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Preface

The Standard Model of particle physics (SM), presented in the introduction
of this work, describes the strong, weak, and electromagnetic forces between
the fundamental particles of ordinary matter. The SM describes with high
precision the interactions at energies reached by present accelerators. How-
ever, it presents several problems, also discussed in this work, and some
questions remain unanswered so the SM cannot be considered a complete
theory of fundamental interactions.

Since the completion of the SM, many extensions have been proposed in
order to address these problems. Some important recent extensions are the
Extra Dimensions (ED) theories. These theories unify gravity with the other
fundamental forces and solve the hierarchy problem. An introduction on the
motivation, history and main ideas of ED theories is given in this work.

In the context of some models with ED of size about 1 TeV −1, in
particular in the ADD model with only fermions confined to a D-brane,
heavy Kaluza-Klein (KK) excitations are expected, with the same properties
as SM gauge bosons but more massive. In this work, three hadronic decay
modes of some of such massive gauge bosons, Z∗ and W ∗, are investigated
using the ATLAS experiment at the Large Hadron Collider (LHC), presently
under construction at CERN.

The LHC will start to operate in 2007 and collect data in 2008. It will pro-
duce roughly 15 Petabytes (15 million Gigabytes, i.e. more than 20 millions
of CDs) of data per year. Access to this experimental data has to be provided
for some 5,000 scientists working in 500 research institutes and universities.
In addition, all data need to be available over the estimated 15-year lifetime
of the LHC. The analysis of the data, including comparison with theoretical
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simulations, requires a huge amount of computing power.
The computing challenges that scientists have to face are: the huge

amount of data and calculations to perform and the large number of col-
laborators. The Grid has been proposed as a solution for those challenges.

In particular, regarding the high CPU requirements required for LHC
studies, a particular kind of Grid that is useful and has been considered
in this work is BOINC. The feasibility of porting some simulation and
reconstruction physics tools has been studied as well.

This work is presented in five different parts, including seven sections
and four appendices. In short, there are two main topics. One refers to data
analysis and another one to distributed computing. In addition, there is an
introduction, conclusions and appendices.

In the first part of this work, an introduction to the physics and computing
tools is presented.

In the first chapter of this part an introduction to CERN and to its main
collider, the LHC, is given. The ATLAS detector and the main computing
tools are also introduced.

In the second chapter, the Standard Model of particle physics is intro-
duced and some extensions are proposed. In particular, an introduction to
Extra Dimensions Models is given.

In the third chapter, a general introduction to Grid computing is
presented. In particular, two important Grid projects, LCG and BOINC,
are discussed.

The second part involves one single chapter that includes the analysis of
Z∗ and W ∗ decays using the ATLAS experiment. In particular, the search
for the decay modes Z∗ −→ bb̄, Z∗ −→ tt and W ∗ −→ t b is presented. This
search is performed using data simulated with the ATLAS Fast Simulation
and reconstruction package, Atlfast.

In the third part of this work, details of the distributed computing
environments LCG and BOINC are given in three different chapters. Their
technology and infrastructure mechanisms are studied in depth. In addition,
the main activity areas concerning ATLAS computing are discussed. The
work performed on the porting of some physics applications, like Atlfast,
to the BOINC Grid environment is presented. The data used for our
analysis is also generated and reconstructed again using this environ-
ment and is compared with the one obtained without the use of the Grid.
Finally, a comparison between LCG and BOINC Grid environments is given.

Finally, in the fourth part, the most important conclusions of this work
are summarised.
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A final part includes some appendices with details about the porting
of LCG software to non-linux platforms and of Atlfast and Geant4 to
the BOINC Grid environment. A glossary including the acronyms and
abbreviations used in this work is also given.

This work has been possible thanks to a close collaboration between the
IFIC research institute in Valencia and CERN and it was supported by both
IFIC and CERN.
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Prefacio

En el contexto de la f́ısica de part́ıculas, el Modelo Estándard (Standard
Model, SM, en inglés) presentado en la introducción, describe tres de las
fuerzas existentes entre las particulas fundamentales de la materia ordinaria:
la fuerza electromagnética, la fuerte y la débil. El SM ha demostrado ser
capaz de describir con alta precisión dichas interacciones hasta los niveles
de enerǵıas capaces de ser alcanzadas por los aceleradores de particulas ac-
tuales. Sin embargo, presenta varios problemas, también descritos en esta
tesis, y varias cuestiones permanecen sin respuesta todav́ıa, de modo que
el SM no puede ser considerado una teoria completa sobre las interacciones
fundamentales.

Desde que se completó la descripción del SM, varias extensiones han sido
propuestas con el objetivo de tratar los problemas comentados. Una reciente
e importante extension son las teorias de Dimensiones Extra (Extra Dimen-
sions, ED, en inglés). Dichas teorias unifican la gravedad con las otras fuerzas
fundamentales y resuelven también el problema de la jerarquia. En este tra-
bajo se incluye una introducción a la motivación, la historia y las ideas prin-
cipales en las que se basan las teorias de Dimensiones Extra.

En el contexto de ciertos modelos con Dimensiones Extra de tamaños
de alrededor de 1 TeV −1, en concreto en el modelo llamado ADD con
solo fermiones confinados en la D-brana, se esperan encontrar excitaciones
pesadas de kaluza-Klein (KK) con las mismas propiedades que los bosones
gauge del SM pero con mayor masa. En este trabajo se investigan tres
modos de desintegración de algunos de dichos bosones gauge masivos, Z∗ y
W ∗, usando el experimento ATLAS en el Gran Colisionador de Hadrones
(Large Hadron Collider, LHC, en inglés) que se encuentra actualmente en
construcción en el CERN.
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El LHC comenzará a funcionar en el 2007 y a recoger datos en el 2008.
Producirá alrededor de 15 Petabytes (15 millones de Gigabytes, más de 20
millones de CDs) de datos por año. Unos 5000 cientificos trabajando en más
de 500 institutos de investigación y universidades deben de tener acceso a
dichos datos. Además, toda esa información debe de estar disponible durante
el tiempo de vida estimado del LHC, alrededor de 15 años. El analisis de di-
chos datos, incluyendo la comparación con las simulaciones teóricas, requiere
una cantidad inmensa de capacidad de computación.

Los cientificos deben enfrentarse a los siguientes retos tecnológicos: la
inmensa cantidad de datos y cálculos necesarios y el gran número de colabo-
radores. El Grid ha sido propuesto como una solución para dichos retos.

En concreto, para solucionar el problema de las inmensas necesidades de
CPU que necesitarán los experimentos en el LHC, se ha estudiado en este
trabajo un tipo particular de Grid llamado BOINC. Se ha estudiado también
en detalle la viabilidad de la adaptación a este entorno de ciertas herramien-
tas de simulación y reconstrucción en f́ısica usadas por ATLAS actualmente.

Este trabajo se presenta en cinco partes diferentes, incluyendo siete
secciones y cuatro apéndices. En resumen, se tratan fundamentalmente
dos temas. Uno de ellos sobre análisis de datos y otro sobre computación
distribuida. Además, hay una introducción, conclusiones y apéndices.

En la primera parte de este trabajo, se presenta una introducción a las
herramientas de f́ısica y computacion en f́ısica usadas por ATLAS.

En el primer caṕıtulo de dicha parte, se ofrece una introducción al CERN
y a su principal colisionador, el LHC. También se introduce el detector
ATLAS y sus principales herramientas de computación.

En el segundo caṕıtulo, se introduce el Modelo Estándar de la f́ısica de
part́ıculas y ciertas extensiones propuestas. En concreto, se da una intro-
ducción a los modelos de Dimensiones Extras.

En el tercer caṕıtulo, se presenta una introducción a computación Grid
y se tratan dos proyectos Grid importantes: LCG y BOINC.

La segunda parte incluye un caṕıtulo único en el que se expone el analisis
de desintegraciones de bosones Z∗ y W ∗ en el experimento ATLAS. En
concreto, se trata la búsqueda de los modos de desintegración Z∗ −→ bb̄,
Z∗ −→ tt y W ∗ −→ t b . Este análisis se realiza usando datos simulados con
el paquete de simulación y reconstrucción rápida de sucesos de ATLAS (en
inglés, ATLAS Fast Simulation and reconstruction, Atlfast).

En la tercera parte de este trabajo, se dan detalles sobre los entornos
de computación distribúıda LCG y BOINC y se estudia en detalle la
tecnoloǵıa e infrastructura usadas por ambos. Se presenta también el trabajo
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realizado en la adaptación al entorno Grid BOINC de ciertas aplicaciones
de f́ısica usadas por la colaboración ATLAS, como Atlfast, y se generan y
reconstruyen de nuevo en dicho entorno los datos simulatos utilizados en nue-
stro análisis, comparándolos con los obtenidos sin utilizar entorno Grid. Se
realiza, además, una comparación entre los entornos Grid de LCG y BOINC.

Finalmente, en la cuarta parte, se resumen las conclusiones más impor-
tantes de este trabajo.

Al final de la tesis se incluye una parte adicional con varios apéndices
dando detalles sobre la adaptación de software de LCG a plataformas
no-Linux y la adaptación al entorno Grid BOINC de dos programas de
generación y reconstrucción de sucesos usados en ATLAS: Atlfast y Geant4.
También se incluye un glosario incluyendo los acrónimos y abreviaturas
usadas.

Este trabajo ha sido posible gracias a una colaboración estrecha entre el
centro de investiación IFIC en Valencia y el CERN y ha sido apoyado por
ambos.
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CHAPTER

1

CERN, LHC and ATLAS

In this first chapter we give an introduction to CERN, its main collider, the
LHC and the ATLAS experiment.

1.1 CERN

After the Second World War, the European physics research was in a very
poor state. Louis de Broglie (Nobel prize-winner in 1929) proposed the
creation of an European Science Laboratory in 1949, in the ”Conférence
Européenne de la Culture” at Lausanne.

Currently, the European Organisation for Nuclear Research, known as
CERN [1], is the world’s largest particle physics laboratory. It is situated in
Geneva on the border between France and Switzerland. It is also known for
being the birthplace of the World Wide Web (WWW).

CERN has 20 European Member States, but many non-European
countries are also involved in different ways. It employs 3000 people and
about 6500 visiting scientist coming from over 500 universities and research
institutes from more than 80 countries. Apart from physicists, CERN’s staff
also includes highly specialised engineers and technicians.

The aim of CERN is to provide the particle accelerators and other in-
frastructure needed for high energy physics research. Numerous experiments
have been performed at CERN by international collaborations. CERN
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also owns a large computer centre with powerful data processing facilities,
primarily devoted to experimental data analysis.

The acronym CERN [2] stands for Conseil Européen pour la Recherche
Nucléaire (European Council for Nuclear Research). This provisional council
was approved by 11 European governments in 1952 in order to set up the
laboratory[2] [3].

In 1954, the provisional council was dissolved and the organisation was
given the name European Organisation for Nuclear Research, although the
acronym CERN was retained. More information about the history of CERN
can be found in [3].

At the beginning, research concentrated in nuclear studies, hence the word
”nuclear”. Very soon, the work of the laboratory sifted to higher energies.
Therefore, CERN is today a High Energy Physics (HEP) institute devoted to
the study of fundamental particles and interactions. For this reason, CERN
is also commonly known as the ”European Laboratory for Particle Physics”.

1.1.1 Discoveries and research fields

Several important discoveries in particle physics have been made at CERN.
They include:

• The discovery of neutral currents in 1973 by the Gargamelle bubble
chamber experiment.

• The discovery of W and Z bosons in 1983 by the UA1 and UA2 expe-
riments.

Some important technical achievements made at CERN were the con-
struction of the Intersecting Storage Rings (ISR) commissioned in 1971, and
the Super Proton Synchrotron (SPS), which came into operation in 1981
and produced the massive W and Z particles, confirming the unified theory
of electromagnetic and weak forces. Another revolutionary technological de-
velopment is the invention of the multi-wire proportional chamber in the 60s.
In the 90s very precise measurements were made using the Large Electron-
Positron Collider (LEP), in particular the measurement of the number of
neutrino families. The results obtained at LEP confirmed with high preci-
sion the Standard Model.

The research program at CERN, apart from Particle Physics in large collid-
ers, includes projects in Nuclear Physics like the Isotope Separation OnLine
DEvice (ISOLDE) project, or in Neutrino Physics, like the CERN Neutrinos
to Gran Sasso (CNGS) project. Other active research fields are technological
developments in accelerators, detectors and computer science.
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Concerning computing, a revolutionary development at CERN was the
development of the World Wide Web (”WWW” or simply the ”Web”) in the
80s by Tim Berners-Lee and others. On April 30, 1993, CERN announced
that the World Wide Web would be a free tool, available to everybody. A
recent study found that there are over 11.5 billion indexed web pages in the
Web as of January 2005.

An important active research field is currently the Grid project, with the
goal of handling the huge amount of data expected at the LHC.

Grid computing is covered in depth in section 3.
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1.2 The LHC

The accelerator complex of CERN (shown schematically in figure 1.1) consists
of several machines where particles are accelerated successively to higher
energies. The last stage of the complex is the Large Hadron Collider (LHC)
[4] [5], presently under construction. In addition, the LHC injectors are used
for experiments at lower energies.

Figure 1.1: Scheme of the CERN accelerator complex.
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The LHC accelerates protons and lead ions at high energies never achieved
before. Two proton beams collide with a center-of-mass energy of 14 TeV
and heavy ions with a center-of-mass energy of 1250 TeV. The accelerator
is placed in the tunnel of 27 km of circumference used by LEP, 100 meters
underground. The existing accelerator facilities at CERN are used as pre-
accelerators (see figure 1.1).

Each LHC beam contains 2835 bunches, each of them with 1011 particles.
Since the beam crossing frequency is 25 ns, a luminosity of 1034 cm −2s−1

can be achieved in the so-called ’high luminosity’ phase. To achieve such
a challenging performance, LHC uses the most advanced super-conducting
magnet and accelerator technologies.

Figure 1.2 shows the four experiments planned for the LHC along the
accelerator ring. These experiments are ALICE (shown in figure 1.3) dedi-
cated to the study of heavy-ion physics and quark-gluon plasma, LHCb (also
shown in figure 1.3) for CP violation studies in B meson decays and finally
ATLAS and CMS (shown in figures 1.4 and 1.5), which are general purpose
experiments. ATLAS is described in detail in the next section.

Figure 1.2: The 4 LHC experiments.
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Figure 1.3: The Alice and LHCb detectors.

Figure 1.4: Sketch of the ATLAS detector.
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Figure 1.5: The CMS detector.

1.3 The ATLAS experiment

ATLAS (A Toroidal LHC ApparatuS) [6] is a general-purpose detector de-
signed to exploit the full discovery potential of the LHC. The detector de-
sign is optimised to analyse expected processes in the SM and new physics
as well. ATLAS includes a very good electromagnetic calorimeter (for elec-
tron and photon identification and energy measurements), complemented by
full-coverage hadronic calorimetry (for accurate jet and missing transverse
energy measurements) and finally a high-precision muon tracking system.
The technical details are described in the ATLAS Technical Proposal [7] and
in the ATLAS Technical Design Report [8].

Figure 1.6 shows a photograph of the ATLAS detector under construction.
ATLAS has a structure with several layers, called sub-detectors, in or-

der to measure particle properties. The main goals of the sub-detectors are
summarised below.

• Observation of charged particles tracks. This implies measuring the
charge, trajectory and momentum of the particles. It also implies the
detection of secondary vertices from short-lived decaying particles.

• Measurement of the energy carried by electrons, photons and hadrons
produced in each collision.
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Figure 1.6: Photograph of the ATLAS detector under construction.

• Indirect detection using transverse momentum conservation of weak-
interacting neutral particles, such as neutrinos.

• Identification of the detected particles.

• Capability for maintaining a long and reliable operation in a very hostile
radiation environment.

The different parts of the ATLAS detector are listed below

• Tracking Detector: The inner region of the detector is filled with
highly segmented position sensitive devices in order to measure charged
particle tracks with high accuracy.

• Calorimetry System: The calorimeters measure electromagnetic and
hadronic energy. They have enough thickness to fully absorb the elec-
tromagnetic or hadronic showers produced by the particles. Electro-
magnetic calorimeters measure the energy of electrons, positrons and
photons interacting with charged particles inside matter. Hadronic
calorimeters measure the energy of hadrons interacting with atomic
nuclei.

• Muon Chambers: The outer layers of the detector are able to detect
charged particles. They consist of gas-filled chambers. As only muons
and neutrinos can reach these outer layers, they are called muon cham-
bers. The presence of neutrinos can only be inferred from transverse
missing energy.

26



• Magnet Systems: They are intended to bend the trajectories of
charged particles and allow the measurement of their momenta.

In fixed target experiments, the particles are produced mostly in the
forward direction and the detectors are placed in the beam downstream di-
rection. In colliding beam experiments like ATLAS, particles are produced
in all directions so a 4π stereo radian detector geometry coverage is needed.
As a result, ATLAS has a cylindrical structure.
The main physics goal of ATLAS (and also CMS, the other general purpose
experiment) is to explore SM and beyond the SM processes. In particular:

• To discover or exclude the Standard Model Higgs or the various Higgs
bosons of super-symmetric theories.

• To discover or exclude super-symmetry.

• To discover or exclude any new electroweak gauge bosons with masses
of the order of 1 TeV.

• To discover or exclude any new quarks or leptons with masses of the
order of 1 TeV.

• To study the production and decays of the top quark.

• To study B-physics, the decay of B-baryons and mesons.

1.3.1 ATLAS sub-detectors

In the following, the different ATLAS sub-detectors are presented. A
schematic view of the ATLAS detector is presented in figure 1.4 showing
the various sub-detectors.

Some of the ATLAS subsystems have been partly constructed in Spain. In
particular, the Instituto de F́ısica Corpuscular (IFIC) [10] in Valencia hosts
three working groups involved in the ATLAS experiment:

• The SCT group is involved in the Atlas Forward Silicon Tracker con-
struction. In total, 220 Semi-Conductor Tracker (SCT) modules and
the corresponding read out electronics have been assembled and tested.
This work has been done in collaboration with the Centro Nacional de
Microelectrónica (CNM) in Barcelona.

• The TileCal group is responsible for the design, assembly, test and
commissioning of the Read Out Drivers electronic boards (RODs) for
the Hadronic Tile Calorimeter (TileCal) of the ATLAS detector.

The group has also constructed 50% of the modules for one of the
extended barrel parts of the hadronic calorimeter.
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A photomultiplier test setup was installed at IFIC where more than
1750 photomultipliers (PMs) were tested. This represents 17.5% of the
total number of PMs.

• The ATLAS Grid Computing group is in charge of a Tier-2 Grid
centre and is involving in research and development of ATLAS Grid
tools and software.

Inner detector

The goal of the Inner Detector (ID) is to reconstruct tracks and vertices
with high efficiency, contributing with the calorimeter and muon systems to
electron, photon, muon and jet measurements. The ATLAS ID covers the
pseudo-rapidity range |η| < 2.5. A view of the Inner detector is shown in
figure 1.7 .

Figure 1.7: A view of the ATLAS Inner Detector.

Silicon micro-strip and pixel detectors are used to achieve high-precision
measurement close to the interaction point. Around the vertex region, Pixel
Detectors are used, providing a very high granularity. In the second layer, the
Semi-Conductor Tracker (SCT) uses silicon micro-strip detectors. To increase
the number of tracking points, a third layer is used: the Transition Radiation
Tracker (TRT), with straw detectors providing the possibility of continuous
tracking and electron identification. The combination of the two techniques
(silicon detectors and straw detectors) gives very robust pattern recognition
and high precision in both φ and z coordinates, with an average of 11 precision
space-points measurements and 36 hits in the straws per track.

The Pixel Detector is designed to provide high precision measurements as
close as possible to the interaction point. The detector consists of three layers
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at average radii of 5 cm, 10 cm, and 12 cm, and four disks on each side,
between radii of 11 and 20 cm, in order to complete the angular coverage.
It contains approximately 1500 identical barrel modules and 1000 identical
disk modules with a total amount of 140 million channels.

The SCT system is designed to provide eight precision measurements per
track, contributing to the measurement of momentum, impact parameter
and vertex position. The barrel SCT consists of four double-sided layers of
silicon micro-strip detectors and provides precision points in the Rφ and z
coordinates. This sub-detector contains 61 m2 of silicon detectors, with 6.2
millions channels.

The TRT consists of straw detectors. Each straw is a small cylindrical
proportional chamber, with an anode wire in the center and the straw wall
acting as a cathode. Electron identification capability is ensured by employing
xenon gas to detect transition-radiation photons created in a radiator located
between the straws. The TRT barrel contains about 50000 straws and the
end caps contain 320000 radial straws, with 420000 electronic channels. The
TRT detector is also shown in figure 1.7.

Calorimeters

At the LHC, about twenty soft collisions per bunch crossing are produced.
As a consequence, fast detector response and fine granularity are required to
minimise the impact of pile-up on the physics performance.

ATLAS has an electromagnetic calorimeter covering the rapidity region
|η| <3.2, a barrel hadronic calorimeter covering |η| <1.7, hadronic end cap
calorimeters covering 1.4 < |η| <3.2, and forward calorimeters covering 3.2<
|η| <4.8.

The electromagnetic calorimeter is a lead Liquid-Argon (LAr) detec-
tor with accordion geometry. The hadronic barrel calorimeter (Hadron Tile
Calorimeter) is based on a sampling technique with plastic scintillator plates
(tiles) embedded in an iron absorber. At larger rapidities, where high radia-
tion resistance is required, the radiation-hard LAr technology is used for all
calorimeters: the hadronic end cap calorimeter and the forward calorimeter.
A scheme with all the calorimeters is shown in figure 1.8 .

The Liquid Argon sampling calorimeter technique with ”accordion-shaped”
electrodes is used for electromagnetic calorimetry covering the pseudo-
rapidity interval |η| <3.2. This technique is also used for hadronic calorimetry
in the range 1.4< |η| <4.8.

In the barrel, the electromagnetic calorimeter consists of two identical
half-barrels covering the rapidity range |η| <1.4. For each half-barrel (divided
into 16 modules) the calorimeter is made of 1024 accordion-shaped absorbers
alternating with 1024 read-out electrodes. Between each pair of absorbers,
there are two liquid argon gaps, separated by a read-out electrode.
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Figure 1.8: Scheme including the calorimeters of the ATLAS detector.

The electromagnetic EndCap calorimeter (EMEC), the Hadronic EndCap
calorimeter (HEC) and the Forward Calorimeter (FCAL) are placed inside a
common EndCap cryostat. The EMEC, covering the range 1.375< |η| <3.2,
uses the same technique as the barrel part.

The HEC covers the range 1.5< |η| <3.2 and uses copper-plates as ab-
sorber, with parallel geometry in this case. The FCAL covers the range
3.2< |η| <4.9 providing coverage for electromagnetic and hadronic showers
by using copper and tungsten as absorbers, respectively.

The electromagnetic calorimeter is segmented in three longitudinal sam-
plings in the |η| <2.5 region and in two samples in the |η| >2.5 region. Its
total thickness is above 24 radiation lengths for the barrel and above 26 for
the end caps.

The Tile Calorimeter is a sampling device made out of steel and scin-
tillating tiles as absorber and active material, respectively. It is divided in
three sections: the Central Barrel (CB) and two Extended Barrels (EBs). The
barrel covers the region |η| <1.0, and the extended barrels cover the region
0.8< |η| <1.7. Azimuthally, the Barrel and Extended Barrels are divided into
64 modules. The full depth of the TileCal is above 7 absorption lengths in
the CB and about 10 in the EB.

The tiles are placed perpendicular to the colliding beams. This is an inno-
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vation of the ATLAS TileCal, since in most hadronic calorimeters the active
elements are placed parallel to the beams. This design ensures homogeneity
in the signal sampling. The structure is periodic along z. The tiles are 3 mm
thick and the total thickness of the iron plates is 14 mm.

The light produced in the scintillating tiles has a wavelength in the ul-
traviolet region and intensity proportional to the energy deposited by the
particles. Both sides of the scintillating tiles are read-out via WaveLength
Shifting (WLS) fibres by two PhotoMultiplier Tubes (PMTs) to achieve re-
dundant read-out. The WLS fibres shift the light to longer wavelengths, in
order to match the sensitivity of the PMTs.

The use of fibres allows to define a three-dimensional cell read-out, with
projective geometry to the interaction region for triggering and energy re-
construction. The TileCal has a three samplings longitudinal segmentation,
with a ∆η ×∆φ granularity equal to 0.1×0.1 in the first two samplings and
0.1×0.2 in the last sampling. A compact electronic read-out is housed in the
girder of each module.

Muon system

The ATLAS Collaboration has designed a high-resolution muon spectrometer
with stand-alone triggering and momentum measurement capability over a
wide range of transverse momentum, pseudo-rapidity and azimuthal angle.
Four chamber technologies are employed in the detector. The positions of the
chambers are optimised to achieve good hermeticity and optimum momentum
resolution.

For precision measurement of muon tracks in the principal bending di-
rection of the magnetic fields, Monitored Drift Tube (MDT) chambers are
used ,except in the innermost ring of the inner station of the end caps where
particle fluxes are highest. In this region, covering the pseudo-rapidity range
2< |η| <2.7, Cathode Strip Chambers (CSCs) are employed.

The trigger function in the barrel is provided by three stations of Resistive
Plate Chambers (RPCs). They are located on both sides of the middle MDT
station, and either directly above or directly below (depending on φ) the
outer MDT station. In the end caps, the trigger is provided by three stations
of Thin Gap Chambers (TGCs) located near the middle MDT station.

Magnet system

An optimised magnetic field configuration for particle bending around the
various detectors, within a structure which minimises scattering effects, has
been chosen by ATLAS. The final arrangement consists of a central solenoid
servicing the inner detector trackers with an axial magnetic field, surrounded
by a system of three large air-core toroids generating a tangential magnetic
field for the muon spectrometer. A niobium-titanium superconductor in a

31



copper matrix technology is used. The magnet system weighs 1300 tons and
is cooled by liquid helium down to 4.5 K (needing 40 days to reach this
temperature).

The subsystems are the Central Solenoid (CS), Barrel Toroids (BTs) and
two EndCap Toroids (ECTs). The CS is a superconducting solenoid made
as a single layer coil. It is magnetically decoupled from the toroid magnets
and is mounted in the same cryostat as the LAr Calorimeter. This solenoid
provides a 2 Tesla magnetic field.

The BTs cover the central region and provide a 2-6 T ·m magnetic field
integral. It is build up by eight flat racetrack magnets each of them consisting
of two double pancake windings housed in a common aluminum case. The
two ECTs are positioned inside the Barrel Toroid at the end of the Central
Solenoid, providing a 4-8 T · m magnetic field integral. In contrast to the
Barrel Toroid, the eight coils of each End Cap are assembled inside a single
cryostat.

1.3.2 ATLAS performance

Inner detector

The track momentum resolution per isolated muons can be described ap-
proximately by

σ

(
1

pT

)
= 3.6× 10−4 ⊕ 1.3× 10−2

pT

√
sinθ

[GeV −1] (1.1)

where pT is the transverse momentum (in GeV) and θ the polar angle. The
first term is the intrinsic detector resolution and the second term is due
to multiple scattering. This result implies that the momentum resolution is
dominated by multiple scattering for momenta below 36 GeV.

The track impact parameter resolution for muons is:

σ(d0) = 11⊕ 73

pT

√
sinθ

[µm] (1.2)

where d0 is the impact parameter and pT is in GeV as before. The first term is
the intrinsic detector resolution and the second term is due to multiple scat-
tering. This result implies that the impact parameter resolution is dominated
by multiple scattering for momenta below 6.6 GeV.

Similar results are obtained for isolated pions. Worse results are expected
for electrons, since electron tracks suffer from bremsstrahlung. At high mo-
menta, muons can be reconstructed with 99% efficiency. Pions and electrons
can be found with 95% efficiency. For pT = 1 GeV , the efficiency drops to
97%, 84% and 76% for µ, π and e, respectively. These efficiencies are fairly
robust to the effects of detector inefficiencies and noise, as well as pile-up at
high luminosity.
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The TRT allows a π/e separation. For 90 % electron efficiency, the pion
rejection is about 40.

