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Introduction 
 

In accordance with theoretical consideration [Hockney] an adequate modeling of plasma 

by the particle in cell method (PIC) enforces to meet at least the following conditions: 

• 2ωτ ≤  

• dh λ≤  

• p dN Lλ >>  

• dL λ>>  

Here ω is plasma frequency, λd - Debye radius, L - the size of simulated region, τ, h – time 

and space steps, Np - the number of particles. 

For typical hydrogen ECRIS parameters (L ≈10cm, Te≈10eV, ne≈10
13
 cm

-3
) these give 

    47.5 10d cmλ −≈ ⋅    

11 11.26 10 sω −≈ ⋅  

From which we have (the second and third conditions): 

the number of mesh points  

Ng≥14000 

the number of particles  

Np>>14000 

  and the time step 

    τ≤0.8·10
-11
 s 

So to meet these requirements we need at least 10
5
 steps for calculation of 1mks of behavior 

of plasma which is simulated at least by Np≈10
5
 particles (in 1D approximation) on the mesh 

with Ng ≈2·10
4
 points. 2D approximation brings about 

Ng≈4·10
8
   

Np≈(2÷3) ·10
9
   

3D simulation in this case is hardly possible (Np>10
13
). One should keep in mind that mean 

execution time of a simple arithmetic operation on 3.2GHz Xeon equals to about 10
-8
 second 

and ≈10
-7
 – for trigonometric and exponential operations (For the reference: one day is equal 

to 8.64•10
4
 seconds only). 

But since  

~g e eN L Zn T , ~ enω , 

the requirements will be  much more moderate for modeling of plasma of heavy ion ECR 

sources (Z≈15÷25, Te≈10keV, ne≈10
10
 cm

-3
) where 

0.15 0.2d cmλ ≈ −  

9 15 10 sω −≈ ⋅  

Respectively 

Ng≈50÷100  

and 5·10
3
 steps is necessary to simulate 1 mks. In this case even 3D modeling (Ng≈10

5
, 

Np≈5·10
5
) looks achievable. 

 Fortunately, even at the worst case (cold dense plasma) the maximal value of collision 

rates (for the most frequent elastic Coulomb collisions) does not exceed 10
9
 s
-1
. Therefore it is 
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the value of plasma frequency that will determine a time step in a PIC code taking into 

account particle collisions. 

 Because of the high resources consumption the development of that PIC code to 

simulate plasma behavior in ECRIS was decided to start with the simplest 1D version 

increasing the number of dimension as the code is debugged and tested.  

 

1D PIC code without collisions 
 

In this case the behavior of plasma is described by Vlasov equation for particle distribution 

function f: 

0
f f F f

v
t x m v

∂ ∂ ∂
+ + =

∂ ∂ ∂
              (*) 

Where the force F is determined by electrostatic interaction: 

F qE q ϕ= = − ∇                     (**) 
2 4ϕ πρ∇ = −                          (***) 

Here v, q are the velocity and charge of the particles respectively. The charge density ρ can be 

defined by the equation 

0( , ) ( , , )x t q f x v t dvρ ρ= +∫  

in case when only one sort of particle is taken into account and another one is considered as 

neutralizing background with density ρ0 or  

( , ) ( , , )i i

i

x t q f x v t dvρ =∑ ∫  

when the above equation for distribution function (*) is solving for each sort of charged 

particles. (Hereafter index i is attributed to the particles,  k- to the grid points, n – to the time 

slices).   

