-infinite,
circular-cylindrical beam pipe of radius b which is widened to a radius R over a length g thus forming
an annular cavity (see Fig1). Through the gap an annular cylinder of resistive material is exposed to
the beam. Its outer radius is R, its length g, conductivity σc, permittivity ε = ε0εr and permeability
μ = μ0μr. The whole structure is surrounded by a perfectly conducting cylinder with radius R and
annular end plates at z = 0 and z = g; thus the outer region forms an annular cavity.

This model for an element of finite length and finite conductivity permits the calculation of the
impedance contribution due to the finite wall resistivity. The geometric part of impedance, due to the
cross-section variation of the beam pipe can be calculated with standard analytical or numerical methods
and should be added to the contribution calculated here. The separation into two independent contribu-
tions not only simplifies the calculation but also permits evaluating the influence of each contribution
independently. It is a good approximation for elements consisting of materials with sufficiently high
conductivity such as metals, but may break down when it is too low.

 

z 

b 

R 

g 

Figure 1: Geometry of beam model.
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Our approach will be to use the frequency domain and solve the Helmholtz equations for the electric
and magnetic fields in two separate uniform regions, obtain the expansion coefficients by field matching
and finally obtain the transverse impedance as a function of frequency. Unlike the calculation of the
longitudinal impedance, which needs only TM field components, for the transverse impedance both TM
and TE field components are required in general1.

2 Source Fields

In the time domain, a ring of radius a, traveling in the axial z direction, is assumed to have a charge
distribution proportional to cos θ which excites the dipole fields of interest here, traveling with velocity
v = βc in the axial z direction, is described by

ρ̃(r, θ, z; t) =
P

πa2
cos θ δ(r − a) δ(z − vt). (2.1)

The dipole moment (in the x-direction) of this distribution is∫ ∫
rdrdθ (r cos θ) ρ̃(r, θ, z; t) = Pδ(z − vt). (2.2)

We now proceed to the frequency domain by using the integral representation of the delta function

δ(z − vt) =
∫ ∞

−∞
dω

2π
ejωt

[
e−jkz

v

]
(2.3)

where k = ω/v, and in the following drop the factor
∫

exp (jωt)dω/(2π).
We then can write the charge density in the frequency domain as

ρ(r, θ, z; k) =
P

πa2v
cos θ δ(r − a)e−jkz, (2.4)

and the axial current density as

Jz(r, θ, z; k) = ρv =
P

πa2
cos θ δ(r − a)e−jkz. (2.5)

The longitudinal electric field strength E (s)
z (r, θ, z; k) due to the source terms in Eqs. (2.4) and (2.5)

is given by the Helmholtz equation (i.e. the wave equation in the frequency domain)[
1

r

∂

∂ r

(
r∂

∂ r

)
+

1

r2

∂ 2

∂ θ2
− k2 +

ω2

c2

]
E(s)

z = jωμ0Jz +
1

ε0

∂ ρ

∂ z

= − jkP

πε0a2vγ2
cos θ δ(r − a)e−jkz , (2.6)

where
γ = [1 − v2/c2]−1/2. (2.7)

The same Helmholtz equation holds for the longitudinal magnetic field strength Hz, but with curlzJ
on the right hand side. However, since the source current in Eqs. (2.5) is purely longitudinal, the z-
component of its curl is zero, hence also the driving term for the magnetic source field and thus H (s)

z ≡ 0.
For dipole oscillations, the driving term for E (s)

z is proportional to cos θ and hence also E (s)
z can be

written

E(s)
z (r, θ, z; k) =

jkP

πε0avγ2
cos θ e−jkz

{
I1(s)K1(u) , r ≥ a
I1(u)K1(s) , r ≤ a

}
, (2.8)

1The superscript TM refers to “transverse magnetic modes” with Hz = 0, while TE refers to “transverse electric modes”
with Ez = 0. All TM and TE modes considered in this paper are dipole modes with azimuthal mode number one.
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where s = ka/γ, u = kr/γ and I1, K1 are modified Bessel functions of first order and both kinds.
From this point on, we shall only use the electro-magnetic fields outside the particle beam, i.e. for

r ≥ a, and thus
E(s)

z (r, θ, z; k) = j cos θ D K1(u)e−jkz . (2.9)

For the usual case s << 1 one may approximate I1(s) by s/2 = ka/2γ and the constant D then is given
by

D =
k2 P

2πε0vγ3
=

k2 P Z0

2πβγ3
. (2.10)

The transverse field components can be obtained from E(s)
z , using the Maxwell equations, e.g as

described in Appendix B of ref.[12] or in section 8.2 of ref.[14] . They can be written

E
(s)
θ = γD sin θ

[
K1(u)

u

]
e−jkz ,

Z0H
(s)
θ = −βγD cos θK ′

1(u)e−jkz ,

E(s)
r =

c

v
Z0H

(s)
θ = −γD cos θ K ′

1(u)e−jkz ,

Z0H
(s)
r = −v

c
E

(s)
θ = −βγD sin θ

[
K1(u)

u

]
e−jkz . (2.11)

All source fields are purely TM in character when the driving current is purely longitudinal. There
are no transverse currents in the model we have assumed and hence no TE source fields. However, TE
modes are excited by the presence of conducting walls and have to be included in the analysis.
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3 Fields for a ≤ r ≤ b: TM Part

In the infinitely long, hollow cylindrical region a ≤ r ≤ b between the beam and the wall, the complete
solution for the longitudinal electric dipole field strength consists of the source field to which one must
add solutions of the homogeneous Helmholtz equation. We will express them as a sum or integral over
product solutions for arbitrary values of the separation constant q which equals the axial propagation
constant. The axial dependence is given by the exponential function e−jqz, and the radial one by Bessel
functions of first order J1(κr), which we normalize by the value at the beam pipe radius J1(κb).

The radial propagation constant κ is related to the axial one by

κ2 = β2k2 − q2 . (3.1)

Since q can take any value, we integrate the product solutions over q from −∞ to +∞, after multiplica-
tion with a yet unknown weight function A(q) to get

Ez(r, θ, z; k) = j cos θ
{
D F (u) e−jkz

+
∫ ∞

−∞
dq e−jqzA(q)

J1(κr)

J1(κb)

}
. (3.2)

The weight function A(q) will be determined by the matching conditions at the gap. In writing this
equation we have changed the modified Bessel function K1(u) in the expression for the source field,
Eq.(2.9), to the function F (u) which is zero at the beam pipe radius. It is obtained by subtracting a term
which is well behaved for r → 0:

F (u) = K1(u) − K1(x)

I1(x)
I1(u) , (3.3)

where x = kb/γ. This choice makes F (x) = 0, and therefore the integral over A(q) alone generates the
gap field:

Ez(b, θ, z; k) = j cos θ
∫ ∞

−∞
dq e−jqzA(q) . (3.4)

In evaluating the integral in Eq.(3.2), we have to avoid the apparent singularities due to the zeros of
J1(u) which occur when κb = r�, i.e. when

qb = ±
(
β2k2b2 − r2

�

)1/2
(3.5)

where r� are the positive zeros of J1. We take the integration contour in the complex q-plane to go
above the poles on the positive real q-axis and below the poles on the negative real q-axis where their
contributions vanish.

