
EU contract number RII3-CT-2003-506395 CARE-Conf-07-010-NED
 

 

 
 
 
 
 
  

LOW TEMPERATURE HEAT TRANSFER PROPERTIES 
OF CONVENTIONAL ELECTRICAL INSULATION 

FOR THE NEXT EUROPEAN DIPOLE 
 
 

J. Polinski1, S. Canfer2, G. Ellwood2, B. Baudouy1

 
1) CEA/Saclay, DSM/DAPNIA/SACM 
91191 Gif-sur-Yvette CEDEX, France 

 
2) Technology Department, STFC Rutherford Appleton Laboratory, Harwell 

Science and Innovation Campus, Didcot, Oxon, UK, OX11 0QX 
 
 
 

Abstract 
 

The heat transfer properties of the fibreglass epoxy resin impregnated electrical insulation of 
the Next European dipole, known as conventional insulation, has been tested at low 
temperature. The electrical insulation is made of E-glass fibre with a plain weave and RAL 
epoxy system 227 (DGEBF epoxy resin and DETD aromatic hardener). The samples have 
been tested in pressurized superfluid helium (He II) where heat is applied perpendicularly to 
the fibres between 1.55 K to 2.05 K. Overall thermal resistance is determined with 
temperature and compared with other electrical insulation systems. 
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ABSTRACT 

 

The heat transfer properties of the fibreglass epoxy resin impregnated electrical 

insulation of the Next European dipole, known as conventional insulation, has been tested 

at low temperature. The electrical insulation is made of E-glass fibre with a plain weave 

and RAL epoxy system 227 (DGEBF epoxy resin and DETD aromatic hardener). The 

samples have been tested in pressurized superfluid helium (He II) where heat is applied 

perpendicularly to the fibres between 1.55 K to 2.05 K. Overall thermal resistance is 

determined with temperature and compared with other electrical insulation systems. 
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INTRODUCTION 

 

The Next European Dipole (NED) is a Joint Research Activity (JRA) of the 

Coordinated Accelerator Research in Europe (CARE) project, funded by EU-FP6 Research 

Infrastructures. CARE attempts the integration of high-energy-physics-related accelerator 

research and development (R&D) in Europe. The initial NED proposal had three main 

goals: to promote efforts among European laboratories involved in high-field accelerator 

magnet R&D, to promote the development of high-performance Nb3Sn wires and cables in 

collaboration with European industry, to get ready for a luminosity upgrade of the Large 

Hadron Collider (LHC) [1]. 

 

One of the key issues in the operation of a superconducting particle accelerator is the 

temperature margin of the dipole and quadrupole magnets the most exposed to beam losses 
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and the ability of the cryogenic system to cope with the deposited energies. In the case of 

the LHC, the temperature margins of the superconducting magnet coils operated in 

superfluid helium is mainly determined by the heat transfer coefficient through the Kapton 

insulation wrapped around the NbTi-based, Rutherford-type cables. Wherever NED-like 

magnets are implemented, they will be subjected to beam losses, and thereby, to energy 

depositions, which are likely to be higher than those presently foreseen in the LHC. 

Furthermore, ‘wind and react’ Nb3Sn coils call for the use of insulation materials and 

schemes that are very different from those applied in LHC magnets. Hence, the issues of 

heat transfer thought new electrical insulation systems must be investigated and overall 

thermal resistance of the material in superfluid helium conditions must be determined. 

 

 

NEW CONVENTIONAL NED ELECTRICAL INSULATION 

 

Glass-fibre epoxy sheets were produced using vacuum impregnation. This method 

mimics the vacuum impregnation of a magnet structure. However it should be noted that 

this produces an ideal material in that sheets were cured between flat mould platens, 

producing a consistent glass-epoxy fraction, whereas in a real magnet the insulation would 

be between cables which are not flat. 