Algorithms have been developed to allow the reconstruction of primary
vertices in the context of high luminosity. For H → γγ events (a difficult
case since there are no changed tracks associated to the Higgs boson), an
efficiency of 70% can be achieved. In B0 → J/ψKs decays, the Ks vertex can
be reconstructed with 40% efficiency.

Of special interest is the capability of the inner detector to detect b-jets,
i.e. jets originating from the decay of b-hadrons. Typical values are efficiencies
of 60%, 10% and 1% for b-jets c-jets and other jets, respectively, using impact
parameter based algorithms. This performance applies to jets in the pT range
of 50 to 250 GeV.

Jets originating from τ -decays can also be identified assuming τ hadronic
decays. If the τ -hadronic products are hard enough (typically pT > 10 GeV ),
the τ labeling efficiency is of the order of 90%. The alignment and calibration
of the ID has also been considered in detail. An uncertainty in momentum
scale of 0.02% seems challenging but possible to achieve.

Electromagnetic calorimeter

The electromagnetic calorimeter offers for electrons and photons a good en-
ergy resolution, excellent uniformity and angular resolution, and powerful
particle identification capability. The main performance can be summarised
as follows. The energy resolution for isolated electrons and photons can be
described approximately by:

σ(E)

E
=

10%√
E
⊕ 0.7% (1.3)

where E is the particle energy in GeV. The first term is the sampling term
and the second term depends on the calorimeter uniformity and calibration
errors. The calibration of the calorimeter, leading to a constant term of 0.7%,
can be achieved using Z → e+e− events.

The use of the fine longitudinal and lateral segmentation of the calorime-
ter allows several precision measurements of the shower position and angle
to be performed. For example, the primary vertex in H → γγ events can
be measured with an accuracy of 1.3 cm. An average rejection factor of 3
against π0 should be obtained for a photon efficiency of 90%.

The combination of the ID and the electromagnetic calorimeter provides
the potential to identify and measure the energy and measurement of elec-
trons and photons in the presence of background. Electrons and photons
are however significantly affected by the material in front of the calorimeter.
Nevertheless, the effects of bremsstrahlung and conversions can be partially
compensated by the use of dedicated algorithms. Using E/p from W → eν
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events, it should be possible to calibrate the calorimeter to 0.1 % in cells of
size 4η4 φ = 0.2× 0.4.

Low energy electrons coming from b → e or J/ψ → e+e− can also be
identified. Electrons with ET > 20 GeV can be identified with 70% efficiency
and jet rejection rates of 105. Photons with ET > 20 GeV can be identified
with 80% efficiency and jet rejections of 103.

The invariant mass resolution for a light Higgs boson with mass of 100
GeV decaying into photon pairs is 1.1 GeV. The mass resolution for a Higgs
of 130 GeV decaying into four electrons is 1.5 GeV.

Hadronic calorimeter

The hadronic calorimeter, normally in association with the electromagnetic
calorimeter, is relevant for the measurement of jet and missing transverse
energy. Since the calorimeters are non-compensating, an algorithm for jet
energy reconstruction is applied to correct for this effect and to add correc-
tions for energy loss in the dead material. The intrinsic performance of the
detector, in the region that extends up to |η| = 3, is of the order of:

σ(E)

E
=

50%√
E
⊕ 3% (1.4)

where E is the jet energy in GeV. The constant term reflects in this case the
intrinsic calorimeter behavour rather than calibration or uniformity errors.
The resolution degrades when the jet reconstruction is limited to a cone or
when the jet points to a crack region. The response of the calorimeter is
nearly linear in the range of 20 to 1000 GeV, with deviations of less than 3%.

Low pT jets can be reconstructed down to 15 GeV (25 GeV at high lu-
minosity). The performance for forward jet tagging in the rapidity range
2 < |η| < 5 is a 90% efficiency up to |η| = 4, decreasing to 50% at |η| = 4.8,
in both cases with fake rates smaller than 10%.

Hadronic τ decays can be efficiently reconstructed by using the infor-
mation from the calorimeters and the ID. For τ -tagging efficiencies of 20%,
rejection factors of 102 to 103 can be achieved for jets from W , top or b-
quarks.

The most relevant issues for the Emiss
T performance are: calorimeter cali-

bration and coverage, cuts applied to sum cell energies and presence of noise
and pile-up. At low luminosity, the missing energy resolution is described by:

σ(Emiss
T ) = 0.46

√
ET (1.5)

where ET is the total transverse energy in GeV. At high luminosity the
resolution degrades by a factor of 2.

Various cases of invariant mass reconstruction have been investigated.
The typical mass resolution for W bosons decaying into hadrons is 8 GeV.
The mass resolution for a 100 GeV Higgs boson decaying to b-quarks is 15
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GeV. Finally, the mass resolution of a Z boson decaying to τ pairs is typically
10 GeV at low luminosity.

Muon Spectrometer

The combined muon measurements provide a highly performant reconstruc-
tion over a very large momentum range, from 6 GeV up to 2 TeV. The
efficiency is larger than 85%. The correct matching of muon spectrometer
and ID tracks allows rejection of muons from π/k decays and identification
of muons from heavy flavour decays. Muons with pT below 6 GeV can be
identified using the ID and the hadron calorimeter.

The accurate momentum reconstruction allows a precise invariant mass
measurement from multi-muon final states. The Z-boson mass can be recon-
structed with a 2.5 GeV resolution, comparable to the natural width. Higgs
boson decays into four muons can be reconstructed with a resolution of about
1.1% for Higgs masses below 200 GeV.

1.3.3 ATLAS software

In present HEP experiments like ATLAS, computing physics tools are as
important as any other part of the detector. This is due to the expected
huge amount of data, calculations to be performed and large number of
collaborators involved in the experiment.

Information and references concerning the online and offline software to
be used by the ATLAS collaboration can be found in [6] and [7], and in
particular in the Computing Technical Design Report (TDR) [9].

The main software activities are described below.

• Computing Coordination and Management

• Software Project

– Coordination and Management

– Simulation: Generators, Geant4 framework, Digitization, fast sim-
ulation

– Core Services: Athena framework, Databases, Geometry, Event
Data Model (EDM), Graphics

– Event Selection, Reconstruction and Analysis Tools

• Database and Data Management (including on-line activities)

• Computing Operations
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– Grid, Data Challenges and World-wide operations

– Grid Tools and Services development and deployment

– Operations Management

We describe briefly the most important software tools that are used in
this work.

Athena framework

Athena is part of the Core services of the ATLAS Software Project. It is a
control framework and an enhanced version of the Gaudi framework, that
was originally developed by the LHCb collaboration, but is now a common
ATLAS / LHCb project and is also used by other experiments .

Athena is a specific implementation of an underlying architecture, also
called Gaudi, that was designed for a wide range of physics data processing
applications.

Nowadays Gaudi is a kernel of software common to both ATLAS and
LHC-b, while Athena includes ATLAS-specific developments.

In particular, the Athena framework

• provides a skeleton where developers plug in their code,

• gives most of the common functionality and communications between
different components,

• embodies the underlying design and philosophy of the software,

• encourages a common approach and

• factors out common functionality for re-use.

Athena is written in the Python programming language and is used for run-
ning most of the ATLAS software, in particular Atlfast.

Graphics and event display software

The ATLAS event display is called Atlantis.
The primary goal of Atlantis is visual investigation and understanding of

complete events. In addition, it facilitates developing reconstruction and anal-
ysis algorithms, and allows debugging during detector commissioning. The
Atlantis program is based on DALI, the event display used by the ALEPH
experiment.

Atlantis is written in Java and runs on different operating systems. It
uses the experience obtained from DALI, which showed that 2D projections
provide excellent information for understanding events. The choice of 2D
projections is driven by data and the detector layout. Sometimes nonlinear
projections are helpful for track identification or extrapolation.
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Simulation software

This part of the ATLAS Software includes the programs described below.

• Generators
Event generators are essential tools for understanding the complex
physics processes that lead to the production of hundreds of particles
per event at LHC energies. Generators are used to optimise detector
designs, to formulate analysis strategies, or to calculate acceptance cor-
rections. They also allow to calculate uncertainties in physics results.

Generators allow to model the physics of hard processes, initial-
and final-state radiation, multiple interactions and beam remnants,
hadronization and decays, and the interplay between all these processes.

One of the supported generators for the ATLAS experiment is called
PYTHIA. In our study, we use the PYTHIA event generator to generate
events, as described in chapter 4. We describe PYTHIA in more detail
later and we study its possible use in Grid environments, in particular
in BOINC, in section 6.4 .

• Fast Simulation
The ATLAS fast simulation program, Atlfast, simulates physics events,
including some effects due to detector response and the software recon-
struction chain. The input to the program is the collection of four-
vectors from a physics event, provided by a physics event generator.
Four-vectors corresponding to isolated electrons and muons are smeared
and the resulting four-vectors are the output to be used in physics
analysis. The calorimeter response to photons and jets is simulated as
well. Jet finding algorithms are applied to the energy deposits in the
calorimeter, and the resulting jets are the output for physics analysis.
Other quantities calculated by Atlfast are track helix parameters and
global event quantities such as the total transverse energy and missing
momentum.

The original version of Atlfast is a stand-alone FORTRAN program.
Currently it has been rewritten in C++, and the structure has been
modified to fit within the Athena framework. The physics results are
however the same as in the original FORTRAN version.

In our study, we use Atlfast coupled to PYTHIA to generate and re-
construct events, as explained at chapter 4. We describe Atlfast and we
study its use in the BOINC Grid environment, in section 6.4 .

• Geant4
The ATLAS full simulation programs have been based on the Geant3
simulation package since the conception of the experiment. With the
development and implementation of the Geant4 program in the year
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2000, ATLAS decided to use this new program. The switch-over hap-
pened in 2003. Since then, Geant4 has become the main simulation tool
of ATLAS, and all new developments have been done in this environ-
ment.

The Geant4 program provides a framework and the necessary function-
ality for running detector simulation in particle physics experiments.
The functionalities provided include optimized solutions for geometry
description and navigation through the geometry, the propagation of
particles through detectors, the description of materials, the modeling
of physics processes (a huge effort has been invested in recent years
into the development and improvement of hadronic-physics models),
visualization, and many more. Geant4 allows the definition of active
detector elements, performs actions within them, and writes out hits
which carry information like position, energy deposit, identification of
the active elements, etc. Geant4 is part of the common LCG appli-
cation project, and its development is pursued as a world-wide effort,
coordinated by a strong development team based at CERN.

Geant4 is not directly used in our study because we use the ATLAS Fast
simulation software. Nevertheless its study is interesting since Geant4
is used in the full simulation of ATLAS events.

We discuss in depth Geant4 later and we study its possible use in Grid
environments, in particular in BOINC, in section 6.4 .

• Garfield
Garfield is a Monte Carlo computer program to simulate gaseous de-
tectors and is programmed in FORTRAN. It is included in the LCG
project and is used by most CERN experiments, in particular by
ATLAS.

Garfield is not used directly in our study but its use in Grid environ-
ments is interesting due to similarities with PYTHIA and the interest
for ATLAS research.

The work related to Garfield and its use in Grid environments is de-
scribed in section 6.4 as well.

Data Management

Currently, a very active ATLAS area is Distributed Data Management
(DDM). In particular, ATLAS has recently started to develop the final DDM
system for LHC startup, called Don Quijote 2 (DQ2). The scope of this pro-
gram is the management of all kind of data (event data, conditions data,
user-defined file sets containing files of any type).
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The DQ2 system design is based on an analysis of data management in
ATLAS including managed production, global data search, managed distri-
bution operations, and user analysis support including usages outside Grid.

Initially, Don Quijote was developed as a small program to locate files
and issue file movement by users of Grid middleware. It was later expanded
in the light of experience to compensate for missing functionality and finally
Don Quijote eventually became the single point of failure since all production
jobs depended on its functionality.

The ATLAS computing model includes the following pieces that are de-
scribed in detail in [9]:

• Data Acquisition and Managed Production,

• Data Aggregation and Splitting,

• Group-level Data Production (analysis group production, calibration
teams),

• Managed Data Distribution,

• File Migration,

• Data Discovery and Access,

• Physics Analysis and finally

• Regional Semi-Autonomous Grids.
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CHAPTER

2

The Standard Model and Extra
Dimensions

2.1 The Standard Model

The Standard Model of particle physics (SM) describes the strong, weak, and
electromagnetic forces between the fundamental particles of ordinary matter.
An introduction to the SM can be found in [11].

The SM is a quantum field theory, consistent with both quantum
mechanics and special relativity. All experimental tests of the SM are at
present in agreement with theoretical predictions. However, the SM is not a
complete theory of fundamental interactions, primarily because it does not
describe the gravitational force.

The SM contains both fermionic and bosonic fundamental particles.
Fermions possess half-integer spin and obey the Pauli exclusion principle.
Bosons possess integer spin, do not obey the Pauli exclusion principle and
are responsible for the interactions between fermions.

The SM includes a theory of the electroweak interaction, unifying the
weak and electromagnetic interactions, and a theory of the strong interac-
tion called quantum chromodynamics (QCD). All these theories are gauge
theories, coupling fermions to intermediate bosons. The Lagrangian is in-
variant under various gauge transformations and therefore these mediating
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bosons are called gauge bosons. The bosons of the Standard Model are listed
in table 2.1 .

The Higgs boson, also included in the table, is the only fundamental boson
which is not a gauge boson. It has not been observed, and its discovery is a
major goal of present experiments, in particular of LHC experimenta.

Also the gravitons, the mediators of the gravitational interaction, are
included in the table, although they are not included in the SM.

interaction boson symbol spin mass charge

(GeV/c2) (qe)

electromagnetic photon γ 1 0 0

weak intermediate Z 1 91.2 0

bosons W 1 80.4 ±1

strong gluons g 1 0 0

gravitational graviton G 2 0 0

Higgs H 0 mH > 114 0

Table 2.1: The SM fundamental bosons.

The SM is invariant under gauge transformations that are elements of
a unitary group called a ”gauge group”. The gauge group of the strong
interaction is SU(3), and the gauge group of the electroweak interaction is
SU(2) × U(1). Therefore, the complete gauge group of the Standard Model
is SU(3)× SU(2)× U(1).

There are twelve different fundamental fermion types , or ”flavours”, in
the SM. The proton and the neutron are made by two of these fundamental
fermions: the up quark and the down quark, bound together by the strong
nuclear force. Together with the electron (bound to the nucleus in atoms by
the electromagnetic force), these fermions are the building blocks of ordinary
matter. All the fundamental fermions of the Standard Model are listed in
table 2.2.

The experimental mass values and other properties of the SM fermions
and bosons can be found in reference [12].

Each particle of the SM has a corresponding antiparticle, not shown in
the previous tables.

Concerning quarks masses, what is actually measured experimentally is
the mass of baryons and mesons, since quarks cannot be isolated due to
confinement. The mass attributed to quarks is the mass of the quark at
a given renormalization scale using QCD. There are various techniques in
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quarks aprox. mass charge leptons aprox. mass charge

(GeV) (qe) (GeV) (qe)

u 0.003 -1/3 e 0.0005 -1

d 0.005 +2/3 νe ∼ 0 0

s 0.1 -1/3 µ 0.106 -1

c 1.3 +2/3 νµ ∼ 0 0

b 4.3 -1/3 τ 1.8 -1

t 175 +2/3 ντ ∼ 0 0

Table 2.2: Fundamental fermions of the SM

order to compute quark masses. For example, the hadron spectrum can be
computed using QCD in a lattice and the input quark masses are varied until
the results agree with experimental data.

Fermions can be ordered in three generations, the first one consisting of
the electron, the up and down quarks, and the electron neutrino. All ordi-
nary matter is made of first-generation fermions; all the other fundamental
fermions, except neutrinos, decay into first-generation fermions and can only
be produced in high-energy interactions. The second and third generations
are a replica of the first generations, including particles with the same fun-
damental interactions, but with a different mass. For example, the electron
and the muon have both half-integer spin, unit electric charge and are not
sensitive to the strong interaction. The muon is however about 200 times
more massive than the electron.

The electron, the electron neutrino, and the corresponding particles from
the other generations, are called ”leptons”. Unlike quarks, they do not have
strong interaction, only weak and electromagnetic, that decrease with dis-
tance. On the contrary, the strong force between quarks increases with dis-
tance so quarks can only exist in colourless combinations called hadrons. This
phenomenon is known as quark confinement. These colourless combinations
are either baryons composed of three quarks (the proton and neutron being
the most familiar examples) or mesons composed of quark-antiquark pairs,
such as pions. Baryon masses exceed largely quark masses due to the strong
binding energy.

2.2 Beyond the Standard Model

Some examples of important predictions of the SM that have been tested
experimentally are:
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• The existence of the weak W and Z intermediate bosons, the gluon, the
charm quark, the bottom quark and the top quark. All these particles
have been observed experimentally after they were predicted.

• The expected properties of all these particles were experimentally con-
firmed, for example the mass of the W and Z bosons, calculated after
the discovery of neutral currents.

• The Large Electron-Positron collider (LEP) at CERN tested with ex-
tremely good accuracy various predictions concerning the production
and decay properties of Z bosons.

The Standard Model has been therefore very successful in explaining ex-
perimental results, but cannot be considered a complete theory of fundamen-
tal interactions. The main reasons are listed below.

• Gravity : The SM does not include the gravitational interaction.

• Parameters : The SM contains 19 free parameters, including particle
masses and coupling constants. These parameters cannot be calculated
using the model itself.

• Neutrino oscillations : The first experimental deviation from the SM
(as proposed in the 1970’s) was the observation of neutrino oscilla-
tions, implying massive neutrinos, since massless neutrinos cannot os-
cillate. The SM model can however be modified to include non-zero
neutrino masses. This may be simply achieved by adding 10 more free
parameters, in addition to the initial 19. The pattern of all these new
parameters remains however unexplained.

• Hierarchy problem: The SM does not answer the question why the
weak force is 1032 times stronger than gravity. More technically, the
question is why the Higgs boson is so much lighter than the Planck
mass, since the large (quadratically divergent) quantum corrections to
the the Higgs boson mass should push this mass to a huge value, un-
less an incredible fine-tuning between the bare mass and the quadratic
corrections produces the required cancelation.

In addition, the Higgs boson, predicted by the SM, has not been observed
experimentally. One of the goals of the LHC is to observe the Higgs boson.

Since the completion of the Standard Model, many efforts have been made
to modify it in order to address all these problems.

Grand Unification theories appear as an attempt to reduce the large num-
ber of free parameters. These grand unified theories (GUTs) imply that the
SU(3), SU(2), and U(1) groups are actually subgroups of a single larger
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symmetry group. At high energies (far beyond the reach of current experi-
ments), the symmetry of the unifying group is recovered; at low energies,
the larger symmetry reduces to the SM symmetry SU(3)×SU(2)×U(1) by
spontaneous symmetry breaking. A distinguishing prediction of these GUTs
is that, unlike in the Standard Model, protons should decay. Proton decays
have not been observed to date, excluding many GUT theories, in particular
SU(5).

Another extension of the SM intended to solve the hierarchy problem
is Supersymmetry. This theory implies a massive supersymmetric ”partner”
for each particle of the conventional SM. These partners have the same cou-
plings but a a different spin than conventional SM particles. The lightest
supersymmetric particle has been proposed as a candidate for dark matter.
Although supersymmetric particles have not been observed experimentally,
this theory is at present rather attractive as a building block for other theo-
ries. One of the main research topics for LHC experiments is the search for
such supersymmetric particles.

Other important extensions to the SM are Extra Dimensions (ED) theo-
ries. These theories can unify gravity with the other fundamental forces and
solve the hierarchy problem as well. They are discussed in the next section.

2.3 Extra dimensions

A short introduction on the motivation, history and main ideas of extra
dimension theories is given below. A more extensive discussion can be found
in references [13] [14].

Already in the 19th century, two basic forces of nature (electricity and
magnetism) were unified by Maxwell following the work of Ampère and Fara-
day. Once the relativistic invariance of Maxwell’s theory was established, it
became clear by the work of Minkowski, Lorentz, Einstein and others, that
the unification of electricity and magnetism entails a unification of three-
dimensional space and time into a four-dimensional space.

As soon as a relativistic theory of gravitation was available, the question of
its unification with Maxwell’s theory became relevant. Even before Einstein’s
general relativity, Nordström [15] proposed a relativistic theory with gravity
described by a scalar field coupled to the trace of the energy momentum
tensor. In 1914, still before the publication of general relativity, Nordström
[16] proceeded to unify his theory of gravitation with Maxwell’s theory adding
another space dimension, inspired by Minkowski’s four-dimensional space-
time. The result was a flat five-dimensional world. He noticed that under
certain hypothesis, the equations of this five-dimensional ”Maxwell” theory
include the gravitational theory. He concluded that scalar gravity in our four-
dimensional world is a remnant of an abelian gauge electromagnetic theory
in a five-dimensional flat space-time.
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In 1919 Kaluza [17] demonstrated that the Einstein theory of grav-
ity in five dimensions, by imposing a circular constraint on the 4th spa-
tial dimension, yields the ordinary four-dimensional Einstein gravity and
Maxwell electromagnetism. He studied the case of a five-dimensional mani-
fold M = M4 × S1, the product of a four-dimensional space-time M4 with a
circle S1.

To understand the principle of this unification, one can use the following
toy example: a free scalar Φ(xµ, y) in five dimensions. The lagrangian has the
form

LΦ = −1

2
∂A∂

AΦ, A = 0, 1, 2, 3, 4 (2.1)

In M = M4 × S1 the 5th coordinate y is curled into a circle of radius R
so one can impose the boundaty condition

Φ(xµ, y) = Φ(xµ, y + 2πR) (2.2)

and by expanding the 5th component in harmonics, one obtains

Φ(xµ, y) =
+∞∑

n=−∞

Φ(xµ)ne
iny/R (2.3)

After redefining the field in the way φn =
√

2πR Φn, the action becomes

SΦ =

∫
d4x

(
−1

2
∂µφ0∂

µφ0

)
−

∫
d4x

+∞∑
n=1

(
∂µφn∂

µφ∗n +
n2

R2
φnφ

∗
n

)
(2.4)

and the conclusion is that in M4 × S1 a free massless scalar becomes

• a massless scalar φ0 and

• an infinite tower of massive scalars with masses

mn =
|n|
R

; n = 1, 2, 3 . . . (2.5)

This infinite number of scalars is called a Kaluza-Klein tower (KK) and
the additional scalars obtained are called KK replica. For energies much lower
than 1/R only the zero mode is visible. This explains why the extra dimen-
sions have not been observed since current experiments have not reached the
required energies.

At the LHC, the two proton beams will collide with a center-of-mass
energy of 14 TeV so the new experiments will be sensitive to KK replica
with masses of 1 TeV, or equivalently to curled extra dimensions with a
compactification scale R of the order of 1TeV −1.
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If the action of Einstein gravity is considered, instead of a simple scalar
field, then an important result is obtained, namely the unification of electro-
magnetism and gravity. In four dimensions the action is

S4 =
1

2
M2

Planck

∫
d4x

√
gR4(g) (2.6)

where MPlanck
∼= 1.2× 1019 GeV, g is the determinant of the metric gµν and

R4 is the scalar curvature. If we incluye an additional space dimension, the
action becomes

S5 =
1

2
M3

5

∫
d4xdy

√
GR5 (2.7)

where G = det(GAB) with A,B = 0, 1, 2, 3, 4, and R5 is the scalar curvature
in 5 dimensions. By compactifying the 5th dimension into a circle with Radius
R, as in the case of the scalar field, the metric tensor can be expanded in
harmonics in the following way:

GAB(xµ, y) =
+∞∑

n=−∞

GAB(xµ)ne
iny/R (2.8)

yielding again massless particles and an infinite tower of massive gravitons.
The massless components of the five dimensional metric can be written in
the following way

G0
MN =

 gµνe
σ/
√

3 + AµAν e−2σ/
√

3Aµ

e−2σ/
√

3Aµ e−2σ/
√

3

 (2.9)

and therefore the metric GMN in five dimensions includes

• a massless graviton in four dimensions gµν

• a gauge vector boson Aµ, the photon, and

• a scalar field σ, called the radion.

So, the four dimensional gravity and a gauge photon are unified in five
dimensions.

By expanding the five dimensional action of eq. (2.7) and keeping only the
zero mass fields, it is possible to obtain the four dimensional gravity action,
with the additional constraint

M2
Planck = M3

5 2πR (2.10)

Those ideas were further elaborated by Klein in 1926. In particular,
he calculated the electric charge of the KK replica and noticed that the
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charge is quantized [18]. He also obtained the relativistic generalization of
Schrödinger’s equation (carried out independently by many others) [13],
now known as the Klein-Gordon equation. He arrived to this result starting
from Kaluza’s theory: a zero mass wave equation in five dimensions yields
four-dimensional Klein-Gordon equations for the individual harmonics [19].
Klein also discussed the higher harmonics and the size of the radius R.

One can notice that the fundamental scale of the fifth dimension, M5,
can be arbitrarily low if the radius R is sufficiently large, opening a way
to explain why the Planck scale is so large. One has to take into account,
however, that eq. (2.5) implies that mn ∝ 1/R so if R is too large, then the
masses of the unobserved KK replica would be too small.

A solution to this problem is provided by theories including branes. The
idea is that non-gravitational, i.e. SM, fields are confined in a sub-manifold
of the full space called brane, and therefore do not possess KK replica. On
the other hand, the gravitational field occupies the full space, filling the
bulk space outside the brane. In some models, all the SM fields are forced to
live inside the brane. In other models only SM fermions are confined inside
the brane and bosons can propagate freely in the bulk.

Many different extensions of the KK theory are available. A popular ex-
ample is the so called ADD model [20], with fermions confined to a brane
but all gauge bosons propagating in the bulk between branes.

In this case, the couplings of KK gauge replica to fermions are equal to
the SM couplings between gauge bosons and fermions except for the presence
of an additional

√
2 factor [21].

The phenomenology of such models is discussed for example in [22]. The
observation of KK excitations of the weak gauge bosons (Z and W ) using the
ATLAS experiment has already been discussed [23] [24]. It has been shown
that, if KK excitations Z∗ and W ∗ exist, they can be reconstructed in the
ATLAS detector using leptonic decays as discovery channels. In this work we
discuss the possibility to detect hadronic decays of Z∗ and W ∗ (see chapter
4).
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CHAPTER

3

Distributed Grid computing

After discussing the LHC, the ATLAS collaboration and the physics that can
be extracted, we study in depth the important part of the computing chal-
lenges involved and the proposed solution to them: the Grid. In particular,
we define the Grid and its different flavours together with the objectives to
reach and other areas where it can be useful.

Then, we describe the Grid used by LHC experiments, the LHC Com-
puting Grid (LCG), focusing on the ATLAS collaboration. We explain its
computing model, distributed in tiers, and its infrastructure. We discuss the
EGEE I project, which involves most of the current resources of LCG, its
follow up EGEE II and its predecessor EDG. We describe Quattor as well,
the software tool created in the scope of EDG Grid project and currently
used to install and maintain the Grid nodes.

Finally we also introduce the BOINC distributed computing environment
as another flavour of Grid that has been recently proposed at CERN to
perform physics calculations using the spare time of desktop computers.

3.1 The Grid

3.1.1 Definition

Whereas the Web is a service for sharing information over the Internet, the
Grid is a service for sharing computer power and data storage capacity over
the Internet. The Grid goes well beyond simple communication between
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computers, and aims ultimately to turn a global network of computers into
one vast computational resource. An introduction to Grid computing is
given in [25]. More detailed information can be found in [27].

The Grid takes its name from an analogy with the electrical ”power grid”.
It is expected that ”the Grid would let users exploit processing power off the
Internet as easily as electrical power can be drawn from a wall socket”. The
meaning of this sentence is:

When you plug-in something to the electrical power, you never worry
about where the electricity you are using comes from, if it is from coal, from
wind or from a nuclear plant. You know that whatever you plug into a wall
socket, it will get the electrical power you need to do the job. In the Grid,
when you sit in front of your computer your only concern is to run your job (a
simulation, analysis...). You just will that you will get the computing power
and storage capacity you need to do the job and you do not worry about
where it comes from.