The essence of PIC modeling is substitution of the equation (*) for the equation of its 

characteristic. Since the distribution function is conserved along particle trajectories: 

( ', ', ') ( , , )f x v t f x v t=  

where (x’,v’) and (x,v) are connected by motion equations of the particles:  
'

'

t

t

x x vdt= + ∫     

'

'

t

t

F
v v

m
= + ∫  

we will divide the phase space involved into Np meshes (points), where each point i represents 

i-th volume of the phase space corresponding to  

s

i

N fdxdv= ∫  

particles, and solve motion equation for these points: 

i
i

dx
v

dt
=       ( )i

i

dv
m F x

dt
=  

For finite-difference approximation of the last equations the well known explicit leapfrog 

algorithm is used: 
1 1 2n n n

i i ix x v dt+ +− =  

1 2 1 2 ( )n
n n i
i i

F x
v v dt

m

+ −− =  

To measure the force F =qE acting on the particles the physical area is divided into Ng cells of 

the size h. So that the equations (**) and (***) move to 
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1 1

2

2
4k k k

k
h

ϕ ϕ ϕ
πρ+ −− +

= −  

1 1

2

k k
kE

h

ϕ ϕ− +−
=  

Here the charge density ρk in the greed cell k is defined by the equation  

0

1

( ) ( )
pN

s
k k i k

i

qN
x W x x

h
ρ ρ ρ

=

= = − +∑  

where W(x) is a so-called charge assignment (or weighting) function. The different kinds of 

this function will be discussed later.  

 The force on the particle interpolated from an electric field on the mathematical grid 

can be written as follows 

1

( ) ( )
gN

i i s i k k

k

F F x qN W x x E
=

= = −∑  

where the same weighting function W is used to eliminate the self-force interaction and ensure 

conservation of momentum [Hockney].  

In the beginning we will simulate only electron fraction of plasma considering plasma ions as 

neutralizing background with the charge density ρ0.   

Thus the following finite-difference equations are to be solved at this stage: 

1. Charge weighting: 

0

1

( )
pN

n ns
k i k

i

qN
W x x

h
ρ ρ

=

= − +∑  

2. Poisson equation: 

1 1

2

2
4

n n n
nk k k
k

h

ϕ ϕ ϕ
πρ+ −− +

= −  

3. Field equation: 

1 1

2

n n
n k k
kE

h

ϕ ϕ− +−
=  

4. Force weighting: 

1

( )
gN

n n n

i s i k k

k

F qN W x x E
=

= −∑  

5. Motion equations: 
1 2 1 2n n n

i i i

s e

v v F

dt N m

+ −−
=  

1
1 2

n n
ni i
i

x x
v

dt

+
+−

=  

To reduce the number of computing operation the standard dimensionless units will be used 

during calculation:  

'x x h=        't t dt=  

'v vdt h=         2'a adt h=  
2

'n n

k k

e

qdt
E E

m h
=  

2

2
'

2

n n

k k

e

qdt

m h
ϕ ϕ= −  
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22
'n n

k k

e

qdt

m

π
ρ ρ=  

In these units the above equation set will look as follows: 

 
2 2

1

( ' )
' 1

2

pN n
pn i k

k

i c

dt W x x

N

ω
ρ

=

 −
= − 

 
∑  

1 1' 2 ' ' 'n n n n

k k k kϕ ϕ ϕ ρ− +− + =  

1 1' ' 'n n n

k k kE ϕ ϕ+ −= −  

1

' ( ' ) '
gN

n n n

i i k k

k

a W x x E
=

= −∑  

1 2 1 2' ' 'n n n

i i iv v a+ −− =  
1 1 2' ' 'n n n

i i ix x v+ +− =  

Here ωp is a plasma frequency: 
24

p

e

q n

m

π
ω =  

(n=ne=ni is plasma density), and Nc is: 

0
c

s

h
N

qN

ρ
=  

 

The simplified computing sequence can be presented as 

 

   

 
Three different interpolating (weighting) function for charge and force were under 

consideration: 

 1. Zero-order scheme Nearest Grid Point (NGP): 

Charge weighting 

         (xi,vi)→ρk 

Integration of field 

equation on grid 

           ρk→Ek 

    Force weighting 

             Ek→Fi 

Integration of 

motion equation 

Fi→vi→xi 

dt 



EU contract number RII3-CT-2003-506395 CARE-Note-2006-015-HIPPI 
 

 - 6 - 

1          if 2
( )