 

Plain weave glass fibre sheets were stacked between sheets of perforated polyester 

release film. The stack was placed in an aluminium foil tray and evacuated for 24 hours to 

a pressure of less than 0.1 mbar. A mixture of DGEBF epoxy resin, typified by Dow 

DER354, and DETDA hardener, typified by Albemarle Ethacure 100, was degassed in a 

separate vacuum chamber and stirred to break bubbles as it degassed. When a pressure of 

0.1mbar was reached, the mixture was let up to atmospheric pressure. The epoxy mixture 

was flooded around the glass fibre sheets. When the level of epoxy resin covered the 

sheets, the vacuum chamber was let up to atmosphere. The stack was placed in a heated 

hydraulic press and cured at a pressure of 1MPa, at a temperature of 90ºC. When the epoxy 

was gelled the temperature was raised to 130ºC for 16 hours.  

 

 

DESCRIPTION OF EXPERIMENT 

 

Experimental method 
 

The experimental method of determining the overall thermal resistance consists in 

measuring directly the temperature across samples as a function of heat flux [2,3]. In this 

method the sample sheet separates two different temperature helium volumes. The first 

helium volume is the superfluid pressurised bath of the cryostat, whereas the second 

volume is created inside of an experimental set-up. This volume is heated and its 

temperature Ti is higher than in the cryostat bath temperature Tb. In steady state condition 

the two volumes are isothermal with the high thermal conductivity of He II. With a known 

heat dissipation through the sample Qs, cross sectional area of the sample sheet A and 

temperature difference 
�

T between both volumes, a thermal resistance of the sample Rs can 

be determined by using following equation: 
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Experimental apparatus 

 

The experimental set-up is composed of two support flanges and two sample holder 

flanges all made of stainless steel (see FIGURE 1). The tested material sample sheet has a 

thickness of 0.073 mm and a diameter of 80 mm of active heat transfer area and it is glued 

with Scotch-Weld DP190 epoxy resin to one of the holder flange (see FIGURE 2). The 

second holder flange pressures the glued area to ensure leak tightness of the connection. 

One of the support flanges comprises an open space, where a 1 Ohm resistor (heater) and 

Allen Bradley (AB) type temperature sensor are located. The inner volume is fed with 

liquid helium and a wiring to the set-up instrumentation are introduced by a 0.5 mm inner 

diameter and 0.4 m long capillary tube, which is wrapped around the outside surface of the 

support flange and insulated in a epoxy resin block. The second support flange is blind and 

closes the inner helium volume. All set-up flanges are screwed together and surfaces 

between flanges are sealed with Scotch-Weld DP190 epoxy. 
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FIGURE 1. Schematic of the experimental set-up 

 

Error discussion 

 

The temperature of the pressurised cryostat bath, Tb, is monitored with CERNOX 

temperature sensor and maintained at desired level by LakeShore 332 Temperature 

Regulator. The calibration fit in the superfluid helium temperature range gives at most a 

0.2 mK difference between measure and reference. In operation, the temperature of the 

cryostat bath is controlled with 1 mK. 

The Allen Bradley temperature sensor in the inner helium volume was calibrated in 

situ and temperature – electrical resistance characteristic curve of the sensor was created 

before experiment. Total accuracy of the AB sensor reading, included sensor calibration, 

the fitting curve errors and reading reproducibility, is round ±0.3 mK. 

Heat dissipated in the inner volume is controlled by KEITHLEY 2400 Source Meter 

with accuracy of 0.5% of the value. Total heat dissipated by the heater inside inner volume 

is transferred to saturated helium bath through tested sample Qs and by heat losses Qlos, 

which includes the capillary tube and the experimental setup walls heat transfer. The 

stainless steel heat losses were previously determined by finite elements analysis method 

and do not exceed 2% of total heat flux [2, 3]. Calculation shows that for small temperature 

differences between inner volume and cryostat bath the capillary heat transfer is very high 

and reach up to 20% for 
�

T<1mK. Nevertheless influence of the capillary heat loss is 

decreasing with increasing inner volume temperature. For 
�

T higher than 10mK is up to 

2.5% of total heat flux. 
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FIGURE 2. Photograph of the 0.073 mm thick sample. One can see the epoxy glue sealing the sample to the 

sample flange. 