Anyway it is important to notice that there is no exact definition for the term
Grid, as it is very recent and many different kinds of distributed computing
environments have been called Grids by different authors.

Ian Foster, considered as one of the ’fathers’ of the Grid, tries to assess
this issue giving a formal definition [26]. For him, a Grid is a system that

• coordinates resources that are not subject to centralised control . . .
A Grid integrates and coordinates resources and users that live within
different control domains. For example, the user’s desktop vs. central
computing; different administrative units of the same company; or diffe-
rent companies; and addresses the issues of security, policy, payment,
membership, and so forth that arise in these settings. Otherwise, we
are dealing with a local management system.

• . . . using standard, open, general-purpose protocols and interfaces
A Grid is built from multi-purpose protocols and interfaces that address
such fundamental issues as authentication (check of the identity of the
user), authorisation (check if the user has the rights to use the Grid
resources), resource discovery, and resource access. It is important that
these protocols and interfaces be standard and open. Otherwise, we are
dealing with an application specific system.

• . . . to deliver non trivial qualities of service.
A Grid allows its constituent resources to be used in a coordinated
way to deliver various qualities of service, relating for example to res-
ponse time, throughput, availability, and security, and/or co-allocation
of multiple resource types to meet complex user demands, so that the
utility of the combined system is significantly greater than that of the
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sum of its parts. This feature is very important in order to solve complex
scientific and technical problems involving collaborative environments
(what has recently being called e-Science).

For David Anderson, considered as the ’father’ of BOINC, that is a dis-
tributed computing environment making profit of unused desktop computers,
those should not be included in the general definition of Grid and the term
Distributed Computing System is more appropriate [28]. BOINC is discussed
in depth in section 3.3 .

In this work we consider Distributed Computing Systems like BOINC as a
flavour of Grid, since this is the point of view of CERN [25] and it is also
explicitly considered as such by Ian Foster [26].

3.1.2 Some key concepts

The following concepts are common to most kinds of Grids:

Virtual Organisation (VO)
They are made by people who share a common goal, like the people
collaborating in each of the LHC experiments. To achieve their goal,
they need to perform several types of demanding calculations which
can not be handled with the resources belonging to just one of the
participants, or they need to access each others’ databases in a well-
defined and secure way. Then, a certain Grid can have many different
VOs that choose to share their resources, meaning direct access to
computers, programs, files, data, sensors and networks. This sharing
must be arranged in a controlled, secure, and flexible way, usually for
a limited period of time.

Middleware
It is the software that organises and integrates the different computa-
tional facilities belonging to a Grid. Its main role is to automate all the
”machine to machine” negotiations required to interlace the comput-
ing and storage resources and the network into a single computational
”fabric”. It enables the various elements (servers, storage, networks,
etc.) to participate in a unified Grid environment.

Metadata
This is essentially ”data about data”. Metadata play a crucial role as
they contain all information about, for example, how, when and by
whom a particular set of data was collected, how the data is formatted,
and where in the world it is stored (sometimes at several locations). It
is a key ingredient for middleware.

51



Testbeds
A testbed is a dedicated Grid infrastructure implemented and deployed
to test middleware and application development. It is a ”real Grid”,
whose limit is mainly the restricted access, limited to small groups of
developers and scientists during limited periods of time. It is made up
of one or more nodes (computer centres contributing resources to the
testbed). Each node contains a certain number of computers, which
may be playing different roles.

3.1.3 Middleware components

The main components of the middleware used by most of the current Grid
projects are described below.

• User Interface (UI): allows users to access the Grid facility and re-
ceives the input Grid jobs written in Job Description Language (JDL).

• Resource Broker (RB), the module that receives users’ requests and
queries the Information Index to find suitable resources.

• Information Service (IS), which can reside on the same machine as
the Resource Broker, keeps information about the available resources.

• Storage Element (SE): provides storage space.

• Replica Manager (RM): coordinates file replication across the Grid
from one Storage Element to another. This is useful for data redun-
dancy but also to move data closer to the machines which perform the
computation.

• Replica Catalogue (RC): keeps information about file replicas. A
logical file can be associated to one or more physical files that are
replicas of the same data. Thus a logical file name can refer to one or
more physical file names.

• Worker Node (WN): processes input data.

• Computing Element (CE): receives job requests and delivers them
to the Worker Nodes, that perform the real work. The Computing Ele-
ment provides an interface to the local batch queueing systems. A CE
can manage one or more WNs. A Worker Node can also be installed
on the same machine as the Computing Element.

We have to keep in mind that the details and names of this middleware
components may change slightly from one Grid project to another. For in-
stance, we study in section 6.1 the case of BOINC Grids middleware.
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3.1.4 The Globus toolkit

Most of the Grid projects are being built on protocols and services pro-
vided by the Globus Toolkit [29], a software being developed by the Globus
Alliance, which involves primarily Ian Foster’s team at Argonne National La-
boratory and Carl Kesselman’s team at the University of Southern California
in Los Angeles.

The toolkit provides a set of software tools to implement the basic services
and capabilities required to construct a computational Grid, such as security,
resource location, resource management, and communications.

Globus includes programs such as:

• GRAM (Globus Resource Allocation Manager), which figures out how
to convert a request for resources into commands that local computers
can understand

• GSI (Grid Security Infrastructure), which provides authentication and
authorisation.

• MDS (Monitoring and Discovery Service) to collect information about
resources (processing capacity, bandwidth capacity, type of storage, etc)

• GRIS (Grid Resource Information Service) to query resources for their
current configuration, capabilities, and status

• GIIS (Grid Index Information Service) which coordinates arbitrary
GRIS services

• GridFTP (Grid Service for File Transfer) which provides a data trans-
fer mechanism with FTP functionality and GSI security

• The Replica Catalogue ∗, a catalogue that allows other Globus tools
to find where other replicas of a given dataset can be found on the Grid

• The Replica Management system, which ties together the Replica
Catalogue and GridFTP technologies, allowing applications to create
and manage replicas of large datasets.

There are two main reasons for the strength and popularity of the Globus
toolkit: its object oriented approach and the fact that it is available under
an open source licensing agreement which allows to use the software freely
and add improvements to it.

For instance, the current middleware being developed for the Grid used
by the LHC experiments originated from Globus and it uses most of the
services described before.

∗’Catalog’ in US spelling
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3.1.5 Overview of a Grid job

The life cycle of a Grid job is explained in figure 3.1.

Figure 3.1: Overview of the life cycle of a Grid job

• The user creates the job written in JDL language or uses a Graphical
User Interface (GUI) that creates it.

• The user sends the job to the Grid using the User Interface (UI).

• At this stage, it is checked the identity (authentication) and the rights
of the user to access to the Grid resources (authorisation).

• If it is accepted, the job is registered by the Logging and Book-keeping
service (LB).

• Then the Resource Broker (RB) receives the job, queries the Informa-
tion Index (II) to find suitable resources and sends it to the allocated
resources.

• The job is sent to a worker node with computing elements, storage
elements and connected to a replica catalogue to retrieve and use the
required files. At this stage, the status of the job is registered from time
to time by the LB service to be queried by the user if desired.

• Finally, the result comes back to the RB, which sends it back to the
UI and logs the result to the LB service.
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3.1.6 Challenges and benefits of the Grid

The Grid has been proposed as a solution to the current challenges that
scientists of different research fields have to face regarding computing [25]:

• The amount of data needed is huge and the data is stored in different
institutions. It might take a long time to copy the data to one central
computer in order to analyse it. Ideally the computation should be
performed where the data are.

• The amount of calculations to perform is huge. It would take too much
time in one computer, or even in a cluster of computers.

• A scientific team has members around the globe and wants to share
large amounts of data and to perform complex analysis of the data in
a short time.

In addition, other key benefits that a computing Grid can provide are the
following [30]:

• The cost of maintaining and upgrading the necessary resources for such
computing challenges are more easily handled in a distributed environ-
ment, where individual institutes and participating national organisa-
tions can fund local computing resources and retain responsibility for
these, while still contributing to the global effort.

• In a distributed system, there are no single points of failure. Multi-
ple copies of data and automatic reassigning of computational tasks
to available resources ensures a load balancing of resources and facili-
tates access to the data for all the scientists involved, independently of
geographical location. Spanning zones also facilitates round-the-clock
monitoring and support. This is important since in world wide collab-
orations there is always some research institutes using the Grid at any
time, so the facility has to be available 24/24h.

As an example of such a round-the-clock Grid involving different
scientific communities distributed geographically, the ATLAS collaboration
has approximately 1800 physicists participating, coming from more than
150 universities and laboratories in 34 countries, as we show in figure 3.2.

The Grid can be very useful for many different kinds of fields. Currently,
some of the fields where Grid computing can be used are:

• High Energy Physics (HEP): To explore fundamental particles and
their interactions, HEP experiments, in particular the LHC (see 1.2),
will soon produce about 15 Petabytes of data per year, corresponding to
30 million CDs. Thousands of physicists from many universities around
the world will work in the analysis of these data.
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Figure 3.2: The different countries involved in the ATLAS collaboration.

• Flood forecasting: The recent extreme floods in Europe resulted
in scientific and societal concerns about the reliability of short-term
quantitative meteorological and flood forecasts. The utility of Grid
technology to support flood crisis teams in international rivers is cur-
rently being studied. Flood forecasting requires quantitative precipita-
tion forecasts based on meteorological simulations that require high-
performance computing resources and infrastructure that normally are
not available locally on the appropriate scale.

• Climate prediction: Climate change, and our response to it, are is-
sues of global importance, affecting food production, water resources,
ecosystems, energy demand, insurance costs... The currently running
experiments need to perform climate model simulations thousands of
times to produce a forecast of the climate for the XXI century. In
the past, estimates of climate change were made using a very small
ensemble (tens rather than thousands) of model runs. By using Grid
technologies the performance can be considerably improved.

• Ozone studies: Earth scientists keep track of the level of atmospheric
ozone with satellite observations. For this task alone, they download,
from space to ground, about 100 Gigabytes of raw images per day (the
equivalent of about 150 CDs).
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• Medicine: Vascular diseases are a major medical problem, particularly
in the developed countries and are of major concern in Europe. Treat-
ment often involves surgery. Grid computing provides a modern way of
addressing problems of this kind and currently Grid-based prototypes
are being developed for pretreatment planning in vascular interventions
and surgical procedures through real-time interactive simulation of vas-
cular structure and flow. The system consists of a distributed real-time
simulation environment, with user interaction in Virtual Reality. A 3D
model of a patient’s arteries serves as input to the environment for
blood flow calculations.

• Biomedical studies: Ten years ago, biologists simulated single small
molecules on computers. Now, using Grid technologies, some projects
work on the simulation of thousands of molecular drug candidates to see
how they would interact with specific proteins. Other projects simulate
and predict the structure of proteins to be used in medical studies of
protein-related diseases. Examples of such studies are the malaria drug
discovery survey called WISDOM (Wide In Silico Docking On Malaria)
[31] made by the EGEE project (see 3.2.2) and the Predictor@home
project [32] using the BOINC environment [33] [34] (see 3.3) to predict
structure of proteins to address critical biomedical questions.

• Genome: When human genome and protein structures are known,
scientists can use them to research disease treatments and cures. Un-
locking the secrets of the human genome would be impossible without
the computerised analysis of massive amounts of data, including the se-
quence of the three billion chemical units that comprise our DNA. An
example of one of such studies is the Human Proteome Folding project
[35], one of the projects of the IBM’s World Community Grid project
[36], which uses the BOINC environment.

In particular, the Instituto de F́ısica Corpuscular (IFIC) in Valencia
is part of the ATLAS collaboration. It has contributed to the CrossGrid
project [37], that involves four different projects related to particle physics,
medical research, flooding prediction and pollution and weather forecasting.

3.1.7 Different kinds of Grids

Concerning the different kinds of Grids, they have been classified in the
following way [25]:

• National Grids: The idea behind National Grids is to couple high-
end resources across a nation. This provides a strategic ”computing
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reserve” and allows substantial computing resources to be applied to
large problems in times of crisis, such as to plan responses to a major
environmental disaster, earthquake, or terrorist attack. Furthermore,
such a Grid will act as a ”national collaboratory”, supporting investi-
gations of complex scientific and engineering problems, such as global
climate change, space station design, and environmental cleanup. For
example, the UK has a major e-Science program [38] dedicated to de-
velop a major national Grid: the UK Grid for Particle Physics (GridPP)
[39].

• Private Grids: sometimes called local-Grids or intra-Grids, they can
be useful in many institutions (hospitals, corporations, small firms, etc).
They are characterised by a relatively small scale, central management
and common purpose and, in most cases, they probably need to inte-
grate low-cost commodity technologies. In fact, commercial solutions
for such private Grids are already available, such as Entropia’s DC
Grid† [40], and likely to grow in sophistication over the next years.

• Project Grids: They are created to meet the needs of a variety of
multi-institutional research groups and multi-company ”virtual teams”,
to pursue short or medium-term projects (scientific collaborations, en-
gineering projects). A Project Grid is typically built ad hoc from shared
resources for a limited time, and focuses on a specific goal. Typically,
this is something that a self-motivated team could set up, without need
to apply to any major Public Grid infrastructure for permission. The
LCG Project at CERN (see section 3.2.1) is an example of such a Grid
for a particular high-energy physics community.

• Goodwill Grids: This kind of Grids are specialised on distributing
computing power. They are subscribed by anyone owning a computer
at home who wants to donate some computer capacity to a good cause.
For this reason these type of Grids are also called ”Public Resource
Computing (PRC)” environments since they typically use non private
resources to perform the calculations ‡. To date, activities in this area
has been limited to the various ”@home” projects using the BOINC
distributed computing environment (see 3.3). In most cases, they pro-
vide an attractive screen saver and give credits for the performed work
to motivate the participants. Examples of such a Grid are the famous
SETI@home project [41] (looking for extraterrestrial signals) and also
the CERN-managed one, LHC@home, discussed in depth in section 6.3.

†Entropia ceased commercial operations in 2004, although no formal announcement to
that effect was ever made. Currently, the official web site is offline.

‡Project Grids, like CERN’s LCG, also use public resources in the sense that they are
not privately funded.
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More information, in Spanish, about this kind of Grids can be found
in reference [42].

• Peer-to-peer Grids: They are specialised in distributing data and
depend on people sharing data between computers. The name peer-to-
peer suggests that there is no central control, requiring no third-party
intervention. Compared to Goodwill Grids, the idea is that you get
in kind for what you give: access to data files for sharing your own,
for instance. Examples of this kind of sharing data Grids are Napster
and Gnutella. It is important to notice that currently the BOINC Grid
environment is studying to use also a peer-to-peer Grid, in particu-
lar BitTorrent [43], to share data replicas among the different Worker
Nodes to decrease the load on the data servers.

• Consumer Grids: The resources are shared on a commercial basis,
rather than on the basis of goodwill or mutual self-interest. Compa-
nies or other organisations rent distributed resources, and the owners
of these resources are paid for the computing power or data storage
capacity they provide, by a ”middleman” in charge of the middleware.

ATLAS uses LCG, which is a kind of Project Grid in this classification.
We study in depth this LCG Grid in the following work.

The BOINC Grid, which is a kind of Goodwill Grid, is also used at CERN
and it is used also for ATLAS research. Although BOINC is a Goodwill Grid
in the sense that is mostly used to execute jobs in computers from volunteers,
it can also be used to take profit of the spare time of private computers. In
particular in this work we show the execution of Grid jobs in a private farm
at CERN and in computers from several Spanish institutions as well.

3.2 LHC Computing Grid

3.2.1 The LCG project

The Large Hadron Collider (LHC), which is expected to start to operate in
2007. It will start at a center of mass energy of 900 GeV and it will ramp up
to 7 TeV per beam in the second half of 2008. It will collect approximately
15 Petabytes of data annually. Access to this experimental data needs to
be provided for about 5,000 scientists in some 500 research institutes and
universities worldwide who are participating in LHC experiments. In addi-
tion, all the data needs to be available over the estimated 15-year lifetime
of the LHC. The analysis of the data, including comparison with theoretical
simulations, requires of the order of 100,000 CPUs using 2004 measures of
processing power.
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The aim of the LHC Computing Grid (LCG) project§ [30] [44] is to
develop, build and maintain a distributed computing infrastructure for the
storage and analysis of data from the four LHC experiments.

A traditional approach would be to centralise all this capacity in one
location near the experiments, as for LEP. In case of the LHC, however, the
Computing Grid distributed model for data storage and analysis was chosen
due to the benefits obtained by a Grid environment (see 3.1.6).

Of course, a distributed system presents also a number of significant chal-
lenges. These include ensuring adequate levels of network bandwidth between
the contributing resources, maintaining coherence of software versions in-
stalled in various locations, copying with heterogeneous hardware, managing
and protecting the data so they are not lost or corrupted over the lifetime
of the LHC, and providing accounting mechanisms so that different groups
have fair access, based on their needs and contributions to the infrastructure.
These are some of the challenges that the LCG Project is addressing.

LCG hierarchical dataflow

The LCG Project uses a distributed four-tiered model.

Tier-0 : The original raw data emerging from the data acquisition systems
of the experiments is recorded by the Tier-0 centre at CERN. The
first-pass reconstruction takes place at the Tier-0, where a copy of the
reconstructed data is stored. The Tier-0 distributes a second copy of
the raw data to the Tier-1 centres associated with the experiment.
Additional copies of the reconstructed data are also distributed to the
Tier-1 centres.

Tier-1 : The role of the Tier-1 centres varies depending on the experiment,
but in general they have the responsibility for managing the permanent
data storage (raw, simulated and processed data) and providing com-
putational capacity for re-processing and for analysis processes that
require access to large amounts of data. At present 12 Tier-1 centres
have been defined, most of them serving several experiments. In par-
ticular, 10 of them serve the ATLAS collaboration.

Tier-2 : The role of Tier-2 centres is to provide computational capacity and
appropriate storage services for Monte Carlo (MC) event simulation
and for end-user analysis. The Tier-2 centres obtain data as required
from Tier-1 centres, and the data generated at Tier-2 centres is sent
to Tier-1 centres for permanent storage. More than 100 Tier-2 centres
have been proposed.

§Recently, the LCG collaboration changed its name to Worldwide LHC Computing
Grid (WLCG) but the project kept its name. Then, currently the LCG project is part of
the WLCG collaboration.
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Tier-3 : Other computing facilities in universities and laboratories will take
part in the processing and analysis of LHC data. They are called Tier-
3 centres. Any group of scientists associated to a Tier-2 centre (with
minimum requirements for computation power and data storage) can
be a Tier-3. These centres are outside the scope of the LCG Project,
although they must have access to the data and analysis facilities, as
decided by the experiments.

In Spain, there is one Tier-1 multi-experiment facility at Barcelona, the
Port d’Informació Cient́ıfica (PIC), giving support to ATLAS, CMS and
LHC-b.

Concerning the Tier-2 Spanish centres, the solution has been federated
Tier-2 facilities involving different research institutes.

There is one Tier-2 for ATLAS involving the Instituto de F́ısica Corpus-
cular (IFIC) in Valencia, the Instituto de F́ısica de Altas Enerǵıas (IFAE) in
Barcelona and the Universidad Autónoma of Madrid (UAM).

There is another Tier-2 for CMS involving the Centro de Investigaciones
Energéticas, Medioambientales y Tecnológicas (CIEMAT) in Madrid and
the Instituto de F́ısica de Cantabria (IFCA) in Santander. There is finally
another Tier-2 for LHC-b formed by the University of Barcelona (UB) and
the University of Santiago de Compostela (USC).

LCG infrastructure

LCG consists of a set of services and applications running on the Grid in-
frastructures provided by the LCG partners. These infrastructures at present
are provided by the EGEE project (see section 3.2.2) in Europe, the Open
Science Grid (OSG) ¶ project [45] mostly in US and the Nordic Data Grid
Facility (NorduGrid) [46], mostly in the Nordic European countries.

We focus in the following on the EGEE infrastructure as it is used by
the West European sites, in particular by the Spanish ones.

3.2.2 The EGEE project

The Enabling Grids for E-sciencE (EGEE) project‖ [49] is intended to pro-
vide access to major computing resources, independent of geographic loca-
tion. The LCG project is the primary production environment that uses the

¶The OSG project is a continuation of Grid3, a community Grid built in 2003 as a
joint project of the US Grid projects iVDGL-VDT, GriPhyN and PPDG, and the US
participants in the LHC experiments ATLAS and CMS.

‖At the beginning, the acronym stood for ’Enabling Grids for E-science in Europe’ but
it was changed when the project was extended to non-European sites.

61



EGEE project infrastructure. Then, from the WLCG collaboration point of
view, we can see EGEE as ”the operational Grid instance integrating many
national Grids and the majority of the sites that will provide capacity for
LHC experiments” [50].

The EGEE project primarily concentrates on three core areas:

• To build a consistent, robust and secure Grid network that will attract
additional computing resources.

• To continuously improve and maintain the middleware in order to de-
liver a reliable service to users.

• To attract new users from industry and science and to ensure the high
standard of training and support needed.

The project started in April 2004 with the objective of building a per-
manent European Grid infrastructure that could serve a broad spectrum of
scientific applications reliably and continuously, providing Grid services to
scientists throughout Europe.

Funded by the European Commission, the EGEE project community has
been divided into 12 partner federations (led by CERN), consisting of over
70 contractors and over 30 non-contacting participants covering a wide-range
of both scientific and industrial applications and involving major computer
centres in Europe and leading American and Russian centres.

The work being carried out in the project is organised into 11 activities.
Two pilot application domains were selected to guide the implementation
and certify the performance and functionality of the evolving infrastructure.
One is the LCG project, supporting physics experiments, and the other
involves Biomedical Grids, regarding bio-informatics and health-care.

EGEE II

The EGEE project was conceived as the first two-year phase of a four-year
programme. EGEE was due to end on 31 March 2006 and a follow up
project, EGEE-II [51], started on 1 April 2006.

By the end of 2005, the 800 scientists and engineers working on EGEE
(from five different continents) were managing an infrastructure sharing the
power and storage from more than 10.000 dedicated computers located at
over 200 sites worldwide. From October 2004 to October 2005 about two
million jobs were successfully run on this Grid.

Currently, EGEE-II consists of some 20,000 CPUs available in addition
to 5 Petabytes of storage capacity and maintains 20,000 concurrent jobs on
average.
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More than 20 applications from scientific domains including Earth
observation, climate prediction, petroleum exploration and drug discovery
are running on this infrastructure.

EGEE-II continues the work of EGEE in order to build an international
computing infrastructure for science, extending this infrastructure to other
countries and projects. It also increases the number of scientific disciplines
supported, with plans to include fusion science and continuing to look for
new communities with high performance computing needs as well.

The EGEE-II Consortium consists of more than 90 partners from 32
countries, grouped into 12 federations and representing almost all major and
national Grid efforts in Europe, and projects from the USA and Asia as well.
In addition, a number of related projects being submitted to FP6 calls will
extend the infrastructure further. Examples of such areas are:

• Latin American countries with European partners (Argentina, Brazil,
Chile, Cuba, Mexico, Peru and Venezuela together with Italy, Portugal
and Spain), by the e-Infrastructure shared between Europe and Latin
America (EELA) project [52]

• South Eastern European countries (Albania, Bosnia- Herzegovina, Bul-
garia, Croatia, FYR of Macedonia, Greece, Hungary, Serbia - Montene-
gro, Romania, Turkey), by the South Eastern European Grid (SEE-
Grid) project [53]

• Mediterranean countries (Turkey, Algeria, Morocco, Italy, Cyprus, UK,
Egypt, Arabian Republic of Syria, Israel, Jordan, Tunisia, Palestine,
Spain and Malta, apart from CERN), by the (EUMedGRID) Project
[54]

• Baltic States (Lithuania, Latvia and Estonia), by the BalticGrid
project [55]

• China, by the EUChinaGRID Project [56]

Combined with other related projects spun out from or affiliated with
EGEE and EGEE-II, this demonstrates the incubator role of the EGEE
project.

3.2.3 The EDG project

The widely recognised success of past Grid projects coordinated by CERN
has been a key factor in generating support to follow-up projects like EGEE.

This is the reason why it is worth mentioning at least one of them: the
European DataGrid (EDG) project [57]. It began in 2000 and finished in
2004.
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For instance, the middleware of LCG is based on the one of the EDG
project together with the Virtual Data Toolkit (VDT) middleware [47], used
by the iVDGL Project [48].

In the year 2000, one of the challenges for building a Grid was the lack of
software needed to keep it ticking over (the middleware). This is the reason
why CERN, together with a host of leading European research centres, took
the initiative for the European DataGrid (EDG) project, in order to develop
a testbed for Grid technologies.

EDG was built on a software toolkit for Grid technology known as Globus,
developed in the US, as well as other software packages, and used these to
build a functioning Grid testbed (see 3.1.2). The project involved more than
100 computer engineers, who generated some 300 000 lines of code. In 2002,
EDG middleware managed to connect computing resources at some 40 major
centres, including extra-European sites in Russia, South-Korea and Taiwan.

In collaboration with the LHC experiments ATLAS and CMS, a number
of highly demanding computational challenges were successfully carried out.
This proved that many components of the EDG software were ready for use
in future projects.

3.2.4 The Quattor software management tool

One of the projects started in the scope of the EDG project is the Quattor
[58] administration toolkit system. Its name is a recursive acronym which
stands for ”quattor is an administration toolkit for optimizing resources”.
Quattor is currently being used at CERN and in many other Grid facilities
to manage and configure the Grid nodes.

Quattor is a large scale fabric management system intended for managing
medium to very large (more than 1000 nodes) clusters. It provides a portable
and modular software for the automated installation, configuration and
management of clusters and farms running UNIX flavours, like Linux and
Solaris ∗∗ [59]. Development and maintenance is coordinated by CERN (IT
department) in collaboration with other partner institutes.

Quattor was created to extend the functionality and to solve the
problems of LCFG [117]. LCFG, which stands for ”Local ConFiGuration
system”, was developed at the University of Edinburgh and a modified
version, called EDG LCFG, was used initially to configure and manage
prototype testbed clusters for the EDG project. Finally, the Quattor toolkit
was developed using an architecture similar to LCFG and was used in most

∗∗Solaris is a computer operating system developed by Sun Microsystems. It is certified
against the Single Unix Specification as a version of UNIX. Then, it is considered a UNIX
system-like, as well as Linux.
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EDG sites. Currently Quattor is used to manage and configure a majority
of LCG sites.

Quattor design and architecture

The Quattor information model is based on the distinction between the
desired state and the actual state. The desired state is registered in a
fabric-wide Configuration Database (CDB), using a specially designed
configuration language to express and validate configurations, composed of
reusable hierarchical building blocks called templates. Configurations are
propagated to the managed nodes.

Quattor involves the following parts:

• CDB: database to manage the configuration of the nodes and clusters
composed by text entries organized in text files.

• Software packages: they involve binaries, scripts, configuration files,
etc. In the case of Linux they are packaged in RPM Package Manager
(RPM) files for distribution. In Solaris they are packaged as Solaris
Package (PKG) files.

• Components: they are configuration scripts written in Perl program-
ming language that can be executed automatically by Quattor or in
any other way, as decided by the administrator.

The following subsystems running on the nodes handle the managing of
software packages and the configuration of local services:

• The Software Package Management Agent (SPMA) handles local soft-
ware installations using the system packager (RPM or PKG). Pack-
ages can be stored and managed centrally in Software Repositories
(SWRep).

• The Node Configuration Manager (NCM) subsystem configures and
reconfigures local system and Grid services using a plug-in component
framework.

• A subsystem called Automated Installation Infrastructure (AII) han-
dles the initial node installation, configuring the system installer (Kick-
Start/Anaconda, JumpStart).