0         in another case

x h
W x

 ≤
= 


 

 

2. First-order scheme Cloud In Cell (CIC)  

 

1       if 
( )

0             in another case

x
x h

W x h


− ≤

= 


 

 

3. Second-order scheme Triangle Shaped Cloud (TSC) ([Birdsall] unlike [Hockney] treats it 

as a scheme of the first-order of accuracy) 

 
2

2

3 x
-            if 2

4 h

1 3
( )      if 2 3 2

2 2

0                      in another case

x h

x
W x h x h

h

   ≤  
 

  =  − ≤ ≤ 
  




 

 

As the first test of the code developed the conventional two-particle test was run. (Two 

particles should oscillate with frequency ωp for any nonzero initial distance between them.)  

Because we are interested in simulation of many thousands of plasma oscillations and the 

algorithm of integration of motion equations used in this code does not save a phase of 

oscillation  we will consider mainly the time steps satisfying more stringent requirements   

ωτ≤0.1 

The results of simulation are presented in Fig. 1.  

0 20 40 60 80 100 120 140 160 180 200

3700

3800

3900

4000

4100

4200

4300

4400

 ωτ=0.001
 ωτ=0.01
 ωτ=0.1
 ωτ=0.5

NGP

N
g
=5000

L=4cm

n
e
=10

12
 cm

-3

P
o
s
it
io
n
, 
a
.u
.

time, ps

 
The frequency of plasma oscillation corresponds to calculated value (τ=111.4 ps) and in 

accordance with theory the amplitude of oscillation conserves unlike its phase:  
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The energy of oscillations conserves with good accuracy for all values of  ωτ over a long 

period of time: 

 

The effect of shape of the weighting function is hardly noticeable for all values of ωτ. 

As an example the position of particle for ωτ=0.1 for three different approximations is shown 

in Fig. 3: 

0 20 40 60 80 100 120 140 160 180 200

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

 E
tot

 E
pot

 E
kin

NGP

ωτ=0.01
N

g
=5000

L=4cm

n
e
=10

12
 cm

-3

E
n
e
rg
y
, 
a
.u
.

time, ps

0 50 100 150 200

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

N
g
=5000

L=4cm

n
e
=10

12
 cm

-3

NGP  E
tot

 E
pot

 E
kin

ωτ=0.1

E
n
e
rg
y
, 
a
.u
.

Time, ps

0 20 40 60 80 100 120 140 160 180 200

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

N
g
=5000

L=4cm

n
e
=10

12
 cm

-3

ωτ=0.5

NGP
 E

tot

 E
pot

 E
kin

E
n
e
rg
y
, 
a
.u
.

time, ps

8200 8250 8300 8350

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

N
g
=5000

L=4cm

n
e
=10

12
 cm

-3

NGP  E
tot

 E
pot

 E
kin

ωτ=0.1

E
n
e
rg
y
, 
a
.u
.

Time, ps



EU contract number RII3-CT-2003-506395 CARE-Note-2006-015-HIPPI 
 

 - 8 - 

8000 8020 8040 8060 8080 8100 8120 8140 8160 8180 8200

3700

3800

3900

4000

4100

4200

4300

4400

N
g
=5000

L=4cm

n
e
=10

12
 cm

-3

ωτ=0.1

P
o
s
it
io
n
, 
a
.u
.

time, ps

 NGP

 CIC

 TSC

 
Comparison of timetables showed that CIC and TSC schemes increased the execution time 

(as compared with NGP) to only a small extent – about 5%. 

 

The second conventional test is a free drift of charged particles through the matter. 

The major task of the test is a verification of energy conservation with time because the use of 

the same weighting functions for charge and force approximations ensures only momentum 

conservation. 