For z > 0, we may then close the contour in the lower half plane at |q| = ∞ where the factor
exp(−jqz) goes to zero strongly, while for z < 0 we close it in the upper half plane where the factor
exp(jq|z|) goes to zero strongly, and thus do not contribute to the integral.

As before, the transverse field components can be found from the Maxwell equations

E
(TM)
θ =

sin θ

r

{
γ2

k
D F (u)e−jkz −

∫ ∞

−∞
qdq

κ2
e−jqzA(q)

J1(κr)

J1(κb)

}
, (3.6)

Z0H
(TM)
θ = cos θ

{
−βγD F ′(u)e−jkz + βkb

∫ ∞

−∞
dq e−jqzA(q)

J ′
1(κr)

κb J1(κb)

}
, (3.7)

E(TM)
r = cos θ

{
−γD F ′(u)e−jkz

∫ ∞

−∞
qdq

κ
e−jqzA(q)

J ′
1(κr)

J1(κb)

}
, (3.8)

Z0H
(TM)
r =

sin θ

r

{
βγ2

k
D
∫ ∞

−∞
dq

κ2
e−jqzC(q)

J ′
1(κr)

J ′
1(κb)

}
. (3.9)
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4 Fields for a ≤ r ≤ b: TE Part

In order to satisfy all boundary conditions, we need to include TE field components. As pointed out at
the end of Section 2, there are no TE source fields, and hence we generate the TE fields for r ≤ b from
the solutions of the homogeneous Helmholtz equation alone

Z0Hz(r, θ, z; k) = sin θ
∫ ∞

−∞
dq e−jqzC(q)

J1(κr)

J ′
1(κb)

, (4.1)

where the new weight function C(q) is yet to be determined and we changed the normalization to J ′
1(κb).

In evaluating the integral in Eq.(4.1) we avoid the singularities at the zeros of J ′
1(y), which occur

when κb = p�, when p� are the positive zeros of J ′
1(y), i.e. when

qb = ±
(
β2k2b2 − p2

�

)1/2
. (4.2)

As before, we take the integration contour in the complex q-plane to go above the poles on the
positive real q-axis and below the poles on the negative real q-axis. For z > 0, the contour will be closed
in the lower half q-plane where its contribution vanishes for |q| → ∞ as the factor exp(−jqz) goes to
zero strongly. For z < 0, the contour should be closed in the upper half q-plane where for q → ∞ the
function exp(jq|z|) tends to zero strongly.

The transverse TE field components can be found from the Maxwell equations as before and are
written

E
(TE)
θ = jβkb sin θ

∫ ∞

−∞
dq

κ
e−jqzC(q)

J ′
1(κr)

J ′
1(κb)

, (4.3)

Z0H
(TE)
θ = −j cos θ

r

∫ ∞

−∞
qdq

κ2
e−jqzC(q)

J1(κr)

J ′
1(κb)

, (4.4)

E(TE)
r = −jβk cos θ

r

∫ ∞

−∞
dq

1

κ2
e−jqzC(q)

J1(κr)

J ′
1(κb)

, (4.5)

Z0H
(TE)
r = −j sin θ

∫ ∞

−∞
qdq

κ
e−jqzC(q) (4.6)
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5 Fields for b ≤ r ≤ R: TM Part

The region b ≤ r ≤ R, 0 ≤ z ≤ g forms a cavity which we assume to be filled with resistive material
with complex permittivity ε′ = ε − jσ/ω and complex permeability μ′ = μ0(μr + j tan θM). Since
the region is of finite length, the axial propagation constant can only take discrete values qn, where
0 < n < ∞ is called axial mode number. The boundary conditions for the electric field at the perfectly
conducting annular end plates b ≤ r ≤ R at z = 0 and z = g require vanishing of the radial and
azimuthal components, or simpler of the axial derivative of the longitudinal component i.e. dEz/dz = 0
. This can be achieved by an axial dependence ∝ cos (qnz) i.e. the axial propagation constants are then
given by

qn =
nπ

g
. (5.1)

The radial dependence is expressed by a combination of Bessel functions of first order and of both kinds
with argument αnr, where the radial propagation constants αn are related to the axial ones by the root
in the 4-th quadrant of

α2
n = ω2μ′ε′ − q2

n . (5.2)

The longitudinal electric field strength is obtained by multiplying the product solution with coeffi-
cients An and summing over all axial mode numbers

Ez(r, θ, z; k) = j cos θ
∞∑

n=0

An cos (qnz)
S(αnr)

S(αnb)
, (5.3)

where the combinations of Bessel functions S(w) and S ′(w) are defined by

S(w) = Y1(w)J1(αnR) − J1(w)Y1(αnR) ,

S ′(w) = Y ′
1(w)J1(αnR) − J ′

1(w)Y1(αnR) . (5.4)

The functions S(w) and dS ′/dw vanish at w = αnR, hence the boundary conditions Ez = 0 as well
as Eθ = 0 for the tangential electric field components at the outer wall r = R are fulfilled automatically.