We discuss Quattor in more detail in section 5.3.
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3.3 The BOINC distributed computing envi-

ronment

The Berkeley Open Infrastructure for Network Computing (BOINC) project
[33] can be seen as a good example of ”Goodwill Grid” or ”Public Resource
Computing” environment, in the classification presented in section 3.1.7 .

It is an open source software platform for distributed computing that uses
volunteered computer resources. In short, it uses idle CPU cycles from the
computers that participate, i.e. the CPU power that is not in use by the
computer, to perform scientific calculations.

It can therefore be seen as a specialised Grid suitable to run applica-
tions that are ”pleasantly parallel” so that it is possible to distribute the
calculations to a number of machines that do not communicate with each
other. Anyway, some new projects like Feynman@home have announced that
they will incorporate this feature. In the case of Feynman@home, this is
mandatory since in order to be able to perform high order Feynman dia-
grams calculations, a communication is required, as higher order diagrams
require the results of the previous ones.

In addition, BOINC suitable applications have high CPU requirements
relative to the size of the input and output data. The reason is that at present
BOINC is focused towards CPU calculations instead of data transfers .

On the other hand, the infrastructure required to set up a BOINC Grid is
very simple, requiring only a single server, although it can be distributed to
different machines for performance reasons, since client machines are typically
provided and maintained by volunteers.

The applications that are run in a BOINC project must have public appeal
so that participants are willing to volunteer their resources. Outreach is a
very important part of this kind of project to give the public a feeling of
direct participation in a scientific project. Attractive screen savers are often
provided together with a credit based ranking system for the participants.

It is important to distinguish between ’users’ and ’participants’ as in the
BOINC-related papers they are commonly used indistinctively. In BOINC,
a ’user’ is typically a participant who provides computer power installing
the BOINC software in his or her private computer to execute the Grid jobs
voluntarily, i.e. a user is the owner of one or more Grid Worker Nodes. In
LCG, the concept ’user’ refers to scientists who send the jobs to be executed
in the Grid Worker Nodes. Here we use the LCG meaning as the most
widely used in HEP and we use the word ’participant’ to refer to volunteers
who own Worker Nodes connected to the Grid.

The first project running on BOINC was the well known SETI@home
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[41], to analyse data taken from radio telescopes looking for extra-terrestrial
intelligence. It has delivered more than 9 million years of aggregate computing
time and it has attracted more than 5 million volunteered CPUs. Currently,
BOINC is being used by many different projects in domains like Physics,
Medicine and Climate Prediction.

One of the leading BOINC projects is LHC@home, managed by CERN.
It simulates particles circulating around the LHC ring in order to study the
long-term stability of their orbits. We discuss in more detail this project in
section 6.3.

3.3.1 Overview of a BOINC job

We describe below a typical cycle for sending, computing and receiving a
BOINC job (see figure 3.3).

We can compare it with the equivalent process involved in a generic LCG
job (see section 3.1.5). We have to take into account that, in BOINC, most
Grid middleware components (see section 3.1.3) are in the so called BOINC
servers except the Worker Nodes, which provides computational power, lo-
cated in the BOINC clients, the machines of the volunteer participants. The
different parts of the BOINC server and client are discussed in depth in
section 6 .

Figure 3.3: Overview of the life cycle of a BOINC job.

1. The BOINC client (Grid Worker Node) detects that there are no jobs
to process in the queue or that the amount of work is too small. Then,
it contacts the project’s BOINC scheduling server to get instructions.
This set of instructions depends on the client machine (architecture,
RAM, free disk space...) and may include several Grid jobs at the same
time. In addition, BOINC projects can support several ”applications”,
and the server may send work to the client from any of them.
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2. The client downloads the BOINC job(s) to compute including the ex-
ecutable and the required input files from the Data Server. If any of
those binaries or input data have been already delivered by another
executed job, they will not be downloaded.

3. The client machine runs the job application programs, producing out-
put data.

4. The output files are uploaded to the BOINC Data Server.

5. Finally, the BOINC Scheduling Server is contacted again by the client,
the results are reported and more work is requested. This cycle is re-
peated indefinitely until the user chooses to select a different BOINC
project or to uninstall the BOINC client software entirely from his or
her computer, stopping to contribute to this Grid project.

3.3.2 BOINC credit system

The BOINC Database keeps track of the work done by each computer; this
is called credit. The credits can be used as a reference for the ’Quality of
Service’ of each participant’s CPU.

Credits are useful for BOINC managers because they give information
about submitted jobs and about BOINC clients. They can be also used to
detect and correct problems. For instance, if all the jobs give always too
many credits for a given client machine, then there is probably a problem
with this machine and BOINC can be instructed to not to use it.

In addition, credits are important due to the motivation they provide to
participants. This motivation is a key concept in BOINC, as most of the CPU
used for Grid computations is provided by volunteers.

Those participants can ’compete’ to have as many credits as possible.
They can check the obtained credits for their donated CPU time using the
Participants Web Interface or the BOINC manager utility. They can also
compare themselves with the other participants, and their ranking posi-
tion, at different monitoring and statistics web sites [60] like for instance
the BOINC Synergy one [61].

Participants can join BOINC ’teams’ to combine their credits and com-
pete with the other teams. Some of those teams support web sites with ad-
vanced monitoring and statistics facilities to compare the credits and ranking
of participants and teams (see for instance [61]). Some of those web sites were
used at CERN, as a complement to the BOINC monitoring and management
tools, in order to monitor daily the completed jobs and the machines status
of a farm working for the LHC@home project at CERN. We give more details
about this in sections 6.3 and 6.5.
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To ensure that Credit is granted fairly and properly, most BOINC-powered
projects work as follows:

• Each BOINC job may be sent to several computers.

• When a computer reports a result, it claims a certain amount of Credit,
based on how much CPU time was used.

• When sufficient results have been returned, this number being set by
each BOINC project, a BOINC Validator compares them and if results
agree, this output is called ’canonical’ and the participants are granted
Credit based on the project rules.

In general, at least three Results are returned and BOINC calculates the
average value of claimed Credits. An exact explanation of the current default
rules and those specified by the different BOINC projects can be found in
reference [34].

The process is shown in figure 3.4 where two different clients receives a
copy of the same job at different times and taking different times to compute.
Then, they claim different credits but the same final value is assigned to both
of them.

Figure 3.4: Sketch about describing BOINC credits are granted.

3.3.3 The future of BOINC

The combination of Public Resource Computing and Project Grid comput-
ing, in particular BOINC and LCG, has been studied. Bridges for sending
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jobs between Project Grids and BOINC have been tested and built for the
LCG [44] and NorduGrid [46] middleware.

For instance, there is a bridge from BOINC to LCG-2 middleware (see 5.1)
allowing BOINC jobs to run on LCG resources [62]. In particular, researchers
at CERN have set up a system where jobs submitted to the Grid are sent
either to a BOINC project or to a GRAM job manager (see 3.1.4). This
code has been already fed back and included in the official BOINC software
sources [33].

The idea behind this bridge is to improve the overall performance of a
BOINC platform using a mix of cycle-scavenging †† software (in this case,
BOINC) and dedicated resources (LCG sites in the example). In reference
[63] a description of the possibility to guarantee a ’hard stochastic quality of
service’ mixing those two kinds of Grid technologies is given.

Another recent example, is the implementation in the Condor ‡‡ middle-
ware [64] of a method to allow to run BOINC when there are no Condor jobs
to process or interactive users occupying a given machine. This capability is
described in the Condor manual [65].

We can also mention that the Lattice project [66], from the University of
Maryland, is developing a Grid system that integrates Globus, BOINC, and
several other software components.

It is also worth mentioning that BOINC is currently studying the use
of a peer-to-peer Grid, in particular BitTorrent [43], in order to share data
replicas among the different Worker Nodes (there are not Storage Elements in
BOINC so BOINC clients are at the same time Worker Nodes and Computing
Elements). In that way, when a BOINC client requires data to perform a
computation, instead of looking for the BOINC data servers it will ask other
clients to try to download these data from them. This procedure will decrease
significantly the load of the BOINC data servers and will normally boost the
download speed of the data. In addition, this procedure will allow BOINC
projects to have replicas of the data to recover them if needed.

It has also been considered the possibility of storing permanently data
on the clients having different replicas of the data. In this case, the clients
would be at the same time Grid Worker Nodes, Computing Elements and
Storage Elements.

In chapter 6, the BOINC environment is discussed in detail and the ap-
plications ported to BOINC as well as current projects, installations and

††This is the name for the software that takes profit of non used CPU cycles, i.e. the
computation power which is not used when the computer is idle.

‡‡Condor is a Grid Project started in 1988 at the University of Wisconsin. The LCG-2
middleware originated from Condor, EDG and Globus among others.
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testbeds are also described. A comparison between the LCG Grid and BOINC
is made in chapter 7 .
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Part II

Data analysis
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CHAPTER

4

Search for Z∗ and W ∗ decay modes

4.1 Introduction

As discussed before, in the context of some models with extra-dimensions
of size about 1 TeV −1, in particular in the ADD model with only fermions
confined to a D-brane [20], heavy KK excitations are expected, with the same
properties as the SM gauge bosons, but more massive.

In the following, three hadronic decay modes of massive Z and W gauge
bosons are investigated, using the ATLAS experiment at the LHC. These
decay modes are the following:

Z∗ −→ b b̄

Z∗ −→ t t̄

W ∗ −→ t b

(4.1)

These decays are more difficult to detect than the corresponding leptonic
decays, but may provide very useful information about Z∗ and W ∗ couplings.
In particular, if a resonance is found in any of the leptonic channels, the de-
tection of these hadronic decays should allow a measurement of the couplings
between heavy gauge bosons and quarks.
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4.2 b-tagging

The identification of b quarks is one of the most important tasks of the inner
detector of the ATLAS experiment. For example, b quark identification is
required in the study of t → W b decays, or in the search for new particles
strongly coupled to heavy quarks, like the Higgs boson [67].

Jets originated by b quarks can be identified by taking into account
the large lifetime and mass of B hadrons. Tracks resulting from B hadron
decays have typically large impact parameters (minimal distance between
the track and the primary event vertex) whereas tracks from decays of
hadrons involving just u, d or s quarks originate in general from the primary
vertex. It is also possible to study the semi-leptonic decays of the b quark to
identify b-jets, but this second method is less efficient than the first one.

The b-tagging algorithm involves the following two variables:

• The efficiency (ε) to identify a jet generated by a b quark.

• The rejection factor (R) for jets generated by a non b quark. It is defined
as the inverse of the efficiency, i.e., R = 1/ε.

In general, it is enough to specify Ru and Rc because the rejection factor
is approximately equal for all the other light quarks. Ru also includes the
contribution of jets generated by gluons fragmenting into light quarks. The
rejection factor for a given value of εb depends mainly on two jet variables:
the transverse momentum pT and the rapidity η.

In all decays studied in the following, the tagging of very high pT b
jets is required. The average pT of these jets is shown in table 4.1

< pT > Z∗ → bb Z∗ → tt W ∗ → tb

M = 1 TeV 400 200 250

M = 2 TeV 800 400 500

Table 4.1: Average pT (in GeV) of final state b jets for the various channels
studied in this work.

The tagging of b jets has been studied in detail within ATLAS (see for
example [68]), but in all these studies the average pT of b-jets was typically
below 200 GeV. In order to investigate the b-tagging performance for larger
pT values, the following event samples have been generated and analysed

Z∗(2 TeV ) → b b, c c, u u
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Each sample contained 20 000 events and was processed using the full recon-
struction provided by ATLAS software.

The standard b-tagging algorithm was used. Since this algorithm is not
optimised for high pT jets, the results should be considered conservative, and
further improvements might be expected in the future.
The efficiencies (ε) and rejections (R = 1/ε) reported in table 4.2 have been
applied in our analysis.

mass decay εb Rc Ru

bb 0.1 140 1000

1 TeV tt 0.5 10 100

tb 0.5 7 40

bb 0.1 45 90

2 TeV tt 0.2 28 130

tb 0.2 26 75

Table 4.2: Efficiencies and rejections applied in the b-tagging analysis.

4.3 Search for Z∗ −→ bb̄

4.3.1 Simulation

The events were generated using the ATLAS fast simulation and reconstruc-
tion MC program Atlfast [69] coupled to the Monte Carlo generator PYTHIA
(version 6.157). In section 6.4 these two programs are described in more de-
tail. As explained there, Atlfast was ported to the BOINC distributed com-
puting platform and was used to generate events.

In table 4.3 some information about the generated events for a Z∗ mass
of 2 TeV is presented.

Signal Reducible Backg. Irreducible Backg.

Process Z∗ → bb̄ gg → jj gg → bb̄

Cross section 0.9 pb 5700 pb 7.7 pb

Generated events 10000 100000 100000

Table 4.3: List of generated events for the study of Z∗ → bb with M(Z∗) =
2 TeV
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Events were generated assuming an integrated luminosity of L = 3 ×
105 pb−1, corresponding to 3 years of LHC running at high luminosity.

4.3.2 Selection cuts

The following selection cuts were applied.

• The b-type jets have pT ≥ 500 GeV and |η| ≤ 2.5.

• The invariant mass of Z∗ is 2000± 400 GeV .

The number of events (N) were calculated using the following equation

N = L σ BR(Z∗ −→ bb) ε (4.2)

where

• L = integrated luminosity (we assume 3× 105 pb−1)

• σ(Z∗) = cross section (see table 4.3)

• BR(Z∗ → bb̄) = decay branching ratio (in our case: 1/8 = 12.5%)

• ε = detection efficiency

ε = εkin × ε2b (4.3)

• εkin = number of events in the selected mass window divided by the
total number of generated events

• εb = b-tagging efficiency (chosen to be 10%)

For the 10000 signal MC events, we obtain 5145 events passing the se-
lection cuts so we obtain the following number of expected signal events
according to equation 4.2

Nsig = 173 (4.4)

The equation used to calculate the irreducible background is

N = L · σ(gg → bb̄)ε (4.5)

where ε is calculated in the same way as the signal (eq. 4.3) since in both cases
we have real b-type jets. The result for the irreducible background is 6946
of the 100000 simulated events passing the cuts, so the number of expected
events in the data is
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Nirr = 1604 (4.6)

The equation used to calculate the reducible background is

N = L · σ(gg → jj)ε′ (4.7)

where ε′ is calculated considering all the different jet types. There are 5
possible combinations: bc, bu, cc, cu and uu. The details of the calculations
can be found in ref. [70].

Finally we obtain ε = 2.2 × 10−4 and, applying eq. 4.7, the following
expected number of reducible events in real data

Nred = 19120 (4.8)

4.3.3 Results

The following significance is obtained from the previous results

S√
B

=
Nsig√

Nirr +Nred

= 1.2 (4.9)

where S is the signal and B the total background.

The reconstructed mass peak for the simulated signal is shown in figure
4.1

Figure 4.1: Simulated signal obtained in the study of Z∗ → bb
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In figure 4.2 the histogram including both signal and background events
is presented as well.

Figure 4.2: Signal and background obtained in the study of Z∗ → bb

The signal is very small compared with the expected background. A signal
is considered to be observable if the significance is larger than 5, but in
our case it is much smaller. We conclude then from this analysis that, in
general, the channel Z∗ → bb̄ is not observable at the LHC, with an integrated
luminosity of 3× 105 pb−1 for a Z∗ mass of 2 TeV.
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4.4 Search for Z∗ −→ tt

In this case the final state is more complex and therefore more difficult to
identify. We consider only events with the following t and t̄ decays:

t→ W + b

t̄→ W̄ + b̄
(4.10)

followed by the W and W̄ decays

W → jj

W̄ → l + ν
(4.11)

where j is a jet and (l, ν) is a lepton with its associated neutrino. There-
fore, the final state observed in the detector is

t→ jj + b

t̄→ l + ν + b̄
(4.12)

or, more precisely

Z∗ → l + ν + b̄+ b+ jj (4.13)

4.4.1 Simulation

As in the previous study, the events were generated and reconstructed using
Atlfast and the luminosity is assumed to be L = 3× 105 pb−1. The details of
the analysis are shown in table 4.4.

Signal Reducible Backg. Irreducible Backg.

Process Z∗ → tt̄ W + jets tt̄ events

Cross section 0.9 pb 6.35 pb 1.77 pb

Number of events 10000 100000 100000

Table 4.4: List of generated events obtained in the study of Z∗ → tt with
M(Z∗) = 2 TeV

.
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4.4.2 Selection cuts

The following selection cuts were applied

• The muons have pT ≥ 20 GeV and |η| ≤ 2.5.

• The electrons and the b-type jets have pT ≥ 25 GeV and |η| ≤ 2.5.

• The invariant mass of the reconstructed Z∗ is 2000± 400 GeV .

In total, 545 out of 10000 generated events pass the selection cuts. The
cross sections are presented in table 4.4, the branching ratio of the decay
mode is 1/8 as in the previous case and the efficiency of the detection 0.2.
Then, using eq. 4.2 the following number of events is obtained

Nsig = 74 (4.14)

Concerning the irreducible background 582 out of the 100000 generated
events pass the selection cuts, and applying equation 4.5 we obtain

Nirr = 443 (4.15)

In the case of the reducible background, we find

Nred = 2 (4.16)

4.4.3 Results

Using the previous results the following significance is obtained

S√
B

=
Nsig√

Nirr +Nred

= 3.5 (4.17)

The reconstructed mass peak for the simulated signal is presented in figure
4.3

In figure 4.4 the histogram including signal and background events is
presented as well.
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Figure 4.3: Simulated signal obtained in the study of Z∗ → tt with M(Z∗) =
2 TeV

Figure 4.4: Signal and background obtained in the study of Z∗ → tt with
M(Z∗) = 2 TeV
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In this case, the dominant background is irreducible (t t̄) whereas in the
previous decay mode (Z∗ → bb) the dominant background was reducible.

As in the previous case, the signal is very small compared with the ex-
pected background and, although the significance is larger, the value is again
smaller than 5. Then, we conclude from our analysis that, in general, the
channel Z∗ → bb̄ will be difficult to detect at the LHC with an integrated
luminosity of 3× 105 pb−1 for a Z∗ mass of 2 TeV.
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4.5 Search for W ∗ −→ t b

As in the Z∗ → tt case, the final state, involving a large multiplicity of
particles, cannot be identified easily. For this reason, we consider only the
case where the t quark decays leptonically.

4.5.1 Simulation

The following events (see table 4.5) were generated and reconstructed using
Atlfast, assuming a integrated luminosity of L = 3× 105 pb−1.

Signal Reducible Backg. Irreducible Backg.

Process Z∗ → t b W + jets t t̄ events

Cross section 1.9 pb 6.35 pb 1.77 pb

Generated events 10000 100000 100000

Table 4.5: List of generated events for the study of W ∗ −→ t b with M(Z∗) =
2 TeV

4.5.2 Selection cuts

In this case, the selection is applied in the same way as in the Z∗ → tt case,
except that no energy is collected around the second b-quark, since in this
case this b-quark is the only component of the second jet.

From the 10000 signal generated events, we have 396 passing the selection
cuts. The cross sections are presented in table 4.5, the branching ratio of the
decay mode is 1/4 and the efficiency of the detection is 0.4. Then, using eq.
4.2 the following number of events is obtained

Nsig = 226 (4.18)

For the irreducible background we obtain 146 events, out of 100000 gen-
erated, passing the selection cuts so we obtain from equation 4.5

Nirr = 445 (4.19)

For the reducible background, we obtain 1582 out of the 100000 generated
events passing the selection cuts so the result is

Nred = 74 (4.20)
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4.5.3 Results

We obtain the following significance

S√
B

=
Nsig√

Nirr +Nred

= 9.9 (4.21)

The reconstructed mass peak obtained for the simulated signal is pre-
sented in figure 4.5

Figure 4.5: Simulated signal obtained in the study ofW ∗ → t b withM(Z∗) =
2 TeV

In figure 4.6 the histogram including signal and background events is
presented

As in the previous case, the dominant background is irreducible.
However, in this case we find that the W ∗ → t b decay mode might yield a

signal separable from the background. In addition, we also find a significance
larger than 5. We conclude that it would be possible to detect this mode at
the LHC, for an integrated luminosity of 3 × 105 pb−1 and a Z∗ mass of 2
TeV.
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Figure 4.6: Signal and background obtained in the study of W ∗ → t b with
M(Z∗) = 2 TeV
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4.6 Mass dependence

In table 4.6 we summarize the results from the previous analysis.

M = 2 TeV Z∗ → bb Z∗ → tt W ∗ → tb

signal 174 74 226

irreducible bkg. 1605 443 445

reducible bkg. 19120 2 74

significance 1.2 3.5 9.9

Table 4.6: Signal and background inside a mass window of ±400 GeV around
M = 2 TeV for L = 3× 105 pb−1.

The analysis was also performed for masses of M = 1 TeV . The results
are presented in table 4.7

M = 1 TeV Z∗ → bb Z∗ → tt W ∗ → tb

signal 3461 13170 34178

irreducible bkg 63764 116130 23231

red. bkg 24388 126 257

significance 11.7 35.2 364.5

Table 4.7: Signal and background inside a mass window of ±200 GeV around
M = 1 TeV for L = 3× 105 pb−1.

In figures 4.7, 4.8 and 4.9 the dependence of the significance on the mass
is displayed for the three decays studied in this analysis. An exponential
dependence on the mass is assumed.
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Figure 4.7: Significance as a function of mass for the study of the decay
channel Z∗ → bb and assuming L = 3× 105 pb−1

Figure 4.8: Significance as a function of mass for the study of the decay
channel Z∗ → tt and assuming L = 3× 105 pb−1
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Figure 4.9: Significance as a function of mass for the study of the decay
channel W ∗ → t b and assuming L = 3× 105 pb−1
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From the previous results we conclude that a significance of 5 may be
achieved below a certain mass for each decay mode as shown in table 4.8.

Z∗ → bb Z∗ → tt W ∗ → tb

M(TeV ) 1.4 1.9 2.2

Table 4.8: Maximum heavy boson mass in order to achieve a significance
larger to 5 for an integrated luminosity of L = 3× 105 pb−1.
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Part III

Distributed Computing
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CHAPTER

5

The LCG project

In the past chapter we have studied the search of heavy gauge bosons in
ATLAS at CERN. Now it is worth to talk about the computational tools
that all CERN experiments will require to successfully process, distribute
and analyse the obtained data.

The LCG Project Grid (see 3.2.1) is an important example of a well-
known Grid environment in HEP and is the one used by the ATLAS ex-
periment so it is studied in depth in this Chapter. In addition, we study
the physics applications using this infrastructure like the required libraries,
the data management tools and the simulation software. All of them are pre-
sented in general and also from the point of view of the ATLAS collaboration.

This description of the LCG Grid is important as in the following
chapters we describe as well the BOINC Grid environment and we compare
it with LCG.

We also describe the software tools used by LCG to deploy and manage
the Grid software: Quattor. The work performed writing, improving and
correcting Quattor components is also mentioned.

5.1 LCG technology and infrastructure

We describe the LCG middleware and services (see 3.2.1) deployed on the
EGEE infrastructure (see 3.2.2), as it is the one used in Europe (except in
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the Nordic countries where NorduGrid is used), in particular in Spain. We
focus on the case of the ATLAS collaboration.

EGEE began to work using the LCG-2 middleware package, provided
by the LCG project. This middleware was based on the one from the EDG
project (see 3.2.3), EGEE’s predecessor, among other ones like Globus (see
3.1.4) and Condor [64]).

In parallel it produced the Lightweight Middleware for Grid Computing
(gLite) [71], re-engineered using components from a number of sources to
produce lightweight middleware that provides a full range of basic Grid ser-
vices. As of September 2006, gLite is at version 3.0, and comprises some 220
packages arranged in 34 logical deployment modules. The gLite middleware
is also used by a number of groups outside of EGEE.

As gLite becomes available it is certified by the deployment team, and
installed first on the pre-production service, where it is further tested by
applications groups before being more widely distributed. As far as possible
the new components should be able to co-exist on the same Grid system
with the current middleware, enabling a progressive deployment strategy to
be adopted. This is an essential feature for new middleware to be introduced
into a large operational Grid.

The current middleware package is LCG-2. It is planned to be phased out
as soon as possible after the gLite package has been adopted by the major
applications.∗.

This Grid middleware (LCG-2 / gLite at EGEE) can be classified into
the following different services:

• Security

• Information Service

• Data management

• Workload management

• Computing & storage elements

• File Transfer Service

They are based on the ones used by the EDG project (see 3.1.3). Below
we describe in depth each of them.

∗At the time of finishing this work, end of 2006, gLitle has already been adopted by most
of the LCG sites. In particular all Tier 1 centres should have gLite installed in production
from June 2006 [44]. Nevertheless, it is also stated there that the current official middleware
package continues being LCG-2.
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5.1.1 Security

All EGEE middleware services rely on GSI (see 3.1.4). To be able to use
the Grid facility, users must get and renew their (long-term) certificates
from an accredited Certification Authority (CA). Short-term proxies are
then created and used throughout the system for authentication (check of the
user’s identity) and authorisation (check of user’s rights to access to the Grid
resources). These short-term proxies may be annotated with VO membership
(see 3.1.2) and group information obtained from the Virtual Organisation
Membership Services (VOMS). When longer-term proxies are needed,
MyProxy services can be used to renew the proxy. The sites maintain Cer-
tificate Revocation Lists (CRLs) to invalidate unauthorised usage for a
revoked Grid user.

There is no significant functional difference between the VOMS in LCG-2
and in gLite.

In the ATLAS collaboration the VOMS middleware package allows the
definition of user groups and roles within the ATLAS VO. There is initially a
VOMS group for each Physics Working Group, Combined Performance group
and Detector System. There is also a VOMS generic group and another one
for software testing, validation and central production activities.

5.1.2 Information service

Information services publish and maintain data about resources in Grids.
This information in LCG is modelled by the Grid Laboratory Uniform
Environment (GLUE) schema. The aim of the GLUE schema is to define,
publish and enable the use of common schemas for interoperability between
the EU physics Grid project efforts (LCG, EDG...) and the US physics Grid
project efforts (iVDGL, PPDG, GriPhyN...). The GLUE schema have the
following main components:

• The Berkeley Database Information Index (BDII) is an imple-
mentation of the GIIS (see 3.1.4), but allowing for more scalability.
Information provided by the BDII adheres to the GLUE information
model. Interfacing with BDII is made of Lightweight Directory Access
Protocol (LDAP) operations for which commands and an application
programming interface (API)† exist. Both LCG-2 and gLite currently
rely on BDII for proper operation.

• The Relational Grid Monitoring Architecture (R-GMA) [72]
presents a relational view of the collected data. It is basically a pro-
ducer/consumer service with command line interfaces as well as an API

†An API is a source code interface that a computer system or program library provides
in order to support requests for services by a computer program.
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for Java, C, C++ and Python and a Web interface. R-GMA models
the information infrastructure of a Grid as a set of consumers (that
request information), producers (that provide information) and a cen-
tral registry which mediates the communication between producers and
consumers. R-GMA can use the same information providers as used by
BDII. Recently, a Service Discovery mechanism using R-GMA has been
implemented (see references at [30]). R-GMA is currently also used to
collect LCG accounting records.

• The Logging & Book-keeping services (LB) tracks jobs during
their lifetime in term of events (important points of job life, such as
submission, starting execution, etc.). It takes the information from the
the Workload Managers (WMs) and the CEs (they are instrumented
with LB calls). The events are first passed to a local logger then to
book-keeping servers.

• Job Provenance Services keep track of submitted jobs (completed or
failed), including execution conditions and environment, and important
points of the job life-cycle for longs periods (months to years). Currently
they are being prototyped. Then, this information can be reprocessed
for debugging, post-failure analysis, comparison of job execution and
re-execution of jobs.

5.1.3 Workload management System (WMS)

The WMS is responsible for the distribution and management of tasks across
Grid resources, in such a way that applications are conveniently, efficiently
and effectively executed. It essentially provides the facilities to manage jobs
(submit, cancel, suspend/resume, signal) and to enquire about their status.