To generate random and uniform initial positions of particles and Maxwellian 

distribution of their velocities two additional subroutines were included in the code. Typical 

result for velocity distribution v: 
2 2 2 2

x y zv v v v= + +  

of 200000 particles ( for  (T/m)
1/2
=100 ) generated by this subroutine is presented in Fig. 4: 
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Fig. 4. 

 

A free drift of electrons of low temperature (vd=10
9 
cm/s, T=0.1eV) through a 

neutralizing background of static ions was considered in conditions close to real-life:  
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ne=5·10
12
 cm

-3
, L=10cm 

 

during a rather long time ~100 ns that corresponds to about 10
5
 time steps.  

Periodical boundary conditions were assumed. The values deduced above for the 

number of particles and the number of cell were used as a reference point of investigation  

 

Np=10
5
, Ng=2·10

4 

 

The influence of a time step on the results of simulation for different weighting functions are 

presented in Fig. 5 – 7. 
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Fig 5. 
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Fig. 6 
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One can see that NGP approach can be used only when ωτ≤0.01. But even in this case 

the results are worse than those for CIC with ωτ=0.4. TSC and CIC schemes give rather close 

results with a little advantage of TSC.  
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Dramatically violation of conservation law comes when  ωτ≥0.8 in the TSC scheme 

and  ωτ≥0.5  - in CIC (Fig. 8-9). 
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Fig.8                                                                      Fig. 9 

 

The effect of node number on the results of simulations is shown in fig. 10-11: 
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The third conventional test is a simulation of two-stream instability.  For the same 

plasma parameters 

ne=5·10
12
 cm

-3
, L=10cm 

 

and two streams of identical particles moving in the opposite directions with velocities 

 

v0=10
9
 cm/s 

 

the development of this instability is illustrated in fig. 13:  
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Fig. 13. 

 

The results are rather predictable because the threshold of  the development of this 

instability is defined by the equation [Birdsall]: 
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For our conditions (v0=10
9
 cm/s, L=10cm, ωp≈1.26·10
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-1
) the left side of inequality equals 

to about 5·10
-3
 that is very far below the threshold. Much more interesting results should be 

observed near the threshold. As an example we consider the development of instabilities in 

plasma with following parameters: 
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To make sure that the instability does not developed when the above inequality is slightly 
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 cm/s (1.57>1.42). 

Really, the flows remained stable during some hundreds nanoseconds at least. But when the 

drift velocities equal to v0=5·10
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 cm/s we fall in a region where the increment of growth of 
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Fig. 14. 

 

 

Violation of space distribution of charge density and electric potential is illustrated in 

fig. 15 and fig.16 respectively: 
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Fig 15.       Fig. 16 

 

In order to check the code running under more natural nonperiodic boundary 

conditions we decided to simulate a vacuum diode to compare its current with Child-

Langmuir law. We consider that a cathode is placed on the right at x=L under zero potential. 

An anode is placed on the left at x=0 under potential V. Each time step in the right boundary 

cell a certain number of macro particles with a temperature of the diode filament are born. 

This number is defined by the emission current of the diode and by the number of electrons 

that are simulated by  one macro particle. Any electron reaching cathode or anode is 

considered as dead. These electrons are counted to calculate the cathode and anode current. 

 The dependence of anode current density on emission current for L=10 cm, V=1kV 

and Tem=0.1eV is presented in fig. 17. Ng=1000, ωτ=5 and TSC scheme were used in the 

simulation. The mean number of particles Np was about 10
5
 that corresponded to 10

4
 electrons 

per macro particle. 
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Fig. 18.       Fig. 19. 

 

 

 

Fig. 20.       Fig. 21. 
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Fig. 22 
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In this case ω is a relative number: ωτ=1 corresponds to 2.6ps.  

In the conclusion, Fig. 23 and Fig. 24 represent the calculated dependences of the 

anode current restricted by space charge on diode voltage and electrode spacing. The electric 

potential distribution in the diode is shown in Fig.25.   

