

Beam Size Monitor Model

G. Blair

Royal Holloway, University of London, UK

Acknowledgements

We acknowledge the support of the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" programme (CARE, contract number RII3-CT-2003-506395)

Beam Size Monitor Model

Grahame Blair FNAL, 23rd October 2007

- Introduction
- Overview of errors
- Ongoing technical work in this area
- Plans for the future.

Beam Size Monitor Model

Requirements:

- •Simple to use system as input to machine tracking codes
- •Complex system for full LW simulations
- •Possibly combine the two approaches with flags/defaults.

Inputs:

- •Laser parameters
- •LW laser-optics performance
- •Detector locations and efficiencies (non trivial in ILC BDS)
- \bullet Required use: bunch-by-bunch or train-by-train; or other?

Laser-wire People

BESSY: T. Kamps

DESY : E. Elsen, H. C. Lewin, F. Poirier, S. Schreiber, K. Wittenburg, K. Balewski

- JAI@Oxford: B. Foster, N. Delerue, L. Corner, D. Howell, L. Nevay, M. Newman, A. Reichold, R. Senanayake, R. Walczak
- JAI@RHUL: G. Blair, S. Boogert, G. Boorman, A. Bosco, L. Deacon, P. Karataev, S. Malton , M. Price I. Agapov (now at CERN)
- KEK: A. Aryshev, H. Hayano, K. Kubo, N. Terunuma, J. Urakawa
- SLAC: A. Brachmann, J. Frisch, M. Woodley
- FNAL: M. Ross

Laser-wire Principle

PETRAII

- 2d scanning system
- DAQ development
- Crystal calorimeter

\rightarrow PETRA III

- Ultra-fast scanning
- Diagnostic tool

Laser wire : Measurement precision

The true emittance is 0.079 μm μrad

Skew Correction

$$
\phi_{\text{optimal}} = \tan^{-1} \left(\frac{\sigma_x}{\sigma_y} \right)
$$

$$
\approx 68^\circ - 88^\circ \text{ at ILC}
$$

ILC LW Locations E_b = 250 GeV

Error on coupling term:

$$
\delta \langle xy \rangle = \sigma_x \sigma_y \left[4 \left(\frac{\delta \sigma_u}{\sigma_u} \right)^2 + \left(\frac{\delta \sigma_x}{\sigma_x} \right)^2 + \left(\frac{\delta \sigma_y}{\sigma_y} \right)^2 \right]^{\frac{1}{2}}
$$

Need for Intra-Train Scanning

$$
L = \frac{N_{\text{train}}N_e^2 f_{\text{rep}}}{4\pi\sigma_x \sigma_y} H_D \qquad \qquad \left\langle \frac{1}{\sigma} \right\rangle = \frac{1}{\left\langle \sigma \right\rangle} \left(1 + \frac{1}{3} s_{\text{train}}^2 \right)
$$

For \leq 0.5% effect, s_{train} \leq 0.12; otherwise, the effect must be subtracted

For 1μ m bunches, the error after subtracting for any systematic shift (assumed linear $\pm \alpha_{\text{train}}$ along the train) is:

$$
\frac{\delta \sigma_e}{\sigma_e} = 1.9 \times 10^{-3} \left(\frac{\sigma_{\text{BPM}}}{100 \text{ nm}} \right) \alpha_{\text{train}}
$$

For $<$ 0.5% effect, α_{train} $<$ 2.6; otherwise, higher precision BPMs required

Machine Contributions to the Errors

$$
\sigma_e = \left[\sigma_{\text{scan}}^2 - \left(\alpha_J \sigma_e\right)^2 - \left(\eta \delta_E\right)^2\right]^{\frac{1}{2}}
$$

\nBunch Jitter
\n
$$
\frac{\delta \sigma_e}{\sigma_e} \approx 5 \times 10^{-2} \left(\frac{\alpha_J}{0.5}\right)^2 \left(\frac{\sigma_{\text{BPM}}}{100 \text{nm}}\right)
$$

\nBPM resolution of 20 nm may be required
\nAssuming η can be measured to 0.1%,
\nthen η must be kept $\leq \sim 1 \text{mm}$

⎟

Alternative Scan Mode

- • R&D currently investigating ultra-fast scanning (~100 kHz) using Electro-optic techniques
- \bullet Alternative: Keep laser beam fixed and use natural beam jitter plus accurate BPM measurements bunch-by-bunch. Needs the assumption that bunches are pure-gaussian
- •For one train, a statistical resolution of order 0.3% may be possible