In LCG-2, it makes use of Condor and Globus technologies and relies on
GSI security. It dispatches jobs to appropriate CEs, depending on job re-
quirements and available resources. BDII and the Replica Location Service
(RLS) are used for retrieving information about the resources. The user in-
terfaces to the WMS using a Job Description Language (JDL) based on
the Condor one.

The gLite’s WMS is based on the LCG-2 one and it is interoperable with
LCG-2 CEs. The main difference is that in gLite CEs can ask the WMS for
work. Then, LCG-2 works using a push model (where a job is pushed to a
CE for its execution) while gLite can use also a pull model (where a CE asks
a Workload Manager for jobs).

Then, gLite’s WMS includes a Workload Manager (WM) or Resource
Broker (see 3.1.3) which is responsible of accepting and satisfying job man-
agement requests coming from its clients. The WM will pass job submission
requests to appropriate CEs for execution, taking into account requirements
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and preferences on the resources expressed in the job description but also on
the policies that the sites or the VO administrators have put on the CEs.

Other new features in gLite are the addition of a Web service interface
to the WMS as well as bulk submission and parametrised job capabilities .

5.1.4 Storage Element (SE)

An SE is a logical entity that provides storage space to the Grid. In general
it will be a Mass Storage System (MSS), either disk cache or disk cache
front-end backed by a tape system.

Each Grid site may provide multiple SEs providing different qualities of
storage. For example, it may be considered convenient to provide an SE for
data intended to remain for extended periods and a separate SE for data
that is needed only for the lifetime of a job (or set of jobs).

In LCG-2, SEs support GridFTP (see 3.1.4) and SRM interfaces‡ to
transfer data. gLite itself does not provide a particular SRM interface nor a
GridFTP server. The main difference with LCG-2 is that gLite has a POSIX-
like I/O service for access to Grid files via their Logical File Names (LFNs).
It provides open/read/write/close style of calls to access files while interfac-
ing to a file catalogue. gLite I/O currently interfaces to the File and Replica
Manager (FiReMan) and the LCG-RLS catalogues.

Regarding authentication, authorisation and audit/accounting features,
the SE should provide and respect ACLs for files and datasets that it owns,
with access control based on the use of proxy certificates with a user Dis-
tinguish Name (DN) and attributes based on VOMS roles and groups. It is
essential that a SE provide sufficient information to allow tracing of all ac-
tivities for an agreed period. It should also provide information and statistics
on the use of the SE.

5.1.5 Compute Resource Services

A Computing Element (CE) is a set of services that provide access to a
local batch system running on a computing farm. Typically the CE provides
access to a set of job queues within the batch system.

In LCG-2, GRAM (see 3.1.4) is used for submitting jobs to the LRMS§.
As we said in the WMS description, the main difference between LCG-2 CEs
and gLite ones is that the second ones can ask a WM for jobs.

In LCG-2 as well as in gLite, the CE interfaces to the LB services to
keep track of the jobs during their lifetimes. Also in both cases, it uses GSI

‡The Storage Resource Manager (SRM) defines a set of functions and services that a
storage system provides and allows the Grid to access the SE.

§A Local Resource Management System (LRMS) is a system to distribute and balance
the load of the CPU resources. LCG CEs support, among other ones, Load Sharing Facility
(LSF), Portable Batch System (PBS) and Condor
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security, the Globus gatekeeper and Grid Information System according to
the GLUE schema. The authentication and authorisation mechanisms at the
CEs are based on the VOMS model.

5.1.6 Data Management

Files on Grids can be replicated in many places. The users or applications do
not need to know where the files actually are, and use Logical File Names
(LFNs) to refer to them. In order to ensure that a file is uniquely identified,
Global Unique IDentifiers (GUIDs) are usually used.

It is the responsibility of file catalogues services to locate and access the
data. The most important ones are:

• EDG Replica Management Service (RMS): The services provided
by the RMS, originating from EDG, are the Replica Location Service
(RLS) and the Replica Metadata Catalogue (RMC). The RLS main-
tains information about the physical location of the replicas. The RMC
stores mappings between GUIDs and LFNs. A last component is the
Replica Manager offering a single interface to users, applications or
Resource Brokers. Currently, EDG RMS are gradually be phasing out.

• LCG File Catalogue (LFC): It offers a hierarchical view of logical
file name space. The two functions of the catalogue are to provide LFN
and to locate the site at which a given file resides. The LFC provides
Unix style permissions and POSIX Access Control Lists (ACL). The
catalogue exposes a Data Location Interface (DLI) that can be
used by applications and Resource Brokers. Simple metadata can be
associated with file entries. The LFC provides a command line interface
and can be interfaced through Python.

• gLite File and Replica Manager (FiReMan) Catalogue: Based
on LFC. The catalogue provides Unix-style permissions and ACLs sup-
port via Distinguished Names or VOMS roles. File access is secured via
these ACLs. The Fireman catalogue also provides Web Services Inter-
faces. The catalogue exposes to so-called Storage Index interface used
by the gLite Workload Management System to dispatch jobs at the
relevant site.

5.1.7 File Transfer Service (FTS)

Basic-level data transfer between the SE and the Grid is provided by
GridFTP. This is the essential mechanism by which data is imported to
and exported from the SE. Normally the GridFTP transfer will be invoked
indirectly via FTS or through SRM.
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LCG-2 does not provide a particular FTS (it was up to the user) while
gLite has one called File Placement Service (FPS). It receives data move-
ment requests and executes them according to defined policies. It maintain a
persistent transfer queue thus providing reliable data transfer and interacts
with the FiReMan catalogue. The FPS can be used without the interaction
with the catalogue and is then referred to as the gLite FTS.

5.2 LCG Activity Areas

The LCG project is classified into the following four activity areas:

• Fabric Area

• Grid Deployment Area

• Distributed Analysis

• Applications Area

In the following we describe briefly their aims and related projects. More
information as well as details and references can be found at [44] [30] [105].

5.2.1 Fabric Area

This activity area is responsible of organising the LHC computing services
at CERN and the architecture of the Tier 0 and the CERN Analysis Facility
(CAF) installations. It also has to verify and manage the scalability and
performance of the architecture in the Data Challenges (DCs) as well as
the sharing of technical information with systems administration experts at
other regional centres. It is also meant to re-evaluate regularly the evolving
technologies in areas such as fabric management, storage and computation
and to perform the regular re-assessment of the cost of the LHC computing
facilies.

5.2.2 Grid Deployment Area

It organises and operates the global Grid service for LHC and coordinates
with regional centre managers and with the production managers from the
experiments. It also has to build and certify the distribution packages for
installation at regional centres and to operate the Grid infrastructure (in-
formation services, registration services, call centre, operations centre, user
consultancy and support).
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5.2.3 Distributed Analysis (ARDA)

The ARDA area, which stands for A Realisation of Distributed Analysis
for LHC, is responsible for working with teams within the experiments that
are involved in prototyping distributed analysis systems, helping them to
interface to Grid services and coordinating between the experiments, the
middleware developers and regional centres.

5.2.4 Applications Area

The aim of this area is to provide the tools and infrastructure for physics
application software development as well as to organise sub-projects to
implement the common solutions identified by the different testbeds and
achieved challenges.

In particular, the work of the applications area is conducted within
projects. There are currently four projects. Their official web sites as well
as the details, references and documentation can be found at [105].

• Software process and infrastructure (SPI)

• Core libraries and services (ROOT)

• Persistency framework (POOL)

• Simulation (SIMU)

Software Process and Infrastructure (SPI)

The software projects of the LCG Applications Area share a single devel-
opment infrastructure, which is provided by the SPI project. A set of basic
services and support are provided for the various activities of software devel-
opment. The definition of a single project managing the infrastructure for all
the development projects is crucial in order to foster homogeneity and avoid
duplications in the way the Applications Area projects develop and manage
their software.

The goal of the SPI project is to provide to the development projects of
the LCG the following:

• basic environment for physics software development

• general scientific libraries and class libraries

• software development tools

• documentation tools and document templates
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• compiler expertise

• support activity necessary to ensure that a common Grid-enabled en-
vironment is available at all Grid sites

The aim of SPI is to achieve those roles while taking care of consistency
and homogeneity in the development of the different packages of the LCG
Application Area.

In addition, configuration management support is provided for all LCG
projects for both Configuration Management Tool (CMT) [87] and Software
Configuration, Release And Management (SCRAM) [106] configurations such
that LCG software can be used in the various build environments of the
experiments. LCG software is distributed using Web-downloadable tarfiles of
all binaries. Recently, Pacman [88] repositories of both sources and binaries
are being provided by SPI.

In our work, the CMT, SCRAM and Pacman tools were needed to install
and/or configure some ATLAS software, like Atlfast.

Another part of SPI is the External Software Service [104], which provides
open source and public domain packages required by the LCG projects and
experiments. Presently, more than 50 libraries and tools are provided on
the set of LCG-supported platforms. All packages are installed following a
standard procedure and are documented on the web and a set of scripts has
been developed to automate new installations.

As explained in appendix B, most of this External Software was ported
by us to Solaris because it was required by the SEAL.

Core libraries and services (SEAL-ROOT)

The aim of the SEAL project (Shared Environment for Applications at LHC)
is to provide the software infrastructure, basic frameworks, libraries and tools
that are common among the LHC experiments. The project should address
the selection, integration, development and support of foundation and utility
class libraries. These utilities cover a broad range of unrelated functionalities
and it is essentially impossible to find a unique optimum provider for all of
them. They should be developed or adapted as the need arises. In addition to
these foundation and utility libraries, the project should develop a coherent
set of basic framework services to facilitate the integration of LCG and non-
LCG software to build coherent applications.

Recently, the SEAL project has become just a work package of the
ROOT project.
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ROOT¶ [116] is an object-oriented analysis framework aimed at solving
the data analysis challenges of high-energy physics.

It was originally programmed by the same team of researchers who
lead successful projects such as PAW, PIAF, and Geant. They knew that
FORTRAN libraries had reached their limits as they cannot scale up to the
challenges offered by the Large Hadron Collider, where the data is a few
orders of magnitude larger than in LEP, to compare with the most recent
experiment of similar size.

ROOT was developed in the context of the NA49 experiment at CERN.
NA49 has generated an impressive amount of data, around 10 Terabytes per
run. This rate provided the ideal environment to develop and test the next
generation data analysis with ROOT.

A particular version of SEAL as well as ROOT were ported by us to the
Solaris operating system to address the interest of LHC researchers to have
the analysis environment working on this platform and to assess the difficulty
of porting this important code, required by most of the ATLAS software. The
details can be found in appendix B .

Persistency framework (POOL)

The POOL project (acronym for POOL Of persistent Objects for LHC) has
been created to implement a common persistency framework for LCG. POOL
can store multi-Petabyte experiment data and metadata in a distributed and
Grid enabled way. The project follows a hybrid approach combining C++
Object streaming technology, such as ROOT I/O, for the bulk data with a
transaction safe relational database store, such as MySQL. POOL is based a
strict component approach providing navigational access to distributed data
without exposing details of the particular storage technology.

Simulation (SIMU)

The simulation project of the LCG Applications Area encompasses common
work among the LHC experiments on the development of a simulation frame-
work and infrastructure for physics validation studies, CERN and LHC par-
ticipation in Monte Carlo generator services, Geant4, Fluka and Garfield. Its
work is guided by the reports of the simulation, the Monte Carlo generators
and the detector description.

In our work, the Garfield simulation package was studied in the context
of a Grid environment as a useful FORTRAN simulation software test case.
It is studied in depth in section 6.4.

¶ROOT is not an acronym but a name, although it contains the acronym OO of Object
Oriented. The name has been proposed to show the idea of making a system that provides
a solid ROOT on which other systems can grow.
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5.3 Quattor and farm management

At CERN, we performed several tasks related with Quattor:

• we set up a working Quattor environment under Solaris. This required
the porting, correction and creation of several Quattor components and
packages.

• we corrected and improved functionalities of the Quattor automated
system to install, uninstall and configure software.

• we used all this experience to install and manage a farm of computers
that we used to execute Grid jobs.

The two first tasks regarding the porting, correction and creation of
Quattor components and also of the Quattor automated software manage-
ment system are presented in detail in appendix A.

The installation and management of a farm of computers at CERN and
its use in running Grid jobs and as part of the BOINC testbed is presented
in section 6.5, as it is part of the performed work regarding BOINC.
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CHAPTER

6

BOINC

After talking about the LHC Computing Grid project, the related ATLAS
physics applications and its software management tools, we present the
BOINC distributed computing environment as a possible complement to
LCG.

After describing its general infrastructure we show the work performed
on porting physics applications of interest for ATLAS, like the PYTHIA
event generator, the Atlfast reconstruction and simulation software and the
Garfield gas simulation software.

The deployment of more than 200 CPUs at CERN to work on those
applications using the BOINC environment is also presented.

In addition, we discuss as well about the testbed performed regarding
the framework protocol of collaboration signed by CERN and the regional
government of Extremadura region at Spain.

6.1 Middleware components

The main components of the middleware used by BOINC Grids are similar to
the components used by the LCG one (see section 3.1.3) although there are
some small differences due to the different approaches of both Grid flavours.

In particular, in BOINC, these middleware components are distributed
in mainly two kind of machines: server and clients. They are organised in the
way we show at figure 6.1 .
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Figure 6.1: BOINC client-server infrastructure showing the different parts of
each kind of components.

• BOINC server: Involves all Grid services except the computation
itself.

– User Interface (UI): allows users to access to the Grid facility
and receives the input Grid jobs. In the BOINC, the job informa-
tion is provided by two different input files written in Extensible
Markup Language (XML). One of them gives details about how to
perform the job and the other one informs about how to retrieve
the results. In LCG, a single input file written in JDL is used.

– Web interfaces: In addition to the UI that we found in most
Grids, in BOINC Grids there is the need also of a Participants
Web Interface. It allows the participants who donate their com-
puter power to register their computers and to follow up their
work and update preferences like the percentage of memory and
CPU from their computers that they wish to donate. BOINC pro-
vides also a Management Web Interface which allows the Grid
managers to monitor, manage and debug the Grid jobs and their
results, the registered participants and hosts, the BOINC applica-
tions. It also allows the Grid managers to perform other operations
like the management of the participants forum.

– BOINC Database (DB): it is a MySQL database [73]. It stores
all information regarding sent jobs, received results and registered
client machines, participants and applications to run. It can be
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accessed by the participants using the Participants Web Interface
and by the Grid users using the Management Web Interface. It
can also be accessed and managed by the BOINC administrators
using other MySQL tools. For instance, LHC@home managers use
a web tool called phpMyAdmin [74]. We can comment that LCG
can use MySQL but also Oracle databases.

– Data servers: provide storage space so they are equivalent to
the Storage Elements we find in other kinds of Grids. In addition,
they also act as servers for the clients to send and retrieve input
data and results.

– Scheduling Server: sends jobs to the BOINC clients and receives
their results. It performs the roles of the Resource Brokers in LCG
Grids. It does not need to contact any Information Service as in
BOINC are the clients or Worker Nodes which ask for work to the
Scheduling Server when they foresee that the can run out of work.

• BOINC clients: Performs the computation of the jobs. It involves
what is called Worker Nodes and Computer Elements in other kinds
of Grids. In this way, each one of the BOINC clients is itself a single
Worker Node and Computer Element.

There have been some discussions and development regarding the possi-
bility of allowing BOINC clients to work as Storage Elements as well as
a complement and replica copies of the BOINC Data Servers. Currently
this feature has not been implemented.

6.2 BOINC technology and infrastructure

A BOINC server includes a set of daemons for generating and handling work.
These daemons are not present in the BOINC clients. It is important to notice
that all BOINC code is open source so it is available to be modified and
adapted to particular needs and some of those daemons have been adapted
for different projects. In particular some of them were modified to match our
needs regarding the applications ported by us, as it is described in section
6.4 .

They involved daemons are shown in figure 6.2 and are the following ones:

• Work generator
There is one work generator per application. It creates BOINC Grid
jobs (called ’workunits’ or WUs in BOINC) and the corresponding in-
put files. It is application-specific, and uses BOINC library functions
for registering the workunits in the database.
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Figure 6.2: BOINC daemons

• Feeder
It is supplied by BOINC and is application independent. It creates a
shared-memory segment used to pass database records to the BOINC
scheduler processes. This data includes applications, application ver-
sions, and ’work items’ (an unsent result and its corresponding worku-
nit).

• Transitioner
This daemon is supplied by BOINC and is application independent. It
handles state transitions of workunits and results. It generates initial
results for workunits, and generates more results when timeouts or
errors occur.

• Validator
There is one validator per BOINC Grid application used to ’validate’
the results returned from the BOINC clients. It compares redundant
results and selects a ’canonical’ result, see section 3.3.2, representing
the correct output, and a ’canonical’ credit granted to participants and
hosts that return the correct output. Depending on your application,
you can use the BOINC-supplied validator, or you may have to de-
velop a customised validator. The default BOINC-supplied validator
just checks if the files, containing the results, returned by different
clients for the same workunit are exactly the same ones. We have to
remember that this is important as the workunits are sent typically to
volunteer client machines that in some cases may give wrong compu-
tation results so this validator checks if the results of same jobs sent
to different clients agree. Then, this default validator does not analyse
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the information obtained from the calculations, although a customised
one can be implemented by the BOINC managers of the project.

• Assimilator
There is one assimilator per application. It handles workunits that are
’completed’, i.e. that have a ’canonical’ result, or for which an error
condition has occurred. Handling a successfully completed result might
involve record results in a database and perhaps generating more work.

• File deletion
This application-independent daemon deletes input and output files
when they are no longer needed. This is made in a completely auto-
mated way.

• Database purging
This daemon is also independent from the BOINC application. It re-
moves work-related database entries when they are no longer needed.
This keeps the BOINC database at a constant size even when your
project runs for a long time.

6.2.1 Generating work

As described earlier, a BOINC Grid job or workunit involves the inputs to a
computation. The steps followed to create a workunit in BOINC are:

• To write XML ’template files’ that describe the workunit and its cor-
responding results. In short, they just contain the names of the input
and output files, the application to be executed and the required op-
tions. Generally the same templates will be used for a large number of
workunits as in BOINC the applications to be executed typically do
not change and are the input files provided with each job which are
different.

• To create the workunit’s input file(s) and place them in the download
directory.

• To invoke the BOINC function, or a customised script, that creates
a database record for the workunit and sends the job to the Worker
Nodes.

Once this is done, BOINC takes over: it creates one or more results for
the workunit and distributes them to client hosts. These clients execute the
jobs and return the results back to the server. It collects the output files,
finds a canonical result, assimilates the canonical result, and deletes files.

During the testing phase of a project, you can use the make work daemon
to replicate a given workunit as needed to maintain a constant supply of work.
This is useful while testing and debugging the application.
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6.2.2 Validation

In BOINC, the process of validation performs the following two tasks:

• It compares the redundant results and decides which ones are to be
considered correct. By default, the different results for the same job,
executed on different Worker Nodes, are just compared to check if they
are the same ones. This can be customised to perform more tests to val-
idate the results. In any case, the performed tests are completely done
in an automated way so they just check the coherence and consistency
of them and they are not analised in depth.

• It decides how many credits to grant to each correct result. The default
behaviour is explained in section 3.3.2 . Is important to notice that it
can be customised. In particular, the BOINC project Climate Predic-
tion made major changes to the default schema and does not grant
credits for given results but for computation time, without taking into
account if the job finish or not, as their jobs typically take too long
time compared with the ones of the other projects.

A validator is a daemon program. You must supply a validator for each
application in your project, and include it in the ”daemons” section of your
project configuration file.

Depending on various factors, you may be able to use a standard validator
that comes with BOINC (it provides two different validator frameworks), or
you may have to develop a customised validator.

• If your application generates exactly matching results then you can use
what in BOINC is called ’sample bitwise validator’, which requires a
strict majority and regards results as equivalent only if they agree byte
by byte. An application typically generates exactly matching results
either because it does no floating-point arithmetic, or because you use
the BOINC ’homogeneous redundancy’ feature which configures the
BOINC server to send results for a given workunit only to hosts with
the same operation system name and CPU vendor.

• If you are using BOINC for ’desktop Grid’ computing (i.e. you trust all
the participating hosts) then you can use the ’sample trivial validator’,
which regards any two results as equivalent if their CPU time exceeds
a given minimum.

• Otherwise, you will need to develop a customised validator for your
application. BOINC supplies a simple validator framework in which
you plug in three short application-specific functions. This is sufficient
for most projects. If you need more control over the validation process,
you can use BOINC’s advanced validator framework.
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You can find more details about the available validators and frameworks
that come with the BOINC environment at [33].

6.2.3 Result assimilation

Projects must create one assimilator program per application. This is called
when one of the following conditions is fullfiled:

• The workunit finish with error status. In this case the assimilator can
write a message to a log or send an email to the application developer.

• The workunit has a canonical result. In this case it might, for exam-
ple, parse the canonical result’s output file and write its contents to a
separate database.

If the assimilator finish successfully , the workunit record will be marked
as assimilated. Otherwise the assimilator will log an error message and exit. In
this way the system administrator can fix the problem before any completed
or erroneous workunits are mis-handled by BOINC.

Is also important to notice that there exist some BOINC’s back-end util-
ity functions to get file pathnames and open files to manage the successful
obtained results or to debug the ones returned with error.

6.2.4 Server-side file deletion

Files are deleted from the data server’s upload and download directories by
the file deleter daemon. Typically you do not need to customise this [33].

The default file deletion policy is:

• A workunit’s input files are deleted when all results are ’over’ (reported
or timed out) and the workunit is assimilated.

• A result’s output files are deleted after the workunit is assimilated.
The canonical result is handled differently, since its output files may be
needed to validate results that are reported after assimilation; hence its
files are deleted only when all results are over, and all successful results
have been validated.

6.2.5 Database purging

As a BOINC project operates, the size of its workunit and result tables
increases. Eventually they become so large that adding a field or building an
index may take hours or days. To address this problem, BOINC provides a
utility db purge that writes result and WU records to XML-format archive
files, then deletes them from the database. Workunits are purged only when
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their input files have been deleted. Because of BOINC’s file-deletion policy,
this implies that all results are completed. So when a workunit is purged, all
its results are purged too.

6.3 LHC@home

LHC@home [75] [76] [77] is the official BOINC CERN project to which
volunteers can attach their computers to donate their idle CPU to execute
jobs attached to CERN researches.

Currently, the LHC@home CERN BOINC project runs the SixTrack
simulation program [78]. It simulates protons circulating around the Large
Hadron Collider (LHC) ring in order to study the long-term stability of the
particle orbits. Each job typically tracks 105 turns of 60 particles in the LHC
and requires about 110 hours of CPU time on a modern PC.

Is also worth to mention that the SixTrack program is part of the
software used in the CPU benchmarks test performed by the version
2000 of the Standard Performance Evaluation Corporation Organisa-
tion (SPEC CPU2000), used to assess the relative performance of a given
CPU in units of sfp2K CPU, i.e. in SPEC CPU2000 flotant point CPU units.

The application is written in FORTRAN. It was the first one written
on that language ported officially to the BOINC platform and at that time
the BOINC libraries, written in C, were not able to be used on FORTRAN
applications without some kind of wrapper. Then, a C wrapper was developed
at CERN for LHC@home and successfully used in the porting of SixTrack.
After that, the code was fed back to the BOINC project team and currently
it is used by other BOINC applications.

The SixTrack application was ported to BOINC on August 2004 by
a team involving researchers from Copenhagen University, the Helsinki
Institute of Physics, the University of Basel, U.C. Berkeley and CERN’s IT
Department [79].

In April 2006, the system was about 14000 active volunteer participants ∗,
25000 active hosts and could provide more than five sustained Tera-FLOPS
processing rate [77]. This has allowed the computation of more than 700
CPU-years in few months, assuming as typical a 1 Ksfp2K CPU that is
approximately equivalent to a 2.8 GHz Xeon.

Figure 6.3 shows the number of participants and BOINC credits at that
time. We can also see at this figure how the installation of the BOINC farm

∗Remember that, as explained in section 3.3, in BOINC-related papers a ’participant’
is not a Grid user but a person who donates computing resources by installing the BOINC
client software in their computers
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installed with Quattor at CERN at the summer of 2005 raised up highly the
amount of performed work. This will be presented at section 6.5 .

So, even if not totally free, the cost/performance ratio is very positive.
This is without taking into account the outreach effects, like the publicity
obtained when this huge amount of people is able to participate in some way
in the project.

We note that LHC@home still has the potential of becoming much larger
if enough work is available to use the computing capacity that is offered.

Figure 6.3: Statistics of participants on the LHC@home project and total
credits.

Currently SixTrack is the only application ran by LHC@home but other
CERN applications of interest to high-energy physics have been studied [77]
and are discussed in the following, see section 6.4. In particular, the infras-
tructure to execute under BOINC a version of the Garfield application is
ready and it is planned to implement it to send jobs to LHC@home.

This work was presented at CHEP 2006 [80] and the details, as well as
many documents and references, can be found at [81].

6.4 Applications ported to BOINC

Here we present the work performed at CERN porting several physics appli-
cations with interest to the ATLAS experiment to the BOINC Grid infras-
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tructure.

6.4.1 PYTHIA

PYTHIA [82] is a program developed and maintained at the Lund University,
at Sweden. It is a generator of high-energy physics events, i.e. for the descrip-
tion of collisions at high energies between elementary particles such as e, e−,
p and p̄ in various combinations. It contains theory and models for a number
of physics aspects, including hard and soft interactions, parton distributions,
initial and final state parton showers, multiple interactions, fragmentation
and decay.

The PYTHIA program is based on JETSET, the first of the ”Monte
Carlo” generators programmed at the Lund University. Over the years, the
JETSET and PYTHIA generators grew too much to be maintained in com-
mon and in 1997 they were therefore merged to one, under the PYTHIA
label. The current version is PYTHIA 6.3.

The physics in PYTHIA is gradually further developed in a number of
directions. Additionally, the major current project is the complete rewriting†

of PYTHIA in C++, while all previous versions have been in FORTRAN 77.
It is used also in combination with other tools like Atlfast, which we describe
in this section as well.

It is important to notice, as stated in the ATLAS Computing TDR [9],
that the C++ version of PYTHIA currently lacks all the functionality of the
FORTRAN version. This implies that, given the time needed for develop-
ment, deployment, testing and validation of new generators, it is clear that
FORTRAN support will be required for some considerable time after LHC
data is available.

BOINC porting

The feasibility of the BOINC porting of simulations involving stand alone
PYTHIA programs was studied at CERN. You can find the details of the
performed work at [83].

The usual way in which this FORTRAN version of PYTHIA is used
is the following one: to modify/create a FORTRAN program including the
PYTHIA code and parameters, to compile it and finally to execute the output
binary.

The main problem found with this approach is that in this way the
created BOINC application would not allow to execute different Grid jobs
with different input files. In this approach each workunit would need to send
the whole application each time, requiring a different version of the software
with each different workunit sent and consuming much more bandwidth

†The rewriting of PYTHIA in C++ is known as PYTHIA version 7 or Phytia7
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than needed. BOINC is designed to work in the opposite way, i.e. using
a single application which typically does not change much and receiving
different input files for it.

Then, it seems that a first simple approach to show the portability of
PYTHIA can be to take as BOINC input the binary already compiled. In
this way, each job will imply a different PYTHIA binary, which is contrary
to the BOINC philosophy. Then we will have to take as BOINC application
a simple C++ program to execute the input binary (with a system call).
Finally we would have to take as BOINC result the output of the input
binary. This output can be files or the standard output. In the examples of
the PYTHIA web page, the output is sent to the screen as standard output.
We have to notice that in this way we cannot do check-pointing. Anyway it
would prove the feasibility of the porting.

To be able to check-pointing, we have to modify the code to append the
simulation of each event to a file and to call the proper BOINC function
after that. In that case, the BOINC application will be different for each job
unless we modify our code to make similar simulations but with different
input parameters. Then, we have also to modify that code to read those
input files. Finally, the BOINC application would be modified and linked
with the BOINC libraries code. The input would be our parameters file
and the output would be the file in which we appended the generated
events. The example programs typically produce the output using PYTHIA
functions which send all to the standard output. Nevertheless, is possible
to modify the code to write one event to the file each time, together with
the simulation seed. In this way, if the application is stopped at any point,
the recorded events are not lost and the check-pointing feature will continue
generating processes without the need of repeating the generation of the
previous ones.