 

 

Fig. 23      Fig. 24. 

 

 

Fig. 25      Fig. 25 (detailed). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 1000 2000 3000 4000

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

3/2 law test.

Dependence on voltage.

I a
, 
m
A
/c
m

2

Voltage, V

 Theory

 Simulation

0 5 10 15 20

-1

0

1

2

3

4

5

6

7

8

9

10 3/2 law test. 

Dependence on electrode spacing

I a
, 
m
A
/c
m

2

gap, cm

 Theory

 Calculation

0 2 4 6 8 10

0

200

400

600

800

1000

P
o
te
n
ti
a
l,
 V

Position, cm

9.6 9.8 10.0 10.2

-2

0

2

4

6

8

10

12

14

16

18

20

P
o
te
n
ti
a
l,
 V

Position, cm



EU contract number RII3-CT-2003-506395 CARE-Note-2006-015-HIPPI 
 

 - 18 - 

1D PIC code with Monte-Carlo collisions 
 

Collision or scattering processes can be incorporated in a PIC code by different ways. 

Because of the wide parameter spread of ECR plasmas are to be considered we will study two 

of them which are the most widely used now. The first procedure [Hockney] can be more 

appropriate for the description of dense plasmas with high scattering rates. Another approach 

[Birdsall] developed for low pressure low density plasmas (ne<10
10
 cm

-3
, Te≈ few eV) 

 The approach of [Hockney] (hereafter – H-scheme) consists in modifying normal 

mesh time stepping ∆t:  several free flights are assumed per one field-adjusting time step.  So 

that the previous computing sequence (rotated 180 degree for the convenience) is modified as 

follows: 

 

 

 
Fig. 26 

Here R1, R2 – random numbers with the uniform distribution in (0,1); 1

1

p

i p

i

λ λ +
=

Γ = +∑ , where 

λi is a probability of i-th scattering; λp+1 ( a probability of a dummy self-scattering) is added to 

make a total scattering rate Γ to be independent of velocity. Here and after when choosing a 

random continuous value ξ we use the theorem: 
 

If a value of ξ is distributed in the interval (a,b) with the probability density p(x) 

then the values of ξ can be  found from the equation: 

 

 where γ is a random number with the uniform distribution in the interval (0,1). 

Charge weighting 

         (xi,vi)→ρk 

Integration of field 

equation on grid 

           ρk→Ek 

    Force weighting 

             Ek→Fi 

Selection of time of free flight δt 

by Monte-Carlo method 

0<R1≤1 

δt =-Γ
-1
ln(R1) 

 

Integration of motion equation 

Fi→vi (t+ δt) →xi(t+δt) 

 

MC event selection: 

0≤R2< Γ 

vi→ vi'
 

 

Repetition  with new vi' 

until δt'= δt'+ δt>∆t 

∆t 

( )
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p x dx
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We choose a scattering process comparing R2 with 
1

/
m

i

i

λ
=

Γ∑  for m=1..p. A scattering process 

will determine a new velocity of the particle vi’ and velocities of new particles if ionization 

occurs. 

The rest of free flight time δt'-∆t stores in memory to be used on the next field-

adjusting time step. 

The method described by [Birdsall] (hereafter – B-scheme) is to use only field-

adjusting time step ∆t. If we know all of collision frequencies and accordingly the total 

frequency for m-th electron: 

( )total i i m m

i

n E vν σ=∑  

the probability of collision of the m-th electron in a time step ∆t: 

1 exp( )m totalP tν= − − ∆  

(Here we consider that relative electron-ion velocity equals to electron one: vm-vi≈vm.) 

 The next step is to compare Pm with R1. For Pm>R1 the particle m is to be scattered. 

Which scattering process occurs can be determined by the same way like in previous 

approach comparing R2 with ν1/νtotal, (ν1+ν2)/νtotal, (ν1+ν2+ν3)/νtotal and so on. 