The transverse field components can again be found from the Maxwell equations and become

E
(TM)
θ (r, θ, z; k) =

j sin θ

r

∞∑
n=1

qn

α2
n

An sin (qnz)
S(αnr)

S(αnb)
, (5.5)

E(TM)
r (r, θ, z; k) = −j cos θ

∞∑
n=1

qn

αn
An sin (qnz)

S ′(αnr)

S(αnb)
, (5.6)

Z0H
(TM)
θ (r, θ, z; k) = βk cos θ

ε′

ε0

∞∑
n=0

qn

αn

An cos (qnz)
S ′(αnr)

S(αnb)
, (5.7)

and

Z0H
(TM)
r (r, θ, z; k) =

βk sin θ

r

ε′

ε0

∞∑
n=0

An

α2
n

cos(qnz)
S(αnr)

S(αnb)
(5.8)

which fulfill the boundary conditions for a perfectly conducting wall at r = R, i.e. all tangential electric
field components vanish there: Ez(R) = Eθ(R) = 0.
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6 Fields for b ≤ r ≤ R: TE Part

The expression for the longitudinal magnetic field Hz is similar to that for Ez, the longitudinal electric
one, but with cos(qnz) replaced by sin(qnz) so that the normal component of the magnetic fielHz = 0,
vanishes at both end plates z = 0 and z = g. Furthermore we replace the functions S(w) and S ′(w) by
T (w) and T ′(w) which has a vanishing derivative at r = R. Hence we write Hz as

Z0Hz(r, θ, z; k) = sin θ
∞∑

n=1

Cn sin(qnz)
αnb T (αnr)

T ′(αnb)
. (6.1)

The radial derivative of the tangential magnetic field component is zero at the outer wall and fulfills the
boundary condition for a perfect conducting outer wall.

The functions T (w) and T ′(w) are defined by

T (w) = Y1(w)J ′
1(αnR) − J1(w)Y ′

1(αnR) ,

T ′(w) = Y ′
1(w)J ′

1(αnR) − J ′
1(w)Y ′

1(αnR) . (6.2)

The function T (w) has a vanishing radial derivative at r = R, hence dHz/dr = 0 as required
at a perfectly conducting wall. The coefficients Cn will be determined by field matching. The other
transverse field components are again found from the Maxwell equations

E
(TE)
θ (r, θ, z; k) = j

μ

μ0
βkb sin θ

∞∑
n=1

Cn sin(qnz)
T ′(αnr)

T ′(αnb)
, (6.3)

E(TE)
r (r, θ, z; k) = −j

μ

μ0

βkb2 cos θ

r

∞∑
n=1

Cn sin(qnz)
T (αnr)

αnb T ′(αnb)
, (6.4)

Z0H
(TE)
θ (r, θ, z; k) =

b cos θ

r

∞∑
n=1

qn Cn cos(qnz)
T (αnr)

αnb T ′(αnb)
, (6.5)

Z0H
(TE)
r (r, θ, z; k) = b sin θ

∞∑
n=1

qnCn cos(qnz)
T ′(αnr)

T ′(αnb)
(6.6)

which fulfill all boundary conditions at r = R.
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7 Field Matching at the gap

7.1 Longitudinal electric field Ez:

From Eq. (3.2) and with F (x) = 0 we obtain the axial electric field just inside the tube radius

Ez(b−, θ, z; k) =

{
j cos θ

∫∞
−∞ dq e−jqzA(q) , 0 < z < g

0 , z < 0 and z > g

}
. (7.1)

The inverse Fourier transform of this expression leads to

2πj cos θ A(q) =
∫ g

0
dz ejqzEz(b−, θ, z; k). (7.2)

The axial electric field just outside the gap is found from Eq. (5.3)

Ez(b+, θ, z; k) = j cos θ
∞∑

n=0

An cos(qnz) . (7.3)

Since the axial electric field must be equal on both sides of the gap, substituting Eq. (7.3) into (7.2)
yields an expression for the weight function A(q)

A(q) = g
∞∑

n=0

AnGn(q) (7.4)

where

Gn(q) ≡ 1

2πg

∫ g

0
dz ejqz cos(qnz) =

qg

2πj

[
(−1)nejqg − 1

q2g2 − n2π2

]
. (7.5)

7.2 Azimuthal electric field Eθ:

Also the tangential electric field component Eθ must be continuous across the gap at r = b, 0 < z < g,
and should be zero at the perfectly conducting beam pipes at r = b, z < 0, and z > g.

From Eqs. (3.6) and (4.3) we get

Eθ(b−, θ, z; k) = −sin θ

b

∫ ∞

−∞
qdq

κ2
e−jqzA(q) +

jβkb sin θ
∫ ∞

−∞
dq

κ
e−jqzC(q) . (7.6)

while

Eθ(b+, θ, z; k) = j sin θ
∞∑

n=1

Dn sin(qnz) (7.7)

where we define the coefficients Dn as

Dn ≡ qn

α2
nb

An +
μβkb

μ0
Cn . (7.8)

Dropping the common factor j sin θ leads to

j

b

∫ ∞

−∞
qdq

κ2
e−jqzA(q) + βk

∫ ∞

−∞
dq

κ
e−jqzC(q) =⎧⎪⎨

⎪⎩
∞∑

n=1

Dn sin(qnz) , 0 < z < g

0 , z < 0, z > g

⎫⎪⎬
⎪⎭ . (7.9)
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Taking the inverse Fourier transform of this equation leads to

jqA(q)

bκ2
+

βkC(q)

κ
=

jπ

q

∞∑
n=0

DnGn(q) . (7.10)

Using Eqs. (7.5) and (7.10), we find

βk

κ
C(q) =

jπ

q

∞∑
n=1

Gn(q)

[
nDn − gq2

πbκ2
An

]
. (7.11)

7.3 Longitudinal magnetic field Hz:

We also require continuity of the longitudinal magnetic field component across the gap at r = b, 0 <
z < g. Using Eqs. (4.1) and (6.1) one finds

∫ ∞

−∞
dq e−jqzC(q)

J1(κb)

J ′
1(κb)

=
∞∑

n=1

Cn sin(qnz)
αnb T (αnb)

T ′(αnb)
. (7.12)

Integrating over z leads to

Cm
αmb T (αmb)

T ′(αmb)
= −4π2mj

∫ ∞

−∞
dq

1

qg

J1(κb)

J ′
1(κb)

G∗
m(q)C(q) . (7.13)

We now use the expression for C(q) in Eq. (7.11) to obtain

Cm
αmb T (αmb)

T ′(αmb)
=

4π3m

βkbg

∫ ∞

−∞
dq

1

q2

κb J1(κb)

J ′
1(κb)

G∗
m(q)Gn(q)

∞∑
n=1

[
nDn − gq2

πbκ2
An

]

=
4π

βkb

∞∑
n=1

DnQnm − 4m

βkg

∞∑
n=1

AnPnm , (7.14)

for m ≥ 1, and where

Pnm ≡ π2g
∫ ∞

−∞
dq

J1(κb)

κb J ′
1(κb)

G∗
m(q)Gn(q) (7.15)

and

Qnm ≡ π2nm

g

∫ ∞

−∞
,
dq

q2

κb J1(κb)

J ′
1(κb)

G∗
m(q)Gn(q) . (7.16)

It may appear that Pnm = P ∗
nm and Qnm = Q∗

nm but this is not correct, since the integration contours
in Eqs. (7.15) and (7.16) must extend into the complex plane to avoid the singularities of J ′

1(κb) at
κb = ±p�.