In any case, the Windows port should be relatively easy because it
just implies to compile our FORTRAN file using a Windows FORTRAN
compiler. The code is completely a stand-alone file and it does not need
external compiled software. This is an important advantage.

Finally the porting of standalone PYTHIA code was not continued be-
cause of the mentioned problems as well as because of the fact that currently,
in ATLAS, PYTHIA is in most cases used together with the Atlfast Fast Sim-
ulation sofware. Then, we concentrated our efforts on the Atlfast package,
which is described in the following section.
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6.4.2 Atlfast

Atlfast [69] is the Atlas Fast Simulation package. Depending on the physics
problem under study, Atlfast can be used as a good approximation to the
full detector simulation and reconstruction phases of the Monte Carlo (MC)
reconstruction chain. Fast simulation is performed by smearing the MC truth
information directly with resolutions measured in full simulation studies.

Atlfast can run using different even generators that delivers output in
n-tuple format. You can find more information about the compatible event
generators and Atlfast features at the documentation [69]. While the speed
at which Atlfast runs depends on many factors (available CPU, output
file format, input file format, complexity of physics channel, etc..), it is in
general 4 or 5 orders of magnitude faster than running the full chain.

Currently there are two versions, a FORTRAN one [84] and a C++ one
[69] using Athena (see section 1.3.3). The latest FORTRAN version is the
2.60 one, using PYTHIA 6.2 . Currently the development is focused on the
C++/Python version using Athena.

As we mentioned in part 4, the reconstructed simulations used for our
analysis were done using the Atlfast FORTRAN version coupled with the
Monte Carlo generator PYTHIA. Then, we considered the port of that code
to the BOINC environment to check the results with and without using it.

In addition, another reason to perform firstly the port to BOINC of the
FORTRAN version is that it is much simpler than the port of the one written
in C++, as the Athena framework is also used in that case.

The details about the installation, configuration and porting of the
FORTRAN version can be found in appendix C.

Finally, the port to BOINC was successful and a number of jobs were
sent to three different clients. As BOINC clients, standard desktop machines
running Scientific Linux 3 were chosen at CERN IT’s department. All the
jobs sent to them were returned correctly and their results were verified to
be exactly the same, byte by byte, using the BOINC standard validator.

They were compared as well byte by byte with the results obtained using
Atlfast in the standard stand-alone way, i.e. without BOINC, obtained that
the results were exactly the same ones with and without the use of the BOINC
Grid environment.

C++ version

We also worked on the porting of the C++ version of Atlfast and some
advances were done in that direction. You can find at references [85] [86] the
details about the installation of that release as well as links pointing to useful
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documentation and many comments about the advances made and problems
found.

The current experience makes us pessimistic about the chance of getting
any ”Athena” application running on BOINC, mostly because

The lack of portability. It is exemplified on the reliance on a very pre-
cise of the C and C++ compilers (it works only on version 3.2.3 of
GCC/G++). In addition, in the code there is the general assumption
regarding that the code is programed to work in a very specific Linux
flavour: Scientific Linux CERN 3. There are also many directory paths
hard coded inside the code, mainly Andrew File System (AFS) ones
only accessible from CERN machines or research centres with access to
that AFS directories. This makes difficult the modification of the code
to be able to create stand alone applications which could be able to be
executed on any machine from a volunteer.

The use of different external management tools such as Configuration
Management Tool (CMT) [87], together with its required files, and Pac-
man [88] plus some setup scripts to be run per used package. In addi-
tion, Python and Gaudi frameworks are used to Glue together different
parts of the software. There is as well a large number of environment
variables required to be set.

In addition, the size of the whole kit is over 5 GB (very big to be
sent with each single BOINC job to the volunteer machines) and it is
difficult to find the dependencies to separate the different parts.

The possibility of creating a BOINC application that could be used only
inside CERN and in collaborating research institutes was also considered. In
that case we avoid the main problem found, the dependency on code and
libraries stored on AFS cells but we have to take into account that we loose
the huge volunteer computing power coming from the hundreds of thousands
of machines donated by the BOINC participants. In the other hand, in the
case of having an Atlfast BOINC application running only in CERN and in
collaborator institutes then we have an schema similar to a Project Grid,
like LCG, with less computing power but with managed and reliable worker
nodes.

6.4.3 Geant4

Geant4 [89] [90] is a toolkit for the simulation of the passage of particles
through matter. Its areas of application include high energy, nuclear and
accelerator physics, as well as studies in medical and space science.

The use of Geant4 in a public resource computing project has been studied
at CERN. After contacts with some of the main Geant4 developers we found
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that BOINC could be useful to run Geant4 simulations, as they typically
consume many CPU time while need a relatively small amount of input and
output data.

In particular, the ”Geant4 Release Test” simulation was found to be a
good case to explore what we could do for more complex high-energy physics
simulations. This is a simple test beam set-up to compare physics results
produced by different program versions which is used to validate new versions
of the Geant toolkit.

It simulates a beam of particles and their interactions with a detector
involving the steps of propagation, interaction and detection. The detector
is made of several slices of two different materials, one of them sensitive. It
is possible to customize many particle propierties like the type of particle,
its energy, momentum and direction as well as the detector propierties like
dimensions and materials. We can also customize the physics model to use
between the available ones made for Geant4.

The details about the installation, configuration and porting to Linux
and Windows of this Geant4 Release Test code can be found in appendix D.

Finally, we ported the Geant4 release testing software to the BOINC
environment both in Windows and Linux and set up a BOINC server to
demonstrate a production environment.

The experience gained in this process, and the benefits and limitations
of BOINC based projects for running high-energy physics applications were
presented at the Geant4 workshop 2005 [91] and at CHEP 2006 [92]. The
details can be found at [93]. The next step is to consider more realistic and
useful Geant4 models, and some work and contacts have already be done in
order to achieve that.

6.4.4 Garfield

Garfield [94] is a Monte Carlo computer program for simulating gaseous
detectors programmed in FORTRAN. It is worth to notice that it is included
in the LCG project.

In particular it performs the detailed simulation of two- and three-
dimensional drift chambers.

An interface to external simulation programs is provided for the compu-
tation of electron transport properties in nearly arbitrary gas mixtures. This
is achieved by solving the Boltzmann transport equations for electrons in gas
mixtures under the influence of a set of electric and magnetic fields that you
specify.

Garfield also has an interface with other simulation programs in order
to simulate ionisation of gas molecules by particles traversing the chamber.
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Transport of particles, including diffusion, avalanches and current induction
is treated in three dimensions irrespective of the technique used to compute
the fields.

It is currently used at CERN. In particular, by the experiments ATLAS,
CMS and LHC-b.

After some talks with the main Garfield developers at CERN, they
proposed us to port his software to the BOINC environment as to solve the
high CPU requirements of the model in use for the ATLAS experiment.
Some researchers from ATLAS were interested in using BOINC for this case
as quickly as possible. Other CERN experiments also showed interests on
the project.

After some contacts with them, they provided us the source code plus
some example code for testing. The process is presented in detail at reference
[95].

Finally, the Garfield program has been ported to the BOINC framework
in co-ordination with the software’s authors.

After achieving that, real-use jobs were provided by ATLAS researchers
and executed with BOINC. A high number of jobs were executed successfully
not only in the test machines but also in the 200 CPUs farm that was set
up at CERN as well as in the BOINC testbed, presented in detail in section
6.5.2.

6.5 Installations performed

6.5.1 lxboinc cluster

At CERN’s main Computing Centre one hundred dual core old farm PCs
(i.e. 200 CPUs) have been recycled to run as BOINC clients. In particular
they have dual core Intel Xeon CPUs working at 2.80 GHz, 2 Gb of RAM and
the operating system installed on them is Scientific Linux CERN release 3
(SLC3) [96], a CERN customized version of Scientific Linux (SL) [97] which
is assembled from freely available Red Hat Enterprise Linux [98] sources .
This cluster was called lxboinc and it is located at CERN’s main Computer
Center. Its computing power can be stimated as 200 Ksfp2K, taking into
account that 1 Ksfp2K CPU is approximately equivalent to a 2.8 GHz Xeon.

In figure 6.3 we can see how the number of total BOINC credits raised
in mid-2005 due to the attachement of those computers.

We are managing these machines using Quattor. The required BOINC
client software is installed using a RPM package [81]. This RPM was created
by us with to install BOINC as a service, i.e. with the feature of starting
automatically when the computer boots. It also installs RPM in the way
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that the jobs are executed in the client machines by a particular UNIX
user called boinc to increase the security of the system. In addition, the
BOINC configuration is also performed in the post-install script attaching
the installed client to a related BOINC LHC@home account. Another
pre-uninstall script was also added to perform the required uninstallation
steps deleting the software but also the service and the created user.

Apart from contributing to LHC@home executing BOINC Grid jobs, the
PCs are also enabling studies of meta-scheduling mechanisms that should
make it possible to implement applications with volunteer resources comple-
mented by limited dedicated ones to guarantee quality of service.

They have also been used as clients for the Garfield testbed as we explain
in section 6.5.2 .

A BOINC server RPM has also been produced to automate the installa-
tion and management of BOINC servers [81]. The RPMs and the bug cor-
rections have being fed back to the BOINC project.

6.5.2 Extremadura testbed

CERN and the regional government of Extremadura region at Spain signed
a framework protocol of collaboration in February 2005. Since then, both
institutions collaborate in several IT projects.

One of them is the use of BOINC Grid technologies to make available
to Extremadura and CERN researchers local unused computing capacity.
Indeed, the regional secondary schools host some 80.000 computers (running
a Linux Debian flavour called ”gnuLinEx” [99]) with abundant spare CPU
cycles. BOINC has been studied as a way of helping to put such large
potential at the disposal of a number of scientific projects.

In this context, a testbed [100] was set up joining many heterogeneous
kinds of machines from those Extremadura region secondary schools (the ones
of two different secondary school centres were used with testing purposes),
Extremadura University, CIEMAT (in particular from the CETA-CIEMAT
research institute) and CERN into a BOINC Grid infrastructure with the
aim of running production research jobs for the ATLAS collaboration, in
particular using the Garfield simulation program.

Is important to notice that several kinds of different operating systems
(different Linux flavours plus Windows) were used. This implied some
development on BOINC’s job submission and assimilation systems due to
some problems found sending the same jobs to different platforms.

In this testbed it was used one machine acting as BOINC server at CERN,
in particular a dualcore Xeon working at 3 GHz with 2 Gb of RAM. As
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BOINC clients, following clusters of machines distributed at several locations
were used:

• the 100 recycled dualcore PCs from the lxboinc cluster at CERN, run-
ning SLC3.

• 30 dualcore PCs from participant groups at Extremadura (University
and CETA-CIEMAT) running SLC4 and different flavours of Debian.

• 45 desktop PCs from two schools in Extremadura running gnuLinEx.

This involves 305 CPUs, most of them being 2.8 GHz Xeon ones. Then,
the approximate computing power of the testbed can be estimated to be
about 300 Ksfp2K CPU.

In addition, many jobs were also sent to some test desktop machines
running Windows XP at CERN.

The main results obtained are the following ones:

• Delivered jobs: 26,597

• CPU days (as Pentium IV 2.8 GHz): 2,579

• 100% of the jobs delivered and processed successfuly
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CHAPTER

7

Comparing LCG and BOINC

After talking about the LCG Computing Grid project and the BOINC dis-
tributing computing environment, it is worth to study together both systems
to clarify their different possibilities and roles. Due to their different design
approaches, they have been created with different purposes and then they
are worth for different kinds of jobs, as we show in this chapter.

7.1 Technology and infrastructure

In the following lines we compare the LCG services (see 5.1) with the equiv-
alent BOINC ones.

7.1.1 Installation, configuration and management

Currently, it is possible to install the LCG middleware using RPMs. There
is also the possibility of installing and maintaining them using Quattor. In
particular, some Quattor components have been developed to manage and
configure LCG [58]. The installation and configuration of this middleware
has been made much easier during the past year but it continues being not
trivial and it takes time to have a running optimal configuration.

The current version of the LCG Middleware runs on Scientific Linux 3
(SL3) and most middleware testing has been carried out on CERN Scientific
Linux 3 (SLC3) [101].

125



Regarding BOINC, it has been created from the beginning to be installed
and managed by volunteers without important computing knowledge so its
installation and management is in general much easier. In Windows it uses the
Windows Installers and installs itself as a screensaver so it is easy to use. It
can also be installed as a service. In UNIX system-like flavours, like Linux or
Solaris, binaries are distributed and they work with almost no configuration
required after being unpacked. Some third parties have created RPMs for
particular projects.

BOINC is officially maintained currently for Windows as well as for Linux
and Mac OS X. It has been ported also to other UNIX system-like OS as
Solaris, HP-UX, and FreeBSD and the binaries can be found at the official
BOINC site [33].

At CERN, we created a RPM package [81] to deploy LHC@home easily
across our lxboinc farm, presented in section 6.5, but also in the testbed
carried out using this farm and other computers in public schools and research
institutions in Spain, as seen in section 6.5.2 .

This RPM was installed and managed using Quattor.

7.1.2 Security

There are major differences regarding security between LCG and BOINC due
to their different approach.
In LCG there are much more users (researchers of many different research
groups and institutes) than providers (private Grid nodes which are main-
tained and shared by those groups). Then, security is focused in granting and
checking certificates to those users. For that, the users are authenticated us-
ing Globus’ GSI, grouped in VOs managed with VOMS, and CAs are needed
to provide the certificates.
In BOINC there is typically just one research collaboration per project so
there is no concern on authenticating the users who send the jobs to be ex-
ecuted. The reason is that the Grid managers have to be logged into the
BOINC server machine in order to send jobs. Then, there is no need for VOs
nor certificates, so neither for using VOMS or CAs.

On the other side, the BOINC providers of computing power (clients)
are in most cases volunteered machines so the security is focused in the
authentication of those client machines and in the verification of the received
results, as well as in the sandboxing∗ of the executed applications.
Then, in BOINC, each file exchanged between server and clients is digitally
signed using the system of public/private keys. In LCG this is not set by
default although it can be implemented. In he other hand, in LCG there is

∗In computer security, a sandbox is a security mechanism for safely running programs.
The sandbox typically provides a tightly-controlled set of resources for guest programs to
run in, such as scratch space on disk and memory. Network access, the ability to inspect
the host system or read from input devices is usually disallowed or heavily restricted.
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no concern on the confidence of the CEs, as they are private and managed
by the same Grid collaborators, so there is not need for sandboxing of the
executed software nor in the authentication of each single CE.

7.1.3 Information service

Regarding information management, there is also an important difference
due to the different orientation of the two approaches.

In LCG, there are many different computing and storage sites and in
many cases the data and the required software is already in place in the sites
in which the jobs are executed. Then, an Information Service is required to
identify the right sites which already can have the required data and software.

In BOINC, all the required data and software are sent to the clients by
default except in the case in which it is already on them. The system just
checks if the required binaries and data is already at the client and it sends it
if it is not the case. Then, there is no need for having an Information Service.

This is why one of the desirable features of an application to be executed
in a BOINC environment is the requirement of a small amount of data to
transfer, although some projects like Climate Prediction require input files
of about 500 Mb. In the other hand, this behaviour makes a BOINC client
to be easy to install as there is no need to worry about the required software
or data.

Regarding the LCG Logging & Book-keeping Service, in BOINC the jobs
are also tracked and the information related with job submission, execution,
etc. is stored in the MySQL database. This data can be monitored and man-
aged with the included web interface as well as with any MySQL managing
tool we wish.

In particular, when a BOINC work unit is created, all the related infor-
mation is registered into the database. When it is sent by the BOINC server
to a client, it registers as well the details regarding the particular client where
it was sent, the exact time, the deadline to receive the results back... When
the result comes back, successfully or not, this fact is also registered by the
server together with many other information which can be used to monitor
the process as well as to debug the situation in case of problems. Finally, the
useless information is deleted automatically by BOINC or manually, using
the management web interface or any other MySQL tool.

7.1.4 Workload management System (WMS)

In BOINC, workload management is simpler than in LCG because it works
only in pull mode. It means that the BOINC server does not contact the
clients to cancel or to suspend/resume already sent jobs as well as to
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enquire about their status. Those volunteered machines connect automat-
ically to the server on predefined time intervals and store their status in
the database, asking them if there is any action to perform. Managing
this database, we can monitor job status and we can change it to cancel if
we wish. It will be changed the next time that the CE will contact the server.

Then, there is no need for a mechanism to identify available resources
matching the requirements. In addition, BOINC does not need an Informa-
tion Service to look for them.

Regarding requirement checking, when we register an application into the
BOINC database, some related information like the execution platform, op-
erating system and memory requierements are also registered. Then, when a
client ask for work to the BOINC server, it informs as well about its capa-
bilities and takes only jobs that matches them.

Then, in BOINC there is no need neither for a mechanism like BDII or
RLS to retrieve information about the available resources.

7.1.5 Storage Elements and Data Management

Currently, in BOINC there is not the concept of Storage Element, as all the
data is stored in the server (or servers) and sent to each Computer Element
together to the application and the job to be executed.

Then, it does not exists the concept of LCG replicas as the required data
is sent each time together with the job to be executed. Then, there is no
need for Replica Catalogues.

As we said in section 3.3.1, it has been considered also the possibility of
storing permanently data on the clients having different replicas among them,
giving also another kind of credits for ’storage space donation’ different from
the credits given per ’CPU donation’. In this case, the clients would be at the
same time Grid Worker Nodes, Computing Elements and Storage Elements.

In addition, we mentioned as well that currently BOINC is studying to
use also a peer-to-peer Grid to share data replicas among the different Worker
Nodes and this will allow BOINC projects to have replicas of the data stored
in the server distributed on the different clients. It is worth to notice that
the concept is slightly different from the LCG Storage Element one.

7.1.6 Compute Resource Services

As we said, the BOINC equivalent to LCG Computer Elements are the
BOINC clients, which are Worker nodes as well, i.e. where the BOINC Grid
jobs are sent by the BOINC server.
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In BOINC there is no need for Local Resource Management System
(LRMS) as the clients ask for work to the server, working in pull mode.
Then, it is not necessary to balance the load of the CPU resources and there
is no need of using software like LSF, PBS and Condor, used by LCG.

Gatekeepers are neither necessary in BOINC as the clients work indepen-
dently, not as a group. The jobs are just sent to individual clients when they
ask for job and fit the requirements.

Regarding the Logging and Bookkeeping services, all the informationg
regarding the jobs sent by the BOINC server are stored automatically at the
BOINC database. It is updated each time that the Worker Node contacts the
server so the user can look at the job status looking at the server, without
any need of contacting the client directly. Then, there is no need of using, as
LCG, GSI security.

In LCG, authentication and authorisation mechanisms based on the
VOMS model are used at the CE. In BOINC there is no need as it is the CE
who asks for work to the server. Then, by default, i.e. without adding par-
ticular software to BOINC, the jobs can only be sent contacting directly the
BOINC server and running there the necessary commands so the authentica-
tion is performed when the server machine is accessed and the authorisation
is not managed as anyone with access to the server can send jobs to any
client attached to it.

7.1.7 File Transfer Service (FTS)

In LCG, LCG-2 does not provide a particular FTS (it is up to the user)
while gLite has one called File Placement Service (FPS) which receives data
movement requests and executes them according to defined policies.

In BOINC, the data is sent by HTTP using BOINC functions so there is
no particular File Transfer Service.

It is important to notice that BOINC always sign all the data sent to
the Worker Nodes while in LCG it is up to the user to do that and most
of the times this is not done. Anyway in LCG the nodes are private and
are installed in private networks. In addition, it is required authentication
and authorisation to be able to send jobs so there is no much worry about
the security implications of executing remote code. In BOINC this security
enhacements are necessary as most participants are volunteers not attached
in any way to the research group and that are connected to the general
Internet network.

7.1.8 User Interfaces (UIs)

Both kinds of Grid, LCG and BOINC, have UIs but, due to their different
approach, they have different features.
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In LCG, any user of the collaboration is able to send jobs to the Grid
using the UI, provided that he or she has the rights to do that, i.e. the
required certificates provided by the CA from a VO. In BOINC, in the
default schema, you have to be logged directly into the server machine in
order to send jobs so typically all the Grid users send the jobs to the Grid
administrator and is this person who send the jobs to the Grid, using the UI.

The UI of LCG interfaces the Workload Management System and it allows
to send, to monitor, to manage and to receive results of Grid jobs. It involves
a command line tool although some experiments have their Graphical User
Interfaces (GUI) to interface the command line UI and make easier to use it.

In BOINC, the command line UI only allows you to send the jobs while
it exist in addition a Management Web User Interface which provides some
management and monitoring features. The management capabilities of this
can be highly increased using additional interfaces to the MySQL database
like phpMyAdmin [74].

In addition, in the BOINC Worker Nodes there is a different UI which
allows them to attach, to monitor, to manage and to deattach the subcrip-
tions to the projects for which it is working. There exist a command line tool,
a GUI and also what is called ”User Web Interface”. They are used by the
participants to register their machines to work for the Grid, i.e. to transform
them in clients/Worker Nodes, as well as to manage their preferences and to
monitor their performed work.

7.2 Summary of the comparison

We present in the following table 7.2 the results fo the comparison performed
between the two kinds of Grid studied in depth in this work.

130



LCG BOINC

Platforms Some Linux flavours most versions of Windows,

(mainly SLC) Linux, Mac, Solaris & other

Installation & Not easy Very simple

configuration

Management Ok. Quattor was Very easy.

with Quattor developed for it.

Security Focused on authentication Focused in securing

and authorisation: the executed software:

Certificates/CA, Digital sign, sand-boxing

VOs/VOMS, GSI

Information Grid Information Service No need

management

Logging GLUE, DBII, GMA, LB MySQL database

& Bookkeeping using Oracle or MySQL

Workload WMS No need

job push mode pull mode

submitting way (gLite also pull)

job language JDL XML

CE private managed mostly volunteered but also

Grid nodes can use private nodes

SE and DM data already distributed data sent to each CE

at Grid nodes & Replicas with each single job

FTS FPS in gLite, simple HTTP with

authentication and code signing

authorisation

Grid UIs command line UI command line UI

to send, to send and Web UI

to manage and to manage and

to monitor jobs monitor jobs

CE’s UIs No need command line UI,

GUI and Web UI

to register the CEs,

manage and monitor them

Table 7.1: Comparison between LCG and BOINC Grids.
131



132



Part IV

Conclusions
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Conclusions

This work is divided in two parts. In the first one we study the decay of
some heavy bosons at the ATLAS detector at LHC, using data simulated
and reconstructed with the Atlfast software. At the second part, a study and
comparison are performed between the LCG Grid, used by ATLAS and the
other LHC experiments, and a complementary kind of Grid called BOINC.
Finally, a number of jobs, including the simulation and reconstruction of the
data used in our physics analysis, have been executed using BOINC, to study
the feasibility of the use of this Grid to perform useful physics calculations.

Regarding the first part, the observability of the decay of some heavy bosons
predicted by Extra Dimentions theories is studied. All the studies were done
assuming an integrated luminosity of 3× 105 pb−1 for a Z∗ mass of 2 TeV.

The conclusions obtained can be summarised as follows:

• We conclude from our analysis that the channel Z∗ → bb̄ would not be
observable because we obtain that the signal would be very small com-
pared with the expected background, which in this case is dominated
by the reducible one.

• In the case of the decay channel Z∗ → tt̄, the dominant background is
irreducible. As in the previous case, the signal is very small compared
with the expected background, although the significance is larger. We
conclude as well that, in general, the channel Z∗ → tt̄ will be difficult
to be detected at the LHC.

• In the decay channel W ∗ → t b, as in the previous case, the dominant
background is irreducible. However, in this case we find that this decay
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mode might yield a signal separable from the background. In addition,
we also find a significance larger than 5 so we conclude that it would
be possible to detect this particular mode at the LHC.

Finally, the analysis was also performed for masses of 1 TeV and the
mass dependence of the previous results are studied. We conclude that the
significance of the decay modes, i.e. their observability, decreases with the
mass. In particular, a significance of 5 (a signal is considered to be observable
if the significance is larger than 5) may be achieved below approximately the
following masses.

Z∗ → bb Z∗ → tt W ∗ → tb

M(TeV ) 1.4 1.9 2.2

At the second part of this work, a comparison between the LCG Grid and
another complementary kind of Grid called BOINC has been presented.

The LCG project Grid is the official Grid used by ATLAS and the other
CERN experiments to store and analyse the huge amount of data that the
LHC collider is going to gather, as well as to run other required physics
applications like simulation software. It is a public founded project which
uses managed computer facilities distributed worldwide, connected to a huge
number of different research groups and collaborations.

BOINC is a Grid environment focused on running CPU intensive software,
like simulation or reconstruction one. Typically it is configured to execute its
calculations on the idle time of desktop computers and it uses distributed
computers mostly donated by volunteers although also private clusters as
well as any computer connected to a network can be used to perform part
of the calculations. This way of working can make this Grid useful to use
any desktop or cluster machine at a research institute to contribute to make
physics calculations as part of a Computing Grid. It is interesting to notice
that it has been shown possible to execute LCG jobs into BOINC Grids, to
complement the LCG available resources using the idle time of private nodes
or volunteer machines in an inexpensive and easy to manage way.

In order perform our study, different tasks were done at different levels:

• Previous study: A deep study of both kinds of Grids is presented
at this work, including technology and infrastructure details. Although
the way in which those two Grids work is different due to their different
approach, the study is presented keeping the same structure to be able
to compare their features and similarities in an easier way.
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• Installation, configuration and management: The installation
and configuration of both Grids is presented. In particular, its man-
agement using the Quattor farm management software is studied. An
introduction, description and some performed work regarding Quattor
is also presented. Many Quattor components and packages were ported,
corrected or created and a working Quattor environment was set up in
Solaris together with a Quattor automated software management sys-
tem. This experience was used to install and manage a cluster of com-
puters in Linux that we used to execute BOINC Grid jobs at CERN
and in a performed BOINC testbed.

• Adaptation of physics applications: In BOINC, the applications
have to be adapted to be able to use them at the Grid environment.
This is due to the fact that they are able to be executed at any kind of
volunteered computer which, in general, we do not manage and cannot
even know which software it has installed. An study of the feasibility
of adaptation to the BOINC Grid environment of a number of physics
applications was performed. A brief description of them as well as their
importance and use is also given. The following conclusions were ob-
tained:

– PYTHIA: It is a event generator very used in HEP to obtain
simulations. The main problem found with this approach is that
the usual way in which PYTHIA is used to generate the events
implies the modification or creation of a different program to per-
form different simulations. This means that if you want to execute
different simulations in a computer not managed by you, like in a
volunteer one, you have to send the whole application with each
simulation that you would want to execute. In addition, PYTHIA
is usually used in ATLAS as part of the Atlfast Fast Simulation
package so we concentrated our efforts on this other one.

– Atlfast: It is the ATLAS Fast Simulation software, which exe-
cutes an event generator, PYTHIA in our case, and performs the
simulation and reconstruction phases of the MC chain in a faster
way than the full simulation one. The adaptation to the BOINC
Grid environment was successful and a number of jobs were sent
to different clients. In particular, the set of events used in our
analysis of the decays of the heavy bosons were simulated and re-
constructed using Atlfast. They were executed first in stand alone
mode and later as Grid jobs. All the jobs were sent to the BOINC
Grid, executed and returned correctly. The results were verified
to be the same, byte by byte, to the ones obtained by running the
simulation without using the BOINC environment.
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– Geant4: It is a toolkit for the simulation of the passage of par-
ticles through matter. It has several areas of application apart
from high energy, nuclear and accelerator physics and it is the
event generation software used by ATLAS in the full simulation
process. The particular test beam set-up, called ”Geant4 Release
Test simulation” and used to validate new versions of the Geant
toolkit was successfuly adapted to run under the BOINC Grid en-
vironment both in Linux and Windows operating systems. Finally,
several jobs were finally sent, executed and returned successfully.