Schematically the computing sequence can be represent by diagram: 

 

 

 

 
 

Fig. 27. 

 

 

To test an operation both of the MCC blocks it was decided to simulate at first  an 

establishment of coronal equilibrium in hydrogen plasma in isothermal D0 approach. In this 

case only negative ions, neutrals, positive ions and electrons are assumed to be in plasma and 

fore two-particle processes are taken into account: radiative attachment, radiative 
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recombination, collision ionization and collision detachment.  As a check standard the data 

obtained by the decision of the equation set of recombination-ionization kinetics: 

1 1 1 1( )i
i i i i i i i

dN
K N K R N R N

dt
− − + += − + + ,     for  i=-1, 0, 1 

(applying implicit scheme and standard procedure for tridiagonal matrix) was used. Here Ni is 

the number of ions in i-th state; Ki and Ri are the respective ionization and recombination 

rates. The energies of all electrons are assumed to be identical and equal to 1.35eV. Two 

different initial conditions were considered: neutral gas with 10
-2
 ionization degree and fully 

ionized plasma. Total gas density in both cases was 5·10
12
 cm

-3
. The establishments of 

equilibrium under these circumstances are presented in fig. 28: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 28. 

 

The results of comparison with MCC modeling (Np=5·10
4
) are shown in the figures below. 

For a small time step (∆t≤1ms) all results are identical: 

 

 

 

                  Fig. 29.                                                                         Fig. 30. 
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Some distinction can be observed only by magnification: 

 

                                        Fig. 31.                                                              Fig. 32. 

 

Calculation results remain acceptable even the number of particles decreases to 100 (when 

only one macro electron is present at initial time). 

 

                                  Fig. 33.                                                                          Fig. 34. 
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It should be noted that a decrease in time step does not improve the results of calculation in 

this case. Whereas an increase in time step, even though the number of particles to be large, 

results in a loss of accuracy of calculations.  

 

                        Fig. 37. H-Scheme                                             Fig. 38. B-Scheme 
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The technique with variable Γ can be used in opposite manner as well. The results of 

calculation with Γ<1 are shown in fig. 40. 
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Fig. 40. 

 

In this case the substitution of Γ=1 for Γ=0.1 makes the consumption of computational time 

about 5 times less without any sacrifice of accuracy. But following decrease in Γ is no longer 

acceptable. This behavior is accounted by the fact that the total probability of scattering for 

the time step of 1ms equals to 2·10
-3
. And the effective probability for Γ=0.03 already exceeds 

5·10
-2
.  In any case such feature of the H-scheme allowing to change an effective time step of 

MCC block (even though in a constraint range) could proved to be very useful.  

 The observed limitation on a time step should be kept in mind during simulation. In a 

real problem the restriction on a time step can be even stronger due to an abrupt dependence 

of collision cross-sections on temperature. An immediate reason of such hard limit on a time 

step consists in the fact that in essence both of the MC schemes are explicit ones with inherent 

shortcomings. In case of B-scheme it superposes with additional computational errors caused 

by substitution (1 )xe x→ + and ln(1 )x x+ → that was implicitly assumed during derivation. 
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1D2V PIC-MCC code 
 

The most appropriate object for testing of joint operating of PIC and MCC blocks of the code 

is a low pressure plasma discharge. For the most part the electrodes of such devices are 

lengthy in two directions. So the 1D model is just in place for them to simulate by the code 

under development. Since a directed particle’s velocity in arising drift motion can be several 

orders less than its mean velocity, at least two components of the velocity has to be taken into 

consideration in order to calculate the probability of collisions.  And in the first 

approximation we will not go beyond this approach. Unfortunately such approach enables us 

to consider the all particle’s collisions only as hard sphere collisions (the cross-section does 

not depend on scattering angle and the center of mass scattering angle is uniformly distributed 

in space). It is rather adequate assumption for collisions with neutral atoms (