The terms in the integrands of Eqs. (7.15), (7.16), as well as in the later equations for Tnm and Rnm

are all even functions of q. As discussed following Eqs. (3.4) and (4.2), the contour in the q-plane should
go above the poles on the positive real q-axis and below the poles on the negative real q-axis. We can
therefore change the sign of q in the third term within the bracket in Eq. (7.14), so that it can be replaced
by

G∗
m(q)Gn(q) =

q2g2 [1 + (−1)m+n] [1 − (−1)nejqg]

4π2 (q2g2 − m2π2)(q2g2 − n2π2)
. (7.17)

The dimensionless matrices Qnm and Pnm are evaluated in Appendices A and B.
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7.4 Azimuthal magnetic field Hθ:

Finally we turn to the continuity of Hθ(r, θ, z; k) across the gap at r = b, 0 < z < g. Using Eqs. (3.7),
(4.4), (5.7) and (6.5) we get

−βγD F ′(x) e−jkz +

βkb
∫ ∞

−∞
dq e−jqzA(q)

J ′
1(κb)

κb J1(κb)
− j

b

∫ ∞

−∞
qdq

κ2
e−jqzC(q)

J1(κb)

J ′
1(κb)

=

βkb
ε′

ε0

S ′(αnb)

αnb S(αnb)
+

∞∑
n=1

qnb

g
Cn cos(qz)

T (αnr)

αnb T ′(αnb)
. (7.18)

We now multiply each side of this equation by cos mπz/g and integrate over the length of the gap. With
the integrals

1

g

∫ g

0
dz cos

(
mπz

g

)
e−jkz = −jkg

[
(−1)me−jkg − 1

m2π2 − k2g2

]
,

1

g

∫ g

0
dz cos

(
mπz

g

)
e−jqz = jqg

[
(−1)me−jqg − 1

q2g2 − m2π2

]
= 2πG∗

m(q) ,

1

g

∫ g

0
dz cos

(
mπz

g

)
cos(qnz) =

δmn(1 + δm0)

2
, (7.19)

this leads to

jβγkg D F ′(x)

[
(−1)me−jkg − 1

m2π2 − k2g2

]
+

+ 2πβkb
∫ ∞

−∞
dq A(q)

J ′
1(κb)

κb J1(κb)
G∗

m(q) − 2πj
∫ ∞

−∞
dq

q

κ
C(q)

J1(κb)

κb J ′
1(κb)

G∗
m(q) =

= βkb
ε′

ε0
Am

(
1 + δm0

2

)
S ′(αmb)

αmb S(αmb)
+

mπb

2g
Cm

T (αmb)

αmb T ′(αmb)
. (7.20)

Using the Wronskian relation

K ′
1(x) I1(x) − I ′

1(x) K1(x) = −1/x , (7.21)

we obtain from Eq. (3.3)

F ′(x) = K ′
1(x) − K1(x)

I1(x)
I ′
1(x) = − 1

x I1(x)
. (7.22)
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7.5 Combining the Matching Equations

We now use Eq. (7.4) for A(q), (7.11) for C(q), and (3.3) for F (u) to rewrite Eq. (7.20) as

−jβγkg D

x I1(x)

[
(−1)me−jkg − 1

m2π2 − k2g2

]

+ 2πβkbg
∞∑

n=0

An

∫ ∞

−∞
dq

J ′
1(κb)

κb J1(κb)
Gn(q)G

∗
m(q)

+
2π2

βk

∞∑
n=0

nDn

∫ ∞

−∞
dq

J1(κb)

κb J ′
1(κb)

Gn(q)G
∗
m(q)

− 2πg

βkb

∞∑
n=0

An

∫ ∞

−∞
dq

q2

κ2

J1(κb)

κb J ′
1(κb)

Gn(q)G
∗
m(q)

= βkb
ε′

ε0
Am

(
1 + δm0

2

)
S ′(αmb)

αmb S(αmb)
+

mπb

2g
Cm

T (αmb)

αmb T ′(αmb)
, (7.23)

where

Tnm ≡ 4π2g3

b2

∫ ∞

−∞
q2dq

κ2

J1(κb)

κb J ′
1(κb)

Gn(q)G∗
m(q)

= g5
[
1 + (−1)m+n

] ∫ ∞

−∞
dq

q4

κ2b2
g

J1(κb)

κb J ′
1(κb)

[1 − (−1)nejqg]

(q2g2 − m2π2)(q2g2 − n2π2)
. (7.24)

and

Rnm = 4π2g
∫ ∞

−∞
dq

J ′
1(κb)

κb J1(κb)
Gn(q)G∗

m(q) = g3
[
1 + (−1)m+n

] ∫ ∞

−∞
dq q2 J ′

1(κb)

κb J1(κb)
×

[1 − (−1)nejqg]

(q2g2 − m2π2)(q2g2 − n2π2)
(7.25)

Both Tnm in Eq. (7.24) and Rnm in Eq. (7.25) have been arrived at by changing the sign of q in the
third term of the bracket [ ] in Eq. (7.20) to reach the form in Eq. (7.23). The matrix Tnm is evaluated
explicitly in Appendix C and matrix Rnm in Appendix D.

Next we use Eqs. (7.15), (7.16), (7.24) and (7.25) to rewrite these expressions as

−jβγkg D

x I1(x)

[
(−1)me−jkg − 1

m2π2 − k2g2

]
+

βkb

2π

∞∑
n=0

AnRnm +
2

βkg

∞∑
n=1

nDnPnm

− b

2πβkg2

∞∑
n=0

AnTnm = βkb
ε′

ε0

(
1 + δm0

2

)
S ′(αmb)

αmb S(αmb)
Am

+
mπ

2βkg

μ0

μ

T (αmb)

αmb T ′(αmb)
Dm − m2π2

2βkg2α2
mb

μ0

μ

T (αmb)

αmb T ′(αmb)
Am . (7.26)

We now use Eq. (7.8) to eliminate the coefficients Cn. This leads to

αmb T (αmb)

T ′(αmb)

μ0

μβkb

[
Dm − mπ

bgα2
m

Am

]
=

4π

βkb

∞∑
n=1

DnQnm − 4m

βkg

∞∑
n=0

AnPnm , (7.27)

which is valid for m ≥ 1. We also rewrite Eq. (7.23) as

2m

βkg

∞∑
n=0

AnPnm − mπ

2βkg

μ0

μ

T (αmb)