– Garfield: It is a MC software to simulate gaseous detectors used
by ATLAS and other CERN experiments. It also was ported suc-
cesfuly to the BOINC environment. Many real-use jobs provided
by ATLAS researchers were executed with success using a BOINC
Grid infrastructure. In addition, a BOINC testbed was set up and
executed a high number of ATLAS jobs.

• Installations and test beds: A cluster of one hundred machines was
installed and managed with Quattor and the BOINC Grid software
was installed and managed on them using that cluster management
software. It executed many of our BOINC test jobs and it also was
part of a BOINC test bed that we set-up, together with a big number
of machines from some schools, a university and a research center lo-
cated in Spain, involving a huge number of heterogenous machines. The
testbed was successful and a total of 26,597 Grid jobs were delivered,
executed and received successfully.

• Porting to other platforms: An important part of the LCG Grid
software, in particular SEAL and its required external software, was
ported to a non-Linux operating system, Solaris, to study its portabil-
ity. Although Solaris is a Unix implementation, as well as Linux, and
they use the same POSIX standards, we found many problems in the
way but finally the adaptation of the software was successful. In the
BOINC side, some applications were ported to the Windows operating
system successfully, as well as to other Linux versions and flavours.

During this time, I was part of the CERN BOINC team at CERN IT’s
department and some works were published, some presentations were given
and some documentation was written [42] [77] [79] [80] [81] [83] [85] [91] [92]
[93] [95] [103] [110] [102].

We can conclude that BOINC and LCG are complementary kinds of Grid
that can be useful to perform computing tasks for ATLAS and the other LHC
experiments.
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LCG has very good data distribution, management and storage capabil-
ities that BOINC does not have currently. This means that BOINC cannot
be used at present for data storage or distribution.

This also implies that BOINC does not require the important bandwidth
and internet speeds that LCG needs. A typical home internet connection is
enough so, taking into account that BOINC can be installed and managed
easily in most operating systems, we can conclude that it is possible to use
almost any kind of computer with a modest internet connection as a part of a
powerful Computing Grid. Then, BOINC can provide a huge and inexpensive
amount of computing power for running Grid jobs.

In the other hand, such jobs must require low input and output data to
take profit of the advantages of BOINC. Typical Grid jobs of this kind are,
for instance, physics simulation jobs like event generators. We have proved
in this work the feasibility of the use of such kind of jobs in BOINC.

We notice as well that the implementation of a new application to be
executed in a BOINC Grid environment requires some previous work to
adapt or port such computing application, although this is a work that has
to be done only once at the beginning and it is relatively easy after having
some experience.

One possible framework in which both kinds of Grid can be complemen-
tary is to use LCG as main Grid flavour and to configure it to send jobs
to BOINC when their Worker Nodes have too much work or when those
jobs have high CPU requirements. Those extra jobs could be sent to use
the idle time of other Grid machines like Worker Nodes but they also can
be sent easily to any other computer, like to desktop machines in research
centers or in universities, schools or other public institutions, as well as to
computers provided by volunteers all around the world. An approach of this
kind is interesting as a lot of additional computing power can be obtained
with almost zero cost. This could be interesting for small research groups
with low budget but also for big ones with high computation needs. In the
particular case of small groups, BOINC would allow them, for instance, to
compute important simulation works without having much resources. The
technology to make this possible exists already, as bridges to send LCG jobs
to BOINC have been already developed, as seen at section 3.3.3 .

Other possible framework would be to use BOINC only for LCG tasks
with high CPU requiremnets, like physics simulation jobs, to execute
them completely outside LCG, in volunteer machines. This would reduce
significantly the work load of LCG sites. In order to do this, the only
requirement is to port the required software, like Atlfast, to the BOINC
environment, performing some changes in the code.

In any of those frameworks, the Quattor toolkit has been shown to be
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useful

• to manage easily and quickly a large number of Grid machines

• to have a control about the installed software in each one

• to reconfigure it automatically in any set of machines

• to be able to reproduce quickly a clean state in a machine
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Conclusiones

Este trabajo esta dividido en dos partes. En la primera se estudia la
desintegración de ciertos bosones pesados en el detector ATLAS en el
LHC, usando datos simulados y reconstrúıdos con el software Atlfast.
En la segunda parte, se realiza un estudio y comparación entre el Grid
LCG, usado por ATLAS y los otros experimentos del LHC, y un tipo de
Grid complementario llamado BOINC. Finalmente, se han realizado con
BOINC un cierto número de tareas (en ingés, jobs) incluyendo simulación y
reconstrucción de datos usados para nuestro análisis en f́ısica, con el objetivo
de estudiar la viabilidad de este tipo de Grid para realizar calculós en f́ısica.

Respecto a la primera parte, se ha estudiado la observabilidad de la
desintegración de ciertos bosones pesados predichos por teoŕıas de Dimen-
siones Extra. Todos los estudios se han realizado asumiendo una luminosidad
integrada de 3× 105 pb−1 para una masa del Z∗ de 2 TeV .

Las conclusiones obtenidas se pueden resumir de este modo:

• Concluimos de nuestro análisis que el canal Z∗ → bb̄ no seŕıa observable
debido a que obtenemos que la señal seŕıa muy pequeña comparada con
el fondo (background), dominado en este caso por el de tipo reducible,
y seŕıa enmascarada por él.

• En el caso del canal de desintegración Z∗ → tt̄, el fondo dominante
es irreducible. Al igual que en el caso previo, la señal es muy pequeña
comparada con el fondo esperado, aunque la significancia calculada es
mayor. Conclúımos entonces que, en general, el canal Z∗ → tt̄ también
será dif́ıcil de ser detectado en el LHC.
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• En el canalW ∗ → t b, al igual que en el caso anterior, el fondo observado
es irreducible. Sin embargo, en este caso encontramos que este modo
de desintegración puede ofrecer una señal claramente distinguible del
fondo. Además, encontramos una significancia mayor que 5, de modo
que conclúımos que en general seŕıa posible de detectar este modo par-
ticular en el LHC.

Finalmente, el análisis se realizó también para masas de 1 TeV y se ha
estudiado la dependencia con la masa de los resultados previos. Conclúımos
que la significancia de los modos de desintegracion, es decir, su observabil-
idad, disminuye con la masa. En concreto, una significancia de 5 puede ser
obtenida por debajo de aproximadamente las siguientes masas (recordemos
que una señal es considerada observable si la significancia es mayor que 5).

Z∗ → bb Z∗ → tt W ∗ → tb

M(TeV ) 1.4 1.9 2.2

En la segunda parte de este trabajo, se presenta una comparación entre
la Grid LCG y otro tipo complementario de Grid llamado BOINC.

El proyecto Grid LCG es la Grid oficial usada por ATLAS y los otros
experimentos del CERN para almacenar y analizar la inmensa cantidad de
datos que el LHC va a tomar, permitiendo usar, además, los programas de
f́ısica necesarios como por ejemplo el software de simulación. Es un proyecto
pagado con fondos publicos que usa instalaciones computacionales admin-
istradas y distribúıdas por todo el mundo, conectadas a un gran numero de
grupos de investigacion y colaboraciones diferentes.

BOINC es un entorno Grid especializado en la ejecución de software que
requiere un uso intensivo de capacidad de cálculo, como el de simulación o
reconstrucción. T́ıpicamente esta configurado para ejecutar cálculos en orde-
nadores de sobremesa cuando estos no estan realizando trabajo y usa orde-
nadores distribúıdos donados en su mayoŕıa por voluntarios. También puede
usar grupos de ordenadores (clusters) privados, o en general, cualquier orde-
nador conectado a una red puede ser usado para realizar parte de los cálculos.
Este modo de trabajar hace esta Grid útil para usar cualquier tipo de or-
denador de sobremesa o de una instalación de un centro de investigación
para contribuir a hacer cálculos de f́ısica formando parte de una Grid de
computación. Es interesante saber que ya se ha demostrado la viabilidad de
ejecutar trabajos LGC en Grids BOINC, de modo que los recursos de LCG
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pueden ser complementados usando el tiempo no utilizado de ordenadores
privados o máquinas de voluntarios de un modo barato y fácil de gestionar.

Para nuestro estudio, diferentes tareas fueron realizadas a diversos niveles:

• Estudio previo: Se presenta en este trabajo un estudio profundo sobre
ambos tipos de Grid, incluyendo detalles sobre su tecnoloǵıa e infras-
tructura. Aunque el modo en que trabajan ambos tipos de Grid is muy
diferente debido a su enfoque distinto, el estudio presenta la misma
estructura para poder comparar sus caracteŕısticas y similitudes en un
modo sencillo.

• Instalación, configuración y administración: Se estudia la insta-
lación y configuración de ambos tipos de Grid. En concreto, se estudia
su administración usando el software de administración de grajas de
ordenadores llamado Quattor. Se presenta también una introducción,
descripción y trabajo realizado relacionado con Quattor. Varios compo-
nentes y paquetes de software de Quattor fueron adaptados, corregidos
o creados y un completo entorno Quattor fue configurado, junto con un
sistema de administración automático de software adicional integrado
en el sistema. Este trabajo fue presentado en un taller (workshop) y
publicado. Esta experiencia fue usada para instalar y administrar una
granja de ordenadores en Linux que fue usada para ejecutar tareas
Grid BOINC en el CERN y en un banco de pruebas, presentado mas
adelante en esta sección.

• Adaptación de software de f́ısica: En BOINC, el software utilizado
debe de ser adaptado para poder usarlo dentro del entorno Grid. Eso es
debido al hecho de que dicho software puede ser ejecutado en cualquier
ordenador ofrecido por un voluntario y que, en general, no es admin-
istrado por nosotros ni podemos saber que software tiene ya instalado.
Se ha realizado, además, un estudio sobre la viabilidad de adaptación de
software al entorno Grid BOINC de un cierto número de aplicaciones.
También se proporciona una breve descripción de dichas aplicaciones y
su importancia en f́ısica. Se obtuvieron las siguientes conclusiones:

– PYTHIA: Es un generador de sucesos muy utilizado en f́ısica de
altas enerǵıas para obtener simulaciones. El problema principal
encontrado es que el modo de trabajo t́ıpico en que PYTHIA es
usado implica la modificación o creacion de diferentes programas
para realizar diferentes simulaciones. Eso significa que si queremos
generar diferentes simulaciones en un ordenador no administrado
por nosotros, como por ejemplo en uno ofrecido por un voluntario,
debemos enviar el programa completo con cada simulación que
deseemos generar. Además, PYTHIA normalmente es usado en
ATLAS como parte del paquete de simulación Atlfast de modo
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que nosotros concentramos nuestros esfuerzos en la adaptación de
éste último.

– Atlfast: Es el software de simulación rápida de ATLAS, el cual
utiliza un generador de sucesos, PYTHIA en nuestro caso, y re-
aliza las fases de simulación y reconstrucción Monte Carlo en un
modo más rápido que el programa de simulación completa (full
simulation). La adaptación al entorno Grid BOINC se completó
con éxito y un cierto número de trabajos fueron enviados y proce-
sados en diferentes clientes BOINC. En concreto, se simularon y
se reconstruyeron usando Atlfast en BOINC los sucesos usados
en nuestro análisis de las desintegraciones de bosones pesados.
Primero fueron generados en modo autónomo y después en modo
distribúıdo como tareas Grid. Todas ellas fueron enviadas a la
Grid BOINC, procesadas y devueltas correctamente. Los resulta-
dos fueron verificados de modo que fueran idénticos, byte a byte, a
los obtenidos ejecutando la simulación fuera del entorno BOINC.

– Geant4: Es un conjunto de herramientas para simular el paso
de part́ıculas a través de la materia. Tiene diversas areas de apli-
cación aparte de f́ısica de altas enerǵıas, nuclear y de aceleradores.
Se adaptó con éxito para ser ejecutado en entornos Grid BOINC,
tanto en diversos sistemas operativos Linux como en Windows, la
simulacion oficial de Geant llamada ”Geant4 Release Test simula-
tion” que es usada para validar las nuevas versiones del programa.
Finalmente, varios trabajos fueron enviados, ejecutados y devuel-
tos con éxito. Éste trabajo fue presentado en diversos talleres y
publicado.

– Garfield: Es un software Monte Carlo de simulación de detectores
gaseosos usado por ATLAS y los otros experimentos del CERN.
Fue también adaptado con éxito al entorno BOINC. Se ejecutaron
con éxito en una infrastructura Grid BOINC un gran número
de tareas de utilidad real proporcionadas por investigadores de
ATLAS. Además, se puso a punto un banco de pruebas BOINC
en el que se ejecutaron un gran numero de tareas ATLAS.

• Instalaciones y bancos de pruebas: Se instaló y administró con
Quattor un conjunto de cien ordenadores y el software de Grid de
BOINC fue instalado y administrado en ellas usando dicho software de
administración de ordenadores. Se ejecutaron muchos de nuestros tra-
bajos de test de BOINC en él y también fue parte del banco de pruebas
que configuramos, junto con un gran número de máquinas adicionales
de escuelas, una universidad y un centro de investigación español, in-
cluyendo un inmenso número de máquinas heterogéneas. Las pruebas
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fueron exitosas y el total de 26,597 trabajos grid fueron enviados, eje-
cutados y recibidos con éxito.

• Adaptación a otras plataformas: Una parte importante del software
de Grid de LCG, en concreto SEAL y el software externo requerido por
él, fue adaptado a un sistema operativo no-linux, Solaris, para estudiar
la viabilidad de su adaptación. A pesar de que Solaris es una imple-
mentación Unix, al igual que Linux, y que ambos usan los mismos
estándares POSIX, nosotros encontramos varios problemas en el pro-
ceso pero finalmente la adaptación fue completada satisfactoriamente.
Con respecto a BOINC, varias aplicaciones fueron adaptadas con éxito
al sistema operativo Windows, además de a diversas versiones y tipos
de Linux.

Durante este tiempo, estuve trabajando como parte del grupo BOINC del
CERN en su departamento IT (Information Technology) y varios trabajos
fueron publicados, varias presentaciones fueron ofrecidas en talleres y cierta
documentación fue redactada [42] [77] [79] [80] [81] [83] [85] [91] [92] [93] [95]
[103] [110] [102].

Podemos concluir que BOINC y LCG son tipos de Grid complementarios
que pueden ser útiles para realizar tareas de computación para ATLAS y
para el resto de los experimentos del LHc.

LCG tiene unas capacidades muy buenas de distribución, administración
y almacenamiento de datos que BOINC no tiene actualmente. Eso significa
que a dia de hoy BOINC no puede ser usado para almacenamiento o dis-
tribución de datos.

Eso también implica que BOINC no requiere el gran ancho de banda o
velocidades de conexión a internet que LCG necesita. Una conex́ın casera
t́ıpica es suficiente de mode que, teniendo en cuenta que BOINC puede ser
instalado y administrado facilmente en la mayor parte de los sistemas opera-
tivos, podemos concluir que es posible usar casi cualquier tipo de ordenador
con una conexión a internet modesta como parte de una potente Grid de
computación. De ese modo, BOINC puede proveer una inmensa y barata
cantidad de poder de computación para realizar trabajos Grid.

Por otra parte, dichos trabajos deben requerir poca cantidad de datos de
entrada y salida para aprovechar bien las ventajas de BOINC. Trabajos de
Grid t́ıpicos de ese tipo son, por ejemplo, trabajos de simulación de f́ısica
como generadores de sucesos. Hemos probado en este trabajo la viabilidad
de ejecución de dicho tipo de trabajos en BOINC.

Hemos notado tambien que la implementación de una nueva aplicación
a ejecutar en una Grid BOINC requiere un trabajo previo para adaptar
dicha aplicación, aunque esta es una tarea que debe ser hecha solo una vez
al comienzo y es relativamente sencilla despues de tener cierta experiencia.
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Un posible entorno de trabajo en el cual ambos tipos de Grid pueden
ser complementarios seŕıa el uso de LCG como tipo de Grid principal con-
figurándolo para enviar tareas a BOINC cuando sus nodos de trabajo tengan
demasiado trabajo o cuando dichas tareas tengan requisitos altos de CPU.
Dichos trabajos adicionales podŕıan ser enviados con el objetivo de usar el
tiempo no utilizado de otras máquinas en la Grid, como nodos de trabajo,
pero también podrian ser enviados fácilmente a cualquier otro ordenador
como por ejemplo ordenadores de escritorio en centros de investigación o en
universidades, escuelas o otras instituciones públicas, al igual que a orde-
nadores proporcionados por voluntarios en cualquier parte del mundo. Un
enfoque de este tipo es interesante debido a que una gran cantidad de ca-
pacidad computacional puede ser conseguida con prácticamente coste cero.

Esto podria ser interesante para grupos de investigacion pequeños con
bajo presupuesto pero tambien para grandes grupos con grandes necesidades
de computación. En el caso particular de grupos pequeños, BOINC podŕıa
permitirles, por ejemplo, realizar importantes trabajos de simulación sin tener
muchos recursos propios.

La tecnoloǵıa necesaria para hacer esto posible existe ya, debido a que
ya se han desarollado puentes para enviar trabajos de LCG a BOINC, como
vimos en la sección 3.3.3 .

Otro posible entorno de trabajo seria el usar BOINC solo para tareas
LCG con altos requisitos de CPU, como trabajos de simulación de f́ısica,
para ejecutarlos completamente fuera de LCG, en maquinas proporcionadas
por voluntarios. Ello reduciŕıa significantemente la carga de trabajo de las
instalaciones LCG.

Para ello, el unico requsito es la adaptación del software necesario, como
Atlfast, al entorno BOINC, realizando los cambios en el código explicados
en este trabajo.

En cualquiera de dichos entornos de trabajo, la herramienta Quattor se
ha demostrado útil para:

• administrar fácil y rápidamente un gran numero de máquinas Grid

• tener un control del software instalado en cada ordenador

• reconfigurarlo automáticamente en un conjunto dado de máquinas

• ser capaz de reproducir rápidamente un estado de trabajo limpio en un
ordenador dado
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APPENDIX

A

Quattor tasks performed at CERN

We present in this appendix the tasks performed at CERN’s IT department
regarding the porting, correction and creation of Quattor components and
also of the Quattor automated software management system.

Part of the results of this work as well as the experience obtained were
used to install and manage the lxboinc cluster, presented in section 6.5 and
to create the BOINC RPM presented in the same section.

A.1 Use case. Implementation of Quattor in

Solaris

To set up a working Quattor environment running under the Solaris OS at
CERN, we ported, corrected and created several Quattor components and
packages.

A.1.1 Porting

Regarding porting, the following ones were modified by us:

• Ported components: ncm-afsclt, ncm-krb4clt, ncm-krb5clt, ncm-srvtab,
ncm-access control

• Ported packages: cdp-listend, cdispd, spmacf, arc script)
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The differences between Linux and Solaris raised the following issues:

• Missing required scripts (like /etc/rc.d/init.d/functions)

• Use of different paths (location of the binaries, lock directories, startup
scripts, log files, configuration files...)

• Need of different environments

• Use or not use of some package features (like the configuration of the
firewall in Solaris)

• Check of different Quattor CDB entries

• Differences in the startup scripts (sh instead of bash, different way to
declare the scripts to be started...)

• Different logging methods and log paths (in Linux is used initlog)

• Different configuration information (like the one in /etc/syslog.conf)

A.1.2 Corrections

The following components and packages required different corrections:

• Fixed components: ncm-etcservices, ncm-automounter, ncm-postfix,
edg-caf-perl

• Fixed packages: afssetup, operator, spmacf, ccm, pkgbuild (pkgt), au-
tomounter, srvtab, spma, ncm-ncd, arc, cdispd, cdp-listend

The most common problems corrected includes:

• Bugs reported by users

• Programming mistakes

• Correction and optimization of configuration files

• Fatal errors instead of warnings showed in case of non existing but not
required files

• Missing tests about the existence or access rights to files or directories

• Missing of important system checks before making changes in the sys-
tem

• Wrong hard coded paths

• Change of run levels to avoid shutdown errors
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• Unused or confusing variables

• Messy and confusing code which needed to be rewritten

• Other errors (misprints, wrong end of lines, spaces instead of tabs...)

• Creation, improvement, update and/or correction of the documentation

A.1.3 Creation

Several components and packages were created or deleted.

• Created: ncm-postfix, pineconf, boinc-client

• Deleted: srvtab (files moved to arc and functionality added to ncm-
srvtab)

This boinc-client package is the one which was used for installing boinc
in the lxboinc farm, presented in section 6.5 .

A.2 Quattor software management system

The Quattor automated software management system makes possible to in-
stall, unistall and configure software in an automated manner when we make
changes on the CDB. These changes can be, for instance:

• a version of a package (then, it is installed at this moment or up-
graded/downgraded if a different version is already installed)

• any information that a component can get from the CDB (then, the
component will take into account this changed information when it is
configured at the end of the process)

This system includes the following packages and components: cdp-listend,
ccm, ncm-cdispd, ncm-spma, spma and ncm-ncd. The porting and correction
of some of them was required and performed by us in order to have a working
environment to be used for our needs. More detailed information as well as
the slides presented in an ELFms meeting can be found at [102].

We present below how this system works. It is shown as well in figure A.1
.

• We edit a profile in the CDB and we make a commit

• Then, the CDB sends an UDP packet informing about it

• If the cdp-listend daemon is running, it
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– detects the packet,

– logs what it does to /var/adm/messages,

– runs the ccm-fetch utility (installed by the ccm package)

• ccm-fetch retrieves the XML configuration profiles to /var/lib/ccm

• If the cdispd daemon is running, it

– detects the new incoming profiles

– logs what it does to /opt/edg/var/log/ncm-cdispd.log

– makes a list of the components to dispatch (+)

– configures the ncm-spma component (with ”ncm-ncd –configure
spma”) (+)

∗ the ncm-spma component automatically executes the ”spma”
program (+)

– configures all the components included in the previous list (with
”ncm-ncd –configure all”)

The steps marked with a plus sign (+) are executed only if there are
certain entries at the CDB so we can customize them at any moment.

Figure A.1: Schema of the Quattor automated software management system.

Then, we have shown that modifying Quattor CDB entries we can con-
figure Quattor to manage a determinate set of machines
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• keeping up-to-date all the software and configuring themselves it in an
automated manner

• having those machines never updated by Quattor

• updating automatically only the configuration, not the version of the
installed software

• configuring and/or upgrading with Quattor only a particular set of
components
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APPENDIX

B

Porting of LCG software

At CERN, we ported to Solaris the LCG Physics analysis environment and
its external software [103]. Our goal was twofold. On one hand we wanted
to address the interest of LHC researchers to have the analysis environment
working on Solaris. On the other hand we wanted to assess the difficulty of
porting the code, written in Linux without particular attention to portability
to other UNIX implementations .

We started with the LCG External software [104] in order to use it to
build the LCG applications [105] such as POOL and SEAL and we continued
with the port of SEAL.

We chose Solaris 8 as the target environment because it is the leading
commercial Unix implementation and CMS users had expressed interest in
having the LCG environment on it. Although the interest of the LCG com-
munity in this platform seems to be decreasing, it still is a good example
of a Unix implementation other than Linux and most of the problems found
would apply in porting to any other commercial Unix or POSIX 1003.1 1003.2
compliant operating system. We chose the GNU compilers because they have
been used to develop most of the code and their portability guarantees port-
ing with minimal code changes. The Sun compilers seem to provide better
performance on Solaris, but lack of support for some C++ template features,
such as templates with template arguments would make the port more com-
plicated. We do not have the GNU binutils package available on Solaris so we
have to use the Sun linker to make shared libraries and dynamic executables.
We also have to use the Solaris dynamic linking mechanisms.
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In this environment the GNU options, such as ”shared”, are not under-
stood by the linker, so we have to use the ”-Wl” gcc option to pass options to
the sun linker directly. The typical options required are ”-G” to make shared
libraries and ”-h” to set the internal name of the libraries. We have built
all object files, including the External Software ones, as pure text using the
”-fPIC” gcc option in order to avoid errors due to relocations against non-
writable, allocatable sections when building shared libraries and dynamic
executables. We use the default instruction set architecture available in our
environment, ILP32. This is SPARC V8 architecture as defined by Version
8 of the SPARC Architecture Manual. However we have to emulate the be-
haviour of the Sun compiler (ANSI C plus K&R C compatibility extensions)
by defining STDC = 0 for the system headers to define the explicit 64 bit
types, such as int64 t and uint64 t required by SEAL in 32 bit environment.
These types are implemented using the ”long long” type of gcc. We also had
to make sure that other ”longlong” types defined by the ReflectionBuilder in
SEAL are identified with the explicit 64 bit types as otherwise they were not
recognised as identical when building the dictionary. In this environment we
have ported SEAL 1.3.3 and all the required External Software.

B.1 LCG External Software

Most of the following ported programs are installed using the ”configure +
make + make install” method with the appropriate options. There are many
variations in which they also use some ”make check” or ”make test” step
or no ”configure” or ”make install” command is necessary so the method
cannot be guessed before reading carefully the installation instructions. In
other cases the installation method is completely different involving other
tools, ad hoc scripts, compilation of special files in some directories, links,
etc. In principle we ported just the version required by SEAL and POOL but
we also ported other program versions in the cases in which the SPI project
supports them or when the required version gave some problem.

The following required packages were finally ported without major prob-
lems: Bison, BLAS, CMake, Expat, GSL, Jam, MySQL, Otl, Oval, Pcre,
QMTest, SLOCCount, XercesC and Zlib.

The following ones required modifications in the code because of bugs,
problems in the installation and / or non-trivial compilation options. Some
of them also needed additional non-trivial software: Boost, bz2lib, CLHEP,
CppUnit, Doxygen, GCC-XML, LAPACK, MySQL++, Python, PyXML,
Root, UnixODBC, Uuid and wxPython.

There are also some packages that cannot be ported because they are
profiling tools or memory debuggers working only on x86 linux machines.
Nevertheless, it is possible to configure SEAL and other packages requiring
this packages to ignore them. They are: IgProf, OProfile and Valgrind.
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A special external software is the Software Configuration, Release And
Management (SCRAM) tool [106], required by all the LCG analysis tools. It
is the software configuration, release and management tool used by the CERN
applications and it is used to build SEAL and the other LCG software. It is
installed using a Perl script. We just had problems finding the sources and
the installation instructions due to the lack of documentation. You can find
them at [107]. Currently, the web site has been updated and improved [108].

SCRAM downloads the required sources from a CVS repository and then
performs the required installation commands generating the required Make-
files from different locations, using the configuration files at the SEAL CVS
repository, written in xmlXMLyle. These Makefiles are not stored locally so
in many cases we have no access to the compilation commands which may
complicate debugging.

B.2 SEAL

The installation instructions [109] inform us that SEAL is installed and con-
figured using the SCRAM tool. The installation method involve a Concur-
rent Versions System (CVS)∗ check out of some SEAL configuration files, a
SCRAM bootstrap command and a SCRAM build command in the suitable
directory. To modify the SEAL source files, we had to create our own CVS
repository and check the entire SEAL CVS repository in.

For each change in the code we had to check it out, modify it and then
check it in with the appropriate CVS tag (SEAL 1 3 3), because this tag is
also in the configuration files and is the one which SCRAM will download.

We also had to create our own CVS repository for the SCRAMToolBox.
This is a set of configuration files where SCRAM finds all the information
about the compilers and external programs that SEAL will use.

Afterwards, we had to change the SEAL configuration files to point to
these repositories instead of to the default ones. In the check out step, we
hit a CVS bug where it complains about not being able to open a temporary
file. We circumvent this by creating an empty file with this name. The bug
was be solved in the following version of the package.

Many SCRAM configuration files have a separated block for each instal-
lation architecture so we just had to add the missing Solaris ones. In some of
the configuration blocks the Solaris architecture was already there but only
with the Sun CC compiler so we had to add a new one using gcc.

We had to change all the required external software paths as well as the
compiler paths and options. The compiler options are distributed on different
files that we had to modify.