Beam jitter fixed at 0.25 σ

$$
f_R(x) = 1 + \left(\frac{x}{x_R}\right)^2
$$

$$
\begin{array}{c|c}\n\hline\n\end{array}
$$

$$
\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{1/2}
$$

$$
\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2}=\frac{1
$$

Compton Statistics

$$
N_{\text{Detected}} = 1212 \xi \frac{1}{\sqrt{2\pi}\sigma_m} \exp\left(-\frac{1}{2}\left[\frac{\Delta_y}{\sigma_m}\right]^2\right)
$$

Approximate – should use full overlap integral (as done below…)

TM_{00} Mode Overlap Integrals

Main Errors:

- •Statistical error from fit $\sim \xi^{-1/2}$
- •Normalisation error (instantaneous value of ξ) – assume ~1% for now.
- •Fluctuations of laser M^2 – assume M^2 known to ~1%
- \bullet Laser pointing jitter ψ

$$
\frac{\delta \sigma_e}{\sigma_e} \approx 2.2 \times 10^{-3} \left(\frac{\psi}{10 \mu \text{rad}}\right)^2 \left(\frac{\delta \psi}{\psi} / 10\% \right)
$$
\n
$$
\frac{\delta \sigma_e}{\sigma_e} \approx \left(\frac{\lambda f_{\#}}{\sigma_e}\right)^2 M^2 \left(\frac{\delta M^2}{M^2}\right)
$$

$$
\frac{\delta \sigma_e}{\sigma_e} \approx \left(\frac{\lambda f_{\#}}{\sigma_e}\right)^2 M^2 \left(\frac{\delta M^2}{M^2}\right)
$$

TM01 gives some advantage for larger spot-sizes

Laser Requirements

ILC-spec laser is being developed at JAI@Oxford based on fiber amplification. L. Corner et al

TM_{00} mode

- •Optimal f-num≈1-1.5 for λ= 532nm
- •Then improve M² determination
- •f-2 lens about to be installed at ATF

ATF2 LW; aiming initially at f_2 ; eventually f_1 ?

Towards a 1 μm LW

 \rightarrow $\mathsf{E}_{_\mathsf{\eta}}$

preliminary Resultant errors/10⁻³

Goals/assumptions

Final fit, including dispersion

Could be used for η measurement

Lens Design + Tests

- f-2 lens has been built and is currently under test.
- Installation at ATF planned for this year
- M. Newman, D. Howell et al.

Designs for f-1 optics are currently being studied, including:

N. Delerue et al.

BDS Laser-wire

- PETRA 2d scans, multi-shot.
- ATF micron, single shot
- Laser R&D
- Fast Scanning R&D
- Simulation

All initial goals have been achieved.

New fibre-laser programme at Oxford now under-way in collaboration with EU industry

BDSIM plots. At ATF2:**IPBPM** in new location -43% photons lost Addis 20_{mm}

EO fast scanner undertest at RHUL; plan to use at PETRAIII

PETRA LW

Routine scans of two-dimensions were achievedPETRAII programme now finished; preparing for PETRAIII Fast scanning system with 130kHz laser at RHUL planned Collaborating with DESY on fast DAQ Look forward to installation in new location for PETRAIII next year

PETRA II

ATF LW

Tests of $f₂$ lens system currently underway at Oxford

We have improved mode quality Of ATF laser at KEK in October 2007.

Look forward to running with f2 optics in Nov 07 and in 2008.

Airgel / current

single LW scan **quad scan using LW scans**

ATF2 Laser-wire

• Detailed design of layout, light path, laser hut are underway. • An additional LW location has been reserved downstream for multi-axis scans \rightarrow LC-ABD-II

ATF/ATF2 Laser-wire

- • At ATF2, we will aim to measure micron-scale electron spotsizes with green (532 nm) light.
- • Two locations identified for first stage (more stages later)
	- 1) 0.75m upstream of QD18X magnet
	- 2) 1m downstream of QF19X magnet

 \Rightarrow Ideal testing ground for ILC BDS Laser-wire system

Summary

- • Very active + international programme:
	- Hardware
	- Optics design
	- Advanced lasers
	- Emittance extraction techniques
	- Data taking + analysis
	- Simulation
- • A useful model will include effects:
	- Laser pointing
	- M² monitoring
	- Low-f optics
	- Fast scanning
	- High precision BPMs
- • BDSIM already contains a simple LW generator
	- What other formats are required?
	- Additional benchmarking can be done at PETRA/ATF.
	- What about the ILC linac?