αmb T ′(αmb)
Am

=
2π

βkb

∞∑
n=1

DnQnm − μ0

2βkbμ

αmb T (αmb)

T ′(αmb)
Dm , (7.28)
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valid for m ≥ 1. We also rewrite Eq. (7.26) as

2

βkg

∞∑
n=1

nDnPnm − mπ

2βkg

μ0

μ

T (αmb)

αmb T ′(αmb)
Dm

+
βkb

2π

∞∑
n=0

AnRnm − b

2πβkg2

∞∑
n=0

AnTnm − βkb
ε′

ε0

(
1 + δm0

2

)
S ′(αmb)

αmb S(αmb)
Am

+
m2π2

2βkg2α2
mb

μ0

μ

T (αmb)

αmb T ′(αmb)
Am =

jβγkg D

x I1(x)

[
(−1)me−jkg − 1

m2π2 − k2g2

]
, (7.29)

which is valid for m ≥ 0.
Finally, we renormalize An and Dn to remove the factor outside the bracket on the right hand side

of Eq. (7.29). Specifically, we write

An =
jβγkg D

x I1(x)
an and Dn =

jβγkg D

x I1(x)
dn . (7.30)

Eqs. (7.28) and (7.29) are then replaced by

2m

βkg

∞∑
n=0

anPnm − mπ

2βkg

μ0

μ

T (αmb)

αmb T ′(αmb)
am

− 2π

βkb

∞∑
n=1

dnQnm +
μ0

2βkbμ

αmb T (αmb)

T ′(αmb)
dm = 0 (7.31)

for m ≥ 1, and

2

βkg

∞∑
n=1

n dnPnm − mπ

2βkg

μ0

μ

T (αmb)

αmb T ′(αmb)
dm

+
βkb

2π

∞∑
n=0

anRnm − b

2πβkg2

∞∑
n=0

anTnm − βkb
ε′

ε0

(
1 + δm0

2

)
S ′(αmb)

αmb S(αmb)
am

+
m2π2

2βkg2α2
mb

μ0

μ

T (αmb)

αmb T ′(αmb)
am =

[
(−1)me−jkg − 1

m2π2 − k2g2

]
(7.32)

for m ≥ 0.
Eqs. (7.31) and (7.32) are two linear matrix equations for the unknown coefficient vectors an and dn.

The absence of terms proportional to powers of γ suggests that the solutions for the coefficients an and
dn will remain finite in the limit γ → ∞, β → 1. As we shall see in the next section, this also implies
that the transverse impedance will reach a finite value as γ → ∞.
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8 Calculation of the Transverse Impedance

It is possible to write the transverse impedance in terms of P , the dipole moment of the driving current,
defined in Eq. (2.2) and the value of Ez(r, θ, z) at r = a, the radius of the driving current ring:

Zx(k) = − 1

πkaP

∫ L

0
dz
∫ 2π

0
dθ Ez(a, θ, z; k) cos θ ejkz , (8.1)

where L is the circumference of the accelerating ring. We can later check our normalization by requiring
that the transverse impedance contain the correct space charge contribution.

From Eq. (3.2), we find at r = a, that

Ez(a, θ, z; k) = j cos θ

{
D F

(
ka

γ

)
e−jkz +

∫ ∞

−∞
dq e−jqzA(q)

J1(κa)

J1(κb)

}
. (8.2)

The transverse impedance in Eq. (8.1) then can be written as

Zx(k) = − j

kaP

⎧⎨
⎩DLF

(
ka

γ

)
+ 2πA(k)

J1(κa)

J1(κb)

∣∣∣∣∣
q=k

⎫⎬
⎭ , (8.3)

where we have used the large L limit by writing

∫ L

0
dz e−jqzejkz ∼= 2πδ(q − k) . (8.4)

Since, from Eq. (3.1)
κ2 ≡ β2k2 − q2 , (8.5)

we have for q = k
κ2
∣∣∣
q=k

= −k2/γ2 , (8.6)

so that

Zx(k) = − j

ka

⎧⎨
⎩D

P
LF (ka/γ) + 2π

A(k)

P

J1(ka/γ)

J1(kb/γ)

∣∣∣∣∣
q=k

⎫⎬
⎭ . (8.7)

Assuming that ka/γ << 1, we have, from Eq. (3.3),

F (ka/γ) ∼= γ

ka

(
1 − a2

b2

)
. (8.8)

Using the value of D in Eq. (2.10), the contribution of the first term inside the brackets in Eq. (8.7) is

Z(SC)
x (k) = − j LZ0

2πβγ2

(
1

a2
− 1

b2

)
, (8.9)

which agrees with the well known expression for the transverse space charge impedance.
The contribution of the resistance of the tube of finite length is therefore given by the second term

in the brackets of Eq. (8.7):

Z(RT )
x (k) = − jπ A(k)

γP J1(kb/γ)
. (8.10)

From Eqs. (7.4) and (7.5), we have

A(k) =
jkg

2π

∞∑
n=0

An
[(−1)nejkg − 1]

n2π2 − k2g2
(8.11)
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and the transverse impedance can be written

Z(RT )
x (k) =

kg2

2γP J1(kb/γ)

∞∑
n=0

An
[(−1)nejkg − 1]

n2π2 − k2g2
. (8.12)

Using the renormalization of An and Dn to an and dn, defined in Eq. (7.30), we can rewrite the
impedance as

Z(RT )
x (k) =

jβγk2g3D

2γ xI2
1 (x) P

∞∑
n=0

an [(−1)nejkg − 1]

n2π2 − k2g2
. (8.13)

Using the expression for D in Eq. (2.10), this can be rewritten as

Z(RT )
x (k)

Z0
=

jk

π

g3

b3

(
kb/2γ

J1(kb/γ)

)2 ∞∑
n=0

an [(−1)nejkg − 1]

n2π2 − k2g2
. (8.14)

Since an and dn remain finite as γ → ∞, as discussed at the end of Section 7, also the transverse
coupling impedance, which correctly has the dimension Ω/m, remains finite in this limit.
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9 Variational Form for the Impedance

From Eqs. (7.31) and (7.32), the equations for the normalized coefficient vectors an and dn are given by

m
∞∑

n=0

anp̃nm +
∞∑

n=1

dnq̃nm = 0 , for m ≥ 1 (9.1)

and ∞∑
n=1

n dnp̃nm +
∞∑

n=0

anr̃nm = f̃m , for m ≥ 0 . (9.2)