∗CVS is an open-source version control system. It keeps track of all work and all changes
in a set of files and allows several developers to collaborate.
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We had to configure the link options to use the Sun linker. As part of the
configuration, we also had to add all the required system libraries to the link
command line in order to avoid symbol referencing errors.

The lcgdict script used tcsh syntax when invoking /bin/csh, while scripts
within gccxml used bash syntax when invoking /bin/sh. Csh and sh are not
identical to tcsh and bash in Solaris so the references had to be corrected.

We had to change wrong ”defines” in several places in order to cater for
Solaris, in particular we had to replace ”ifdef linux” by ”ifndef WIN32” in
seal/Scripting/ PyLCGDict/src/LCGDictWrapper.cpp.

We found that seal/Foundation/SealBase/src/SharedLibrary.cpp hard-
coded the Linux method to find the link map for dynamic linking, so we
had to add support for Solaris using the dlinfo() library call.

Some SEAL files in the CVS repository were missing the version tag,
therefore SCRAM was not downloading them and SEAL could not find them.
All the files under ”seal/Scripting/PyLCGDict2” only had the SEAL 1 4 0
tag. Similarly the seal/Documentation/WebSite/doxygen.css file, and the
seal/Documentation/WebSite/workbook directory did not have any tag.
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APPENDIX

C

Atlfast porting to BOINC

C.1 Atlfast compilation and configuration

Firstly we downloaded and compiled the code from the official web site [84].
To compile properly, it required the correction of some paths in the Makefile.
Then, we got some undefined reference errors due to many missing libraries
and we corrected them one by one adding some flags to the proper variable
inside the Makefile. We also had to take care of pointing to the static libraries
instead of the default shared ones. This is because a BOINC application
typically is sent to a computer from a volunteer and we cannot know in
advance which software is already installed on it. Then, we have to compile
all statically to avoid dependencies on any kind of external software. We
also found some additional errors which were solved setting up the right
environment variables for the compilation.

After solving those problems we were able to compile the code and to
produce and execute successfully the demo application to test the code, pro-
ducing a output file with the results. The required steps are explained in
detail at [85].

Then, to run real code we had to create a new KEYPRO condition mod-
ifying the code. In particular, to perform our simulation and reconstruction
in the ATLAS detector of the Z∗ −→ bb̄ decay at 1000 GeV we had to add
the following KEYPRO ’if’ condition

C ------ NEW PROCESSES-----------------------------
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IF(KEYPRO.EQ.12) THEN

MSEL = 0

MSUB(141) = 1

PMAS(32,1) = 1000.

MSTP(44) = 3

MDME(289,1) = 0

MDME(290,1) = 0

MDME(291,1) = 0

MDME(292,1) = 0

MDME(293,1) = 0

MDME(294,1) = 1

MDME(295,1) = 0

MDME(296,1) = 0

MDME(297,1) = 0

MDME(298,1) = 0

MDME(299,1) = 0

MDME(300,1) = 0

MDME(301,1) = 0

MDME(302,1) = 0

MDME(303,1) = 0

MDME(304,1) = 0

MDME(305,1) = 0

MDME(306,1) = 0

MDME(307,1) = 0

MDME(308,1) = 0

MDME(309,1) = 0

MDME(310,1) = 0

PARU(121) = 0.878

PARU(122) = 0.878

PARU(123) = 0.878

PARU(124) = 0.878

PARU(125) = 0.878

PARU(126) = 0.878

PARU(127) = 0.878

PARU(128) = 0.878

PARJ(180) = 0.878

PARJ(181) = 0.878

PARJ(182) = 0.878

PARJ(183) = 0.878

PARJ(184) = 0.878

PARJ(185) = 0.878
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PARJ(186) = 0.878

PARJ(187) = 0.878

PARJ(188) = 0.878

PARJ(189) = 0.878

PARJ(190) = 0.878

PARJ(191) = 0.878

PARJ(192) = 0.878

PARJ(193) = 0.878

PARJ(194) = 0.878

PARJ(195) = 0.878

MSTP(88) = 4

MSTJ(11) = 3

PARJ(54) = -0.07

PARJ(55) = -0.006

PARP(82) = 1.8

PARP(84) = 0.5

MSTP(128) = 0

PYLISTI = 0

PYLISTF = 0

ENDIF

in the same place in which the other KEYPRO conditions are. We also had
to modify a data file to tell ATLFast which KEYPRO we want to simulate.
In our case it is the number 12 so we put

12 ----KEYPRO

Performing that steps we simulate and reconstruct our Z∗ decay instead
of the demo one.

BOINC porting

The feasibility of the BOINC porting of Atlfast using PYTHIA as event
generator to simulate and reconstruct events was studied at CERN. The
details of the performed work can be found at [85].

The first step is to find in the code the calls to open and close input and
output files and to replace them by the proper BOINC functions.

Regarding the required data files that the application needs to work prop-
erly, it needs a big amount of them and it would be annoying to declare one
by one when we create the jobs. Then, the option of creating a compressed
ZIP file including all the required data files was chosen.
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In order to use ZIP files within BOINC we had to use the BOINC ZIP
internal function. At that time, such BOINC functionality could be used
only with programs written in C but Atlfast is written in FORTRAN.
A wrapper function to use ZIP features within BOINC with FORTRAN
programs had to be implemented by us and it was used successfully in the
porting. After that, it was included inside the BOINC code, which had also
previous contributions by the LHC@home team, and fed back to the BOINC
project team which currently has it available and used by other FORTRAN
applications ported to BOINC. You can find the details about it at [110].

It was also neccesary to modify the PYTHIA subroutine used to accept
input data to change our simulation depending on an input file. It is not
optimal to be ran under BOINC an application which performs always the
same simulation. To study the feasibility of the port, the code was modified
to read the Mass of the Z* by reading this parameter from an input file.
This can be easily changed to allow us to completely change the simulation
depending on our needs. All the details of the process can be found at [85].

Finally, to be able to compile the binary, we had to include the required
BOINC libraries in the Makefile.

Then, we can execute the obtained binary to run the BOINC application
in standalone mode. At that point we check that it works properly looking
at the output and checking that the results shown by our ported BOINC
Atlfast application are exactly the same as the ones obtained by the original
one without any modification.

Finally we can register the application in the server and create the jobs.
For that we just need:

• the binary: obtained after compiling the Atlfast code after the modifi-
cations performed to use the BOINC functions and to compile properly

• the required data files: in our case, just the ZIP file created by us which
includes all of them

• input files: in our case, a text file including our defined variables which
change for each simulation which we decided to be just the mass of the
Z∗ in our test

• output file

At that point, a problem regarding the maximum CPU bound was found.
BOINC includes a mechanism to stop automatically jobs which consume
more than a given CPU time, to prevent runaway processes. Our application
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consumed more CPU time that the default limit so we had to add a proper
BOINC flag increasing that limit.

After solving that problem and checking that the application runs
properly on standalone mode, we registered it properly on the BOINC
database using using the BOINC scripts. In order to do that, it was
necessary to create our work unit and result templates to define the job. In
those XML files we have to declare the name of the binary file to execute
and their required options as well as the names of the input and output files.

Here we show the work unit template, in which we just declare the input
file, called ”variables”, and we re-define the maximum CPU time bound:

<file_info>

<number>0</number>

</file_info>

<workunit>

<file_ref>

<file_number>0</file_number>

<open_name>variables</open_name>

</file_ref>

<rsc_foops_bound>100000000</rsc_fpops_bound>

</workunit>

As an example of result template, we have here the following one in which
we see that ATLFast produces just an ”output.txt” file:

<file_info>

<name><OUTFILE_0/></name>

<generated_locally/>

<upload_when_present/>

<max_nbytes>10000000</max_nbytes>

<url><UPLOAD_URL/></url>

</file_info>

<result>

<file_ref>

<file_name><OUTFILE_0/></file_name>

<open_name>output.txt</open_name>

</file_ref>
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APPENDIX

D

Geant4 porting to BOINC

D.1 The Simulation

The simulation runs 5000 times the following event: the interaction of one
single particle with a detector involving its propagation, interaction and de-
tection. The detector is made of several slices of two different materials, one
of them sensitive. We can customise the type of particle, its energy, momen-
tum, direction as well as the detector dimensions and materials. We can also
customise the physics model.

Is important to notice that the time to perform each simulation is more or
less proportional to the energy we select for the incoming particles. This time
also scales approximately linearly with the number of events we simulate. It
also depends on the used physics model we choose.

The code is written in C++ and most of the times we care about modi-
fying a single file. We need Geant4 and the CLHEP (Class Library for High
Energy Physics) libraries to compile the binary but if we compile it stati-
cally, we can make it dependent only on the C++ libraries. To compile the
binaries we just need to go to the StatAcceptTest directory, set the right
environment variables in the buildSetup.sh file and run gmake to execute the
Makefile. It is very simple and it does not use external programs like autoconf
or automake.

The binary sends the output to the screen. The output was originally
HBOOK histograms, but it has been modified to produce just plain text to
ease portability to Windows. Its format is defined in the StatAccepTestAnal-
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ysis.cc file. To address Windows and BOINC constraints, we had to modify
the code to write the results directly into a predefined file rather than redi-
rect the standard output as originally done in Linux. The main results are
deposited energy and momentum, and they are divided in transversal (per-
pendicular to the direction of the incident particle) and longitudinal (paral-
lel). The Geant4 random number generator uses also a time variable for the
seed so each time we run the simulation we should have different results.

The current binary should work on any Linux version where the gcc li-
braries compatible with version 3 are installed. In particular, it was compiled
on SLC3 (Scientific Linux CERN version 3.05) using gcc 3.2.3. It also works
in Debian 3.0 with gcc 3.3.5. It was also executed on Windows XP under the
Cooperative Linux (coLinux)∗ environment [111].

This SLC3 binary does not work on SLC4 as gcc 3.4.3 is the default
compiler. Installing gcc 3.2.3 on SLC4 provides the missing libraries and
makes it work (the test was done also in Windows XP under the coLinux
environment).

D.2 Boincification

The current stable version of the BOINC client libraries is taken from the
CVS server:

cvs -d :pserver:anonymous:@alien.ssl.berkeley.edu:\

/home/cvs/cvsroot checkout -r stable boinc

The versions of required packages for building BOINC on SLC3 are too
old. Specific versions had to be generated. Some SLC3 libraries are not at
the recommended level but nevertheless did not cause any problem. For other
packages, it was necessary to install the newer versions in a non-system direc-
tory because just replacing the old version would break many other applica-
tions. The newer ones were placed to be found first by the BOINC generation
procedure. As BOINC client and libraries are built statically, the libraries are
not needed at execution time so it is worth to do that.

The Geant4 programs were built statically, but they still depend on some
system shared libraries. The dependencies are shown below:

$ ldd mainStatAccepTest

libstdc++.so.5 => /usr/lib/libstdc++.so.5 (0x0019b000)

libm.so.6 => /lib/tls/libm.so.6 (0x00111000)

libgcc\_s.so.1 => /lib/libgcc\_s.so.1 (0x002a4000)

libpthread.so.0 => /lib/tls/libpthread.so.0 (0x00266000)

∗coLinux is software that lets Microsoft Windows cooperate with the Linux kernel to
run both in parallel on the same machine. It allows to execute Linux software in Windows
machines without important changes in the code.
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libc.so.6 => /lib/tls/libc.so.6 (0x00b1d000)

/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x00d62000)

These libraries are the default SLC3 and gcc 3 libraries and these induce
the compatibility restrictions mentioned above.

The input to the program is a Geant4 macro and no direct user interac-
tion is required. Thus, this program fits nicely into the BOINC framework.
To complete the integration in BOINC, the Geant4 test code was slightly
modified to always accept a fixed file name as input script. Thus, the Geant4
script is provided with the job by the server (and it can be different for diffe-
rent jobs). The standard output where results are written is redirected to a
file with fixed name using the C++ constructor shown below:

// save original sbuf

std::streambuf* cout\_sbuf = std::cout.rdbuf();

std::ofstream fout(resolved\_name\_out);

//redirect ’cout’ to a ’fout’

std::cout.rdbuf(fout.rdbuf());

(...)

// restore the original stream buffer

std::cout.rdbuf(cout\_sbuf);

Other methods were considered. It is possible to overload the Geant4
descriptors G4cout and G4cin but because of the lack of documentation,
the idea was abandoned. One could also set some BOINC flags to force the
BOINC system to put the standard output in the given file but this is neither
well documented and could not be made to work. The calls used to open the
data files needed by the Geant4 binary other than for the input file were not
touched. In fact, a lot of fstream C++ style IO is present in the code and are
not trivial to wrap. What was done, from within the C++ program, was to
set environment variables that make sure that all the needed files are under
the current directory.

Some BOINC calls have to be inserted in the code: boinc init() and
boinc finish() as prologue and epilogue, boinc zip() to package, compress and
decompress the input and output data files. Compression is used to optimise
file transfers and the boinc zip() function makes the program independent
of the zip program on Windows and any other BOINC supported platform.
These calls to BOINC internals are resolved by adding the BOINC libraries
and POSIX threads in the Geant4 Makefile.

LDFLAGS += -L/test/boincclient/install/lib

LDLIBS += -lboinc_api -lboinc

CXXFLAGS += -pthread

INCFLAGS += -I/test/boincclient/install/include
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The order in which the BOINC libraries are inserted in the Makefile is
relevant. Wrong ordering leads to unresolved references. The results, output
of the Geant4 test code, contains a line informing about the time needed to
perform the simulation (user, real and system time) like

Number of events processed : 10

User=10.48s Real=11.07s Sys=0.05s

Thus, different jobs always have different results, even with the same
seed, just because of that line. As we mentioned previously when describing
BOINC, it is necessary that identical jobs send back identical results, byte
by byte. This is why BOINC sends the same job to 2 or more clients. This
allows to check if the results are correct. BOINC servers uses any BOINC
client machine provided that it is attached to the project. This machine may
be in a bad state leading to incorrect results and it also may happen that it
will never send back results.

Then, this problem should be corrected, modifying the code, in order to
use this application in BOINC. The offending line in the Geant4 output was
found to be generated by line 236 of G4RunManager.cc:

{ G4cout << " Number of events processed : "

<< n\_event << G4endl; } // line 235

G4cout << " " << *timer << G4endl; // line 236

(...)

The solution was then to just comment out the line 236 in the source file.

D.3 Porting to Windows

As suggested by the Geant4 documentation in [112] the Cygwin POSIX envi-
ronment [113] from http://www.cygwin.com/ was installed so that we could
use UNIX tools to manage the code, such as make.exe as a make tool g++.exe
as a tool to analyse source file dependencies and create dependency (.d) files
Several other UNIX tools like cp, mv, rm, touch, etc.

At the same time a recipe is provided by the Geant4 team to be able
to use the Microsoft Visual C++ compiler in this environment. The recipe
in question consists of adding to the cygwin.bat start-up file of Cygwin32
all the MS DOS commands found in the file vcvars32.bat provided in MS
Visual C++ (in the VC++ .NET compiler installation directory, and usually
located inside the Common7/Tools directory). This sets the environment for
MS Visual C++, i.e. set the paths to libraries, include files, and executables
for MS Visual C++.

In our experience, the Cygwin startup file appeared from Windows in
c:\cygwin\cygwin.bat and the path to the VC++ script was the following
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C:\Program Files\Microsoft Visual Studio.NET 2003\Common7\

Tools\vsvars32.bat

This way of working could be very interesting for other BOINC projects
as it allows you to produce pure Windows executables while using UNIX
tools to manage your code.

Geant4 was installed as described in the doc in [114] and CLHEP 1.9.2.1
for VC++ 7.1 was downloaded from

http://proj-clhep.web.cern.ch/proj-clhep/DISTRIBUTION/

clhep-1.9.html

We had to set the following environment variables:

G4SYSTEM=WIN32-VC

CLHEP_BASE_DIR=c:/local/dirLHCAtHome/clhep-1.9.2.1-win32-vc71

before running make from $G4INSTALL/source. This builds one library
for each ”leaf” category (maximum library granularity) and automatically
produces a map of library use and dependencies.

Then we have to run

make global

in order to build global libraries, one for each major category The hadronic
physics lists were compiled by doing

cd $G4INSTALL/physics_lists/hadronic;

make

Once the Geant4 libraries were built, we were able to make the Release
Test program. To do so the buildSetup.sh setup script had to be edited as
follows

• Change G4SYSTEM from Linux-g++ to WIN32-VC.

• Change CLHEP BASE DIR to point to the CLHEP that was down-
loaded.

• Change CLHEP LIB from CLHEP to libCLHEP-1.9.2.1.lib. CLHEP is
the UNIX name. Although the default Windows name is CLHEP.lib,
this name appeared only as a broken symbolic link.

• Comment out GUI USE TCSH because this option is not supported in
Windows.
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• Change G4WORKDIR from $PWD to the explicit directory in Win-
dows syntax: c:\local\dirLHCAtHome\StatAccepTest . This is because
$PWD in a Cygwin bash shell gives the path as
\cygdrive\c\local\dirLHCAtHome\StatAccepTest and this syntax is
not understood by the Microsoft compiler.

• We also had to add the time.h include file to mainStatAccepTest.cc to
be able to use the time() function.

• To port the program to BOINC environment the same code changes as
in Linux were done.

• Additionally the referenced BOINC include and source files had to be
added to the project. For instance to find boinc win.h we would do

cd /cygdrive/c/local/dirLHCAtHome/boinc

du -a |grep boinc_win

Or to find were md5_init is defined or referenced

cd /cygdrive/c/local/dirLHCAtHome/boinc

grep -r md5_init *

The source files moved to the project were taken into account as depen-
dencies for compilation and linking provided that the .C or .c extension is
changed to .cc.

As the right versions of autoconf, automake, Curl, SSL, etc. were avail-
able in the Cygwin environment; we tried to use the autosetup program to
automate the porting and configuration for Windows. Unfortunately config-
ure did not work because it could not find the SSL libraries and it insisted
in using g++. We later found that this is a known bug in the Cygwin envi-
ronment. When this bug is fixed autosetup would allow us to build ”real”
libraries rather than copying the relevant source files thus saving a lot of
time.

Although most of the code worked without change, a nasty problem was
found in the hostinfo.h BOINC header file. There there was a reference to a
Windows system type

extern HINSTANCE g_hIdleDetectionDll;

that produced syntax errors until we prefixed with

#include <Windows.h>

However, this produced a clash of the Windows system type PSIZE de-
fined in

C:\Program Files\Microsoft Visual Studio.NET 2003\Vc7\

PlatformSDK\Include\WinDef.h
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With the Geant4 type defined in

$G4INSTALL/source/processes/hadronic/cross_sections/

include/G4HadronCrossSections.hh

Fortunately we could remove the clash modifying WinDef.h as follows

#ifndef G4VERBOSE

typedef struct tagSIZE

{

LONG cx;

LONG cy;

} SIZE, *PSIZE, *LPSIZE;

#else

typedef struct tagSIZE

{

LONG cx;

LONG cy;

} SIZE, *LPSIZE;

#endif

We also had to add

LDFLAGS += Winmm.lib

to the GNUmakefile in order to link to the Windows system multime-
dia library to resolve the timeSetEvent() and timeKillEvent() calls used in
boinc api.cc. These calls are described in [115].

D.4 BOINC templates

A work unit template and a result template have been created in the tem-
plates directory under the main BOINC server installation directory. The
templates are plain text files containing XML tags. We created the following
work unit template:

<file_info>

<number>0</number>

</file_info>

<file_info>

<number>1</number>

</file_info>

<workunit>

<file_ref>
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<file_number>0</file_number>

<open_name>run.g4</open_name>

</file_ref>

<file_ref>

<file_number>1</file_number>

<open_name>seed.txt</open_name>

</file_ref>

</workunit>

This template gives to BOINC the list of files that your application needs
to be executed. In particular, the files that change in each job execution have
to be specified. Other files required by your binary that are the same for
all job executions are better placed in the applications directory to prevent
them to be downloaded each time.

In our work unit the run.g4 script is used. It gives details about the type
and energy of the simulated particle and about the materials of the detector,
among other things. A seed.txt file is also sent with the seed to be used for
the simulation. Is important that all the job instances use the same seed
because BOINC may send the same job to different machines and verify the
results by comparing them, so the results are expected to be the same for
the same job.

The result template used is the following:

<file_info>

<name><OUTFILE_0/></name>

<generated_locally/>

<upload_when_present/>

<max_nbytes>102400</max_nbytes>

<url><UPLOAD_URL/></url>

</file_info>

<result>

<file_ref>

<file_name><OUTFILE_0/></file_name>

<open_name>my_stdout.txt</open_name>

</file_ref>

</result>

It specifies the name (and number) of the file we want to be sent by
the client as result. It is important to add the tags generated locally and
upload when present.

Please note that BOINC will find the output file only if we ”resolve” its
name inside the application’s code (as well as the input ones) so we sent with
the job an empty output file to be filled.
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APPENDIX

E

Glossary

Here we present a glossary including the acronyms and abbreviations used
in this work. It includes the ones used in High Energy Physics as well as the
ones used in the ATLAS experiment and in Grid Computing.

You can find a more extensive list of ATLAS acronyms at [118] and an-
other list including most Grid acronyms at [119].

ACL Access Control List

AFS Andrew File System

AII Automated Installation Infrastructure

ALICE A Large Ion Collider Experiment

API Application Programming Interface

ARDA A Realisation of Distributed Analysis for LHC

ATLAS A Toroidal LHC ApparatuS

Atlfast ATLAS FAST simulation

BalticGrid Baltic States Grid
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BDII Berkeley Database Information Index

BOINC Berkeley Open Infrastructure for Network Computing

BT Barrel Toroids

CA Certification Authority

CAF CERN Analysis Facility

CB Central Barrel

CDB Configuration DataBase

CE Computing Element

CERN European Organisation for Nuclear Research

CIEMAT Centro de Investigaciones Energéticas,
MedioAmbientales y Tecnológicas

CMS Compact Muon Solenoid

CMT Configuration Management Tool

CNGS CERN Neutrinos to Gran Sasso

CNM Centro Nacional de Microelectrónica

CPU Central Processing Unit

CRL Certificate Revocation List

CS Central Solenoid

CSC Cathode Strip Chambers

CVS Concurrent Versions System

DB Database

DC Data Challenge
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DN Distinguish Name

DDM Distributed Data Management

DLI Data Location Interface

DQ2 Don Quijote 2

EB Extended Barrels

ECT EndCap Toroid

ED Extra Dimensions

EDG European DataGrid

EELA E-infrastructure shared between Europe and Latin America

EDM Event Data Model

EGEE Enabling Grids for E-SciencE

EMEC Electromagnetic EndCap calorimeter

EUMedGRID EU Mediterranean Grid

FCAL Forward Calorimeter

FiReMan File and Replica Catalogue

FTP File Transfer Protocol

FPS File Placement Service

GIIS Grid Information Index Server

gLite Lightweight Middleware for Grid Computing

GRAM Grid Resource Allocation and Management

GridFTP Grid Service for File Transfer

GridPP The UK Grid for Particle Physics
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GRIS Grid Resource Information Service

GSI Grid Security Infrastructure

GUI Graphical User Interface

GUID Global Unique IDentifiers

GUT Grand Unified Theory

HEC Hadronic EndCap calorimeter

HEP High Energy Physics

ID Inner Detector

IFAE Institut de F́ısica d’Altes Enerǵıes

IFCA Instituto de F́ısica de Cantabria

IFIC Instituto de F́ısica Corpuscular

II Information Index

IS Information Service

ISOLDE Isotope Separation OnLine DEvice

ISR Intersecting Storage Rings collider

iVDGL International Virtual Data Grid Laboratory

JDL Job Description Language

KK Kaluza-Klein

LAr Liquid-Argon calorimeter

LB Logging & Bookkeeping

LCFG Local ConFiGuration system

LCG LHC Computing Grid
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LDAP Lightweight Directory Access Protocol

LEP Large Electron-Positron collider

LFC LCG File Catalogue

LFN Logical File Name

LHC Large Hadron Collider

LHCb Large Hadron Collider beauty experiment

LRMS Local Resource Management System

MC Monte Carlo

MDS Metacomputing Directory Service

MDT Monitored Drift Tube

MSS Mass Storage System

NCM Node Configuration Manager

NorduGrid Nordic Data Grid Facility

OO Object Oriented

OSG Open Science Grid

PBS Portable Batch System

PIC Port d’Informació Cient́ıfica

PKG Solaris Package

PM Photomultiplier

PMTs Photomultiplier Tubes

POOL POOL Of persistent Objects for LHC

PRC Public Resource Computing

177



PS Proton Synchrotron collider

RB Resource Broker

RC Replica Catalogue

R-GMA Relational Grid Monitoring Architecture

RLS Replica Location Service

RM Replica Manager

RMC Replica Metadata Catalogue

RMS Replica Management Service

ROD Read Out Drivers electronic board

RPC Resistive Plate Chamber

RPM RPM (Red Hat Package Manager)

SCRAM Software Configuration, Release And Management

SCT Semi-Conductor Tracker

SE Storage Element

SEAL Shared Environment for Applications at LHC

SEE-Grid South Eastern European Grid

SL Scientific Linux

SLC3 Scientific Linux CERN release 3

SM Standard Model

SPEC Standard Performance Evaluation Corporation

SPMA Software Package Management Agent

SPS Super Proton Synchrotron collider
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SRM Storage Resource Manager

SUSY Super-Symmetry

SwRep Quattor Software Repository

TDR Technical Design Report

TGC Thin Gap Chamber

TileCal Hadronic Tile Calorimeter

TRT Transition Radiation Tracker

UAM Universidad Autónoma de Madrid

UB Universitat de Barcelona

UI User Interface

USC Universidad de Santiago de Compostela

VDT Virtual Data Toolkit

WISDOM Wide In Silico Docking On Malaria

VO Virtual Organisation

VOMS Virtual Organisation Membership Services

WLS WaveLength Shifting

WN Worker Node

WM Workload Manager

WMS Workload Management System

WU Workunit

WWW World Wide Web

XML Extensible Markup Language
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mi estancia en IT. Especialmente a Michel Manent, Philippe Defert, Juan
Manuel Guijarro y Hege Hannsbank, por todo el apoyo tanto laboral como
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anza en m y su apoyo durante todo ese tiempo.

182



BIBLIOGRAPHY

[1] CERN’s official web site
http://www.cern.ch

[2] About CERN’s name
http://public.web.cern.ch/Public/Content/Chapters/
AboutCERN/WhatIsCERN/CERNName/CERNName-en.html

[3] CERN’s chronology web site
http://library.cern.ch/archives/chrono/chrono 2002 cern.php

[4] The Large Hadron Collider (LHC), official web site
http://lhc.web.cern.ch/lhc

[5] LHC Design Report
http://ab-div.web.cern.ch/ab-div/Publications/LHC-
DesignReport.html

[6] ATLAS collaboration public web site
http://atlas.ch
ATLAS experiment private web site
http://atlas.web.cern.ch/Atlas/index.html

[7] ATLAS Technical Proposal, CERN/LHCC/94-43, LHCC/P2
http://atlas.web.cern.ch/Atlas/TP/tp.html

[8] ATLAS Technical Design Reports web site
http://atlas.web.cern.ch/Atlas/internal/tdr.html

183



[9] ATLAS Computing Technical Design Report
ATLAS TDR–017, CERN-LHCC-2005-022
http://cern.ch/atlas-proj-computing-tdr/Html/Computing-TDR-4.htm
http://cern.ch/atlas-proj-computing-tdr/PDF/Computing-TDR-final-
July04.pdf

[10] Instituto de F́ısica Corpuscular (IFIC) research institute web site
http://ific.uv.es

[11] S.F. Novaes, Proceedings of 10th Jorge Andre Swieca Summer School:
Particle and Fields, Sao Paulo, Brazil, 31 Jan - 12 Feb 1999. [arXiv:hep-
ph/0001283]

[12] K. Hagiwara et al. (the Particle Data Group). Review of particles
physics. Phys. Rev. D 66 (2002)
Official web site with the latest and most accurate values:
http://pdg.lbl.gov

[13] Th. Appelquist, A. Chodos, P. Freund, Modern Kaluza-Klein Theories,
Addison-Wesley 1987
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