 

Active area of heat transfer through sample is delimited by the glue as it is shown in 

FIGURE 2. Therefore a photograph of the sample was taken and real sample active area 

was computer-aid determined by a pixel counting method as 0.004702 ± 0.05% m². 

 

 

EXPERIMENTAL PROCEDURE, RESULTS AND COMPARISON WITH OTHER 

INSULATION MATERIALS 

 

Measurements of the sample were performed in 7 different bath temperature from 

1.55 K to 2.05 K. At a given temperature, applied heat was increasing by constant ramp 

value of 0.5 or 1 mW and the inner helium volume, Ti, and of the cryostat bath 

temperatures were measured at steady state condition. The time of stabilization of Ti was 

determined in pre-test as about 20 s, therefore time of each heat ramp was set as 30s. 

FIGURE 3 shows results of the measurement as the temperature difference with heat 

flux at different temperature. At very low heat flux, one can see the effect of the capillary 

containing the instrumentation wires, where the 
�

T-Q is not linear due to turbulent 

superfluid helium heat transfer. The effect of the capillary becomes negligible above few 

mW where the He II in it does not transfer heat sufficiently since the heat transfer cross 

sectional area is extremely small. The temperature dependence is clearly seen and the slope 

of the thermal characteristics decreases with temperature. This effect is due to the 

reduction of the Kapitza resistance with temperature (T
-3

 dependence) and the increase of 

the thermal conductivity of the epoxy resin and the fibreglass tape with temperature. 

As mentioned in the previous section and as its can be clearly seen on FIGURE 3, for �
T <10 mK influence of the capillary heat transfer on obtained result is very strong. 

However, for 
�

T>30 mK Kapitza resistance value can be changed and provide additional 

uncertainties to future analysis. Therefore for determination of the material overall thermal 

resistance Rs, the results from 
�

T =10-30 mK range are only taken in to account. 
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FIGURE 3. Evolution of the temperature difference across the sample with heat flux as a function of the 

bath temperature. 
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FIGURE 4. Overall thermal resistance of different electrical insulation materials. ○  - convectional insulation 

0.073 mm, ■  – Kapton 0.077 mm [2],  
▲

 – Kapton 0.014 mm [2]   
 

In consider 
�

T range each temperature characteristics can be approximated by linear 

function a+bQ where b parameter is stand for the overall thermal resistance of the material 

Rs value divided by the active heat transfer area of the sample A. To find Rs value, fitting 

functions were constructed with the last square method for each bath temperature. An 

example of the fitting function and measuring errors is presented on FIGURE 3 for 

Tb=1.55 K case. 
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FIGURE 4 presents determined values of the overall thermal resistance of the NED 

convectional insulation for different bath temperature. As expected the total overall 

thermal resistance is decreasing with temperature. It is also shown on FIGURE 4 the value 

obtained for two different Kapton thicknesses [2]. One can see, that the Rs of the 

conventional NED insulation material is more then 5 times less than Kapton material with 

similar thickness and even better then Kapton with 5 times lower thickness. Assuming that 

the Kapitza resistance is identical to the Kapton, the explanation of this difference could 

come from the fact that the thermal conductivity of epoxy resin and G10 is about 5 times 

higher than the Kapton thermal conductivity. Anyway, to go into more details on the 

thermal performance of this insulation system at superfluid temperature, the thermal 

conductivity and the Kapitza resistance should be determined in measuring more samples 

with different thicknesses. 

 

 

CONCLUSION 

 

The thermal characteristics of 0.073 mm thickness of the E-glass fibre with a plain 

weave and RAL epoxy system 227 (DGEBF epoxy resin and DETD aromatic hardener) 

have been determined in superfluid helium. Comparison of the overall thermal resistance 

of this material with two different thicknesses of Kapton (which is presently used as NbTi 

superconducting cables electrical insulation) shows its very good thermal heat transfer 

properties. Therefore its can be considered as conventional electrical insulation of the NED 

Nb3Sn superconducting magnet cables. 
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