Here the coefficients p̃nm etc are the conjugates of pnm, i.e. the indices are inverted. We particularly
note the close relation between the coefficient of an in Eq. (9.1) and the coefficient of ndn in Eq. (9.2).
Specifically,

p̃nm =
2

βkg
Pnm − π

2βkg

μ0

μ

T (αmb)

αmb T ′(αmb)
δnm . (9.3)

We now multiply Eq. (9.1) by
∞∑

m=1

dm to obtain

∞∑
m=1

∞∑
n=0

m andmp̃nm +
∞∑

m=1

∞∑
n=1

dndmq̃nm = 0 . (9.4)

Next, we multiply Eq. (9.2) by
∞∑

m=0

am to obtain

∞∑
m=0

∞∑
n=1

n amdnp̃nm +
∞∑

m=0

∞∑
n=0

amanr̃nm =
∞∑

m=0

amf̃m . (9.5)

We then construct

W = 2
∞∑

m=0

amf̃m −
∞∑

m=1

∞∑
n=1

dndmq̃nm

− 2
∞∑

m=0

∞∑
n=1

amdnp̃nm −
∞∑

m=0

∞∑
n=1

amanr̃nm (9.6)

and evaluate δW , the change in W which occurs when dm changes by δdm and am changes by δam. We
find

δW = −2
∞∑

m=1

δdm

[ ∞∑
n=1

dnq̃nm + m
∞∑

n=0

anp̃nm

]

− 2
∞∑

m=0

δam

[ ∞∑
n=1

n dnp̃nm +
∞∑

n=0

anr̃nm − f̃m

]
. (9.7)

Requiring δW = 0 for arbitrary δdm and δam, we duplicate Eqs. (7.31) and (7.32). Thus W , defined
in Eq. (9.7), is an invariant under arbitrary variation of dm and am. Using Eq. (7.31) and (7.32), the
extreme value of W turns out to be given by

Wextreme =
∞∑

m=1

amf̃m (9.8)

which agrees with Eq. (8.9). As a consequence, the value of W varies only quadratically with any
errors in an and dn. We may therefore truncate the infinite sums over m and n and still obtain a good
approximation to W which varies only quadratically in the discarded terms.
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Therefore one may truncate the infinite sums over n in Eq. (7.31) and (7.32) at a value N without
large error. There a total of 2N + 1 unknowns (N + 1 values of an for 0 ≤ n ≤ N and and N values of
dn where 1 ≤ n ≤ N), and just as many equations (N values of m in Eq. (7.31) and N + 1 values of m
in Eq.(7.32))’ Thus these equations by can be solved by conventional matrix techniques, confident that
the result for the impedance will be quadratic in any error caused by the truncation. This can easily be
tested by performing the calculation for several values of N . A simple extrapolation technique can then
be used to obtain more accurate values of the impedance.

The most sweeping approximation one can make is to choose N = 0, so that only the coefficient a0

remains in the equations (an = 0, dn = 0 for n ≥ 1). This is discussed in Appendix E and is equivalent
to using a constant trial function for Ez(b).
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Appendix A: Evaluation of Qnm

We start with Qnm defined in Eq. (7.16) and use Eq. (7.17) to rewrite it as

Qnm =
gnm

4

[
1 + (−1)m+n

] ∫ ∞

−∞
dq

κb J1(κb)

J ′
1(κb)

[1 − (−1)nejqg]

(q2g2 − m2π2)(q2g2 − n2π2)
. (A.1)

Examining Eqs. (7.12) and (7.14), we see that there is no singularity at either qg = ±mπ or qg = ±nπ.
The change in the sign of q in the third term within the square brackets in Eq. (7.17) has introduced
singularities at qg = ±mπ, but not at qg = ±nπ.

We now close the contour in Eq. (A.1) at q = ∞ in the upper half q-plane. As discussed before, the
contour goes above the poles on the positive real q-axis and below the poles on the negative real q-axis.
Only the poles on the negative real q-axis are then enclosed. Since from Eq.(3.1)

κ2 = β2k2 − q2 , (A.2)

the factor κb J1(κb)/J ′
1(κb) in Eq. (A.1) is an even function of q.

Closing the contour of integration at q = ∞ in the upper half q-plane, we get

Qnm =
gnm

4

[
1 + (−1)m+n

] ∮
dq

κb J1(κb)

J ′
1(κb)

[1 − exp(j(qg + nπ))]

(q2g2 − m2π2)(q2g2 − n2π2)
, (A.3)

where the symbol
∮

implies a contour which goes counter-clockwise around all poles on the negative
real q-axis and on the positive imaginary q-axis. To avoid a second-order pole when m = n, we consider
n to be a continuous variable in the integrand. Since the integrand in Eq. (7.16) has no pole at qg = −nπ,
the only poles enclosed by the contour are those at qg = −mπ and at the zeros ofJ ′

1(κb).
The contribution from the pole at qg = −mπ, denoted by Q(A)

nm, is then given by

Q(A)
nm =

jn [1 + (−1)n+m]

4π(n + m)

κmb J1(κmb)

J ′
1(κmb)

e−j(m−n)π − 1

(m − n)π
, (A.4)

where

κm =

⎧⎨
⎩ (β2k2g2 − m2π2)

1/2
/g, , mπ ≤ βkg

±j (m2π2 − β2k2g2)
1/2

/g , mπ ≥ βkg

⎫⎬
⎭ . (A.5)

We now return to considering n to be an integer. The factor [1 + (−1)n+m] requires both m + n and
m − n to be even, so that

lim
n→integer

e−j(m−n)π − 1

(m − n)π
=

{ −j , if n = m
0 , if n → integer 	= m

}
. (A.6)

Thus,

Q(A)
nm =

1

4π

κnb J1(κnb)

J ′
1(κnb)

δnm

=
δnm

4π

b

g

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(β2k2g2−n2π2)
1/2

J1

[
(β2k2g2−n2π2)

1/2
b/g

]
J ′
1[(β2k2g2−n2π2)1/2 b/g]

, nπ < βkg

−(n2π2−β2k2g2)
1/2

I1

[
(n2π2−β2k2g2)

1/2
b/g

]
I′1[(n2π2−β2k2g2)1/2 b/g]

, nπ > βkg

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (A.7)

The remaining singularities in the integrand in Eq. (A.3) are located at the zeros of J ′
1(κb). Specifi-

cally, these occur at κb = ±p�, where p� are the zeros of J ′
1(y), in increasing order. The corresponding

values of q are given by

q�b = −
(
β2k2b2 − p2

�

)1/2
, 1 ≤ � ≤ L (A.8)
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along the negative real q-axis, and
q�b = jφ� (A.9)

along the positive imaginary q-axis, where

φ� ≡
(
p2

� − β2k2b2
)1/2

, � ≥ L + 1 , (A.10)

as discussed following Eq. (A.3). The integer L is chosen so that

pL < βkb < pL+1 . (A.11)

Near κb = ±p�, the zeros of J ′
1(y), we have

κb J1(κb)

J ′
1(κb)

=
±p� J1(±p�)

J ′′
1 (±p�) (κb ∓ p�)

. (A.12)

The differential equation satisfied by J1(±p�), with J ′
1(±p�) = 0, leads to

J1(±p�)

J ′′
1 (±p�)

= − p2
�

p2
� − 1

(A.13)

so that Eq. (A.12) can be rewritten, near κb = ±p�, as

κb J1(κb)

J ′
1(κb)

∼= p3
�

p2
� − 1

(p� ± κb)

(p2
� − κ2b2)

∼= 2p4
�/(p2

� − 1)

(q2b2 − β2k2b2 + p2
�)

. (A.14)

The contribution to Qnm from the zeros of J ′
1(κb), which are located within the contour at

q�b =

{
− (β2k2b2 − p2

�)
1/2

, 1 ≤ � ≤ L
jφ� , � ≥ L + 1

}
, (A.15)

can be written as

Q(B)
nm =

gnm

4

[
1 + (−1)m+n

] ∞∑
�=1

2p4
�/(p2

� − 1) [1 − (−1)n exp(jq�g)]

(m2π2 − q2
� g

2)(n2π2 − q2
� g

2)
×

∫
dq

q2b2 + p2
� − β2k2b2

. (A.16)

Using Eq. (A.15), Q(B)
nm can be written as

Q(B)
nm =

πgnm

b
×⎧⎨

⎩−j
L∑

�=1

[
1 − (−1)n exp

(
−jg (β2k2b2 − p2

�)
1/2

/b
)]

p4
�/(p2

� − 1)

(β2k2b2 − p2
�)

1/2
(m2π2 − β2k2g2 + p2

�g
2/b2)(n2π2 − β2k2g2 + p2

�g
2/b2)

+
∞∑

�=L+1

[1 − (−1)n exp (−φ�g/b)] p4
�/(p2

� − 1)

φ� (m2π2 + φ2
�g

2/b2)(n2π2 + φ2
�g

2/b2)

⎫⎬
⎭ (A.17)

for m + n even, while Q(B)
nm = 0 for m + n odd.

Our final result for Qnm is then the sum of Eqs. (A7) and (A17) for m + n even, while Qnm = 0 for
m + n odd.
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Appendix B: Evaluation of Pnm

We start with Pnm in Eq. (7.15), using the expression for G∗
m(q)Gn(q) as given in Eq. (7.17),

Pnm =
g3

4

[
1 + (−1)m+n

] ∫ ∞

−∞
dq q2 J1(κb)

κb J ′
1(κb)

[1 − (−1)nejqg]

(q2g2 − m2π2)(q2g2 − n2π2)
, (B.1)

and proceed with the calculation for m ≥ 1 as Pn0 is not needed in the infinite sum . Since J1(κb) →
κb/2 for small κb there is no singularity at κb = 0.

As before, the integration contour in the q-plane is taken above the poles on the positive real q-axis
and below the poles on the negative real q-axis, and closed at q = ∞ in the upper halfq-plane. Thus
only the poles at qg = −mπ and at the zeros of J ′

1(κb) are enclosed.
We first consider the contribution from the pole at qg = −mπ, where we rewrite the bracket in

Eq. (7.17) as [
1 − (−1)nejqg

]
→ [1 − exp [j(qg + nπ))] (B.2)

This leads to

P (A)
nm =

π

4

J1(κnb)

κnb J ′
1(κnb)

δnm , (B.3)

where κn is given in Eq. (A.7) separately for nπ < βkg and nπ > βkg. We now evaluate the
contribution of the poles at κb = ±p�. Near these poles, we see, from Eq. (A.14), that

J1(κb)

κb J ′
1(κb)

∼= 2p2
�/(p2

� − 1)

(q2b2 − β2k2b2 + p2
�)

, (B.4)

where the contour integral encloses the pole identified in Eq. (A.15) at

q�b =

{
− (β2k2b2 − p2

�)
1/2

, 1 ≤ � ≤ L
jφ� , � ≥ L + 1

}
. (B.5)

Our final result for P (B)
nm is then

P (B)
nm =

πg3

b3
×⎧⎨

⎩−j
L∑

�=1

p2
� (β2k2b2 − p2

�)
1/2
[
1 − (−1)n exp

(
−jg (β2k2b2 − p2

�)
1/2

/b
)]

(p2
� − 1)(m2π2 − β2k2g2 + p2

�g
2/b2)(n2π2 − β2k2g2 + p2

�g
2/b2)

−
∞∑

�=L+1

φ�p
2
� [1 − (−1)n exp (−φ�g/b)]

(p2
� − 1)(m2π2 + φ2

�g
2/b2)(n2π2 + φ2

�g
2/b2)

⎫⎬
⎭ (B.6)

for m + n even , while P (B)
nm = 0 when m + n is odd . Once again

φ� ≡
(
p2

� − β2k2b2
)1/2

, � ≥ L + 1 . (B.7)

The matrix Pnm = P (A)
nm +P (B)

nm is the sum of Eq. (B.3) and Eq. (B.6) for m+n even, while it is zero
for m + n odd. Clearly, Pnm is symmetric in the interchange m ← n. Therefore p̃nm = pnm = pnm. As
a consequence, the first terms on the left side of Eqs. (9.4) and (9.5) are equal. Similarly, q̃nm = qnmqnm

and r̃nm = rnm. Our final result for Pnm = P (A)
nm + P (B)

nm then is the sum of Eqs. (B.3) and (B.6) for
m + n even, while Pnm = 0 for m + n odd.
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Appendix C: Evaluation of Tnm

We start with Eq. (7.24) for Tnm:

Tnm = g5
[
1 + (−1)m+n

] ∫ ∞

−∞
dq

q4

κ2b2

J1(κb)

κb J ′
1(κb)

×
[1 − (−1)nejqg]

(q2g2 − m2π2)(q2g2 − n2π2)
. (C.1)

The contour in the complex q-plane is again chosen as for the coefficients P and Q, Then only the poles
on the negative real q-axis and on the positive imaginary q-axis are within the contour. We first consider
the poles at qg = −mπ, but there is no pole at qg = −nπ in the integrand of Eq. (7.24).

The contribution to Tnm from these poles is

T (A)
nm =

n2π3

κ2
nb2

J1(κnb)

κnb J ′
1(κnb)

δnm , (C.2)

where

κnb =

⎧⎨
⎩ (β2k2g2 − m2π2)

1/2
b/g , mπ ≤ βkg

±j (m2π2 − β2k2g2)
1/2

b/g , mπ ≥ βkg

⎫⎬
⎭ . (C.3)

The remaining part of Tnm comes from the zeros of J ′
1(κb) at κb = ±p�, including � = 0, where p0

is defined as p0 ≡ 0. We find

T (B)
nm =

4πg5

b5
×⎧⎨

⎩−j
L∑

�=0

(β2k2b2 − p2
�)

3/2
[
1 − (−1)n exp

(
−jg (β2k2b2 − p2

�)
1/2

/b
)]

(p2
� − 1)(m2π2 − β2k2g2 + p2

�g
2/b2)(n2π2 − β2k2g2 + p2

�g
2/b2)

−
∞∑

�=L+1

φ3
� [1 − (−1)n exp (−φ�g/b)]

(p2
� − 1)(m2π2 + φ2

�g
2/b2)(n2π2 + φ2

�g
2/b2)

⎫⎬
⎭ , (C.4)

where m + n an even integer, while T (B)
nm = 0 for m + n odd. Here

φ� ≡
(
p2

� − β2k2b2
)1/2

, (C.5)

with L chosen so that
pL < βkb < pL+1 . (C.6)

Our final result for Tnm is then the sum of T (A)
nm given in Eq. (C.2) and T (B)

nm in Eqs. (C.4). Specifically

Tnm = T (A)
nm + T (B)

nm (C.7)

for m + n even, while it is zero for m + n odd.
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Appendix D: Evaluation of Rnm

We start with Eq. (7.25)

Rnm = g3
[
1 + (−1)m+n

] ∫ ∞

−∞
dq q2 J ′

1(κb)

κb J1(κb)

[1 − (−1)nejqg]

(q2g2 − m2π2)(q2g2 − n2π2)
(D.1)

choosing the same contour as for the coefficients P and Q. We first consider the poles at qg = −mπ,
but there is no pole at qg = −nπ in the integrand of Eq. (D.1). The contribution to Rnm from these
poles is

R(A)
nm = π

J ′
1(κnb)

κnb J1(κnb)
δnm , (D.2)

where κn was given in Eq. (C.3).
The remaining part of Rnm comes from the zeros of J1(κb) at κb = ±r�, where r� are the positive

zeros of J1(t), including r0 ≡ 0. These occur within the closed contour in the q-plane at

qb =

{ −q�b , 1 ≤ � ≤ L̄
jψ� , � ≥ L̄ + 1

}
(D.3)

where
q�b =

(
β2k2b2 − r2

�

)1/2
> 0 , 0 ≤ � ≤ L̄ (D.4)

and where
ψ� ≡

(
r2
� − β2k2b2

)1/2
> 0 , � ≥ L̄ . (D.5)

The parameter L̄ is defined such that

rL̄ ≤ βkb ≤ rL̄+1 . (D.6)

Near the zeros of J1(κb), we find

J ′
1(κb)

κb J1(κb)
− κb ± r�

±r� (r2
� − κ2b2)

− 2

q2b2 − β2k2b2 + r2
�

. (D.7)

Specifically, for 0 ≤ � ≤ L̄
J ′

1(κb)

κb J1(κb)
∼= 1

q�b(qb + q�b)
, (D.8)

and for � ≥ L̄ + 1
J ′

1(κb)

κb J1(κb)
∼= − 1

jψ�(qb − jψ�)
. (D.9)

Using these expressions we find

R(B)
nm =

4πg3

b3
×⎧⎨

⎩j
L̄∑

�=0

(β2k2b2 − r2
� )

1/2
[
1 − (−1)n exp

(
−jg (β2k2b2 − r2

� )
1/2

/b
)]

(m2π2 − β2k2g2 + r2
�g

2/b2)(n2π2 − β2k2g2 + r2
� g

2/b2)

+
∞∑

�=L̄+1

ψ� [1 − (−1)n exp (−ψ�g/b)]

(m2π2 + ψ2
� g

2/b2)(n2π2 + ψ2
� g

2/b2)

⎫⎬
⎭ (D.10)

when m + n is an even integer, and R(B)
nm = 0 for m + n odd.

Our final result for Rnm is then the sum of R(A)
nm in Eqs. (D.2) and R(B)

nm in Eqs. (D.10). Specifically

Rnm = R(A)
nm + R(B)

nm (D.11)

for m + n even, while it is zero fro m + n odd.
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Appendix E: Analytic Approximation to the Transverse Impedance

We start by choosing N = 0, so that only a0 remains in the expression for ZRT
x (k) in Eq. (8.14) since

an = 0 and dn = 0 for n ≥ 1 are all zero. The set of equations then reduces to a single one

a0S00 =
1 − e−jkg

k2g2
, (E.1)

where

S00 =
βkb

2π
R00 − b

2πβkg2
T00 − βkb

ε′

ε0

S ′(α0b)

α0b S(α0b)
. (E.2)

From Eq. (7.24) we get

T00 = 2g
∫ ∞

−∞
dq

J1(κb)(1 − ejqg)

κ3b3 J ′
1(κb)

. (E.3)

According to Eq. (7.24) T
(A)
00 = 0, hence T00 = T

(B)
00 and from Eq. (D.10)

R00 =
2

g

∫ ∞

−∞
dq

1

q2

J ′
1(κb)(1 − ejqg)

κb J1(κb)
. (E.4)

From Eq. (5.2) we see that

α0b = βkb

(
με′

μ0ε0

)1/2

(E.5)

and the quantities S(α0b) and S ′(α0b) can be obtained from Eqs. (5.4) with n = 0.
In the approximation containing only the single n = 0 term of the infinite sum over n, the impedance

can be found from Eq. (8.14)

a0

[
1 − ejkg

]
k2g2

=
(1 − ejkg)(1 − e−jkg)

k2g2S00

= 2
1 − cos(kg)

k2g2S00

. (E.6)

With S00 from Eq.(E.2) we finally get a simple approximate expression for the transverse impedance of
a resistive wall of finite length

Z(RT )
x (k)

Z0
=

2j

πk3b3g

[
kb/2γ

I1(kb/γ)

]2
(1 − cos(kg))

S00
. (E.7)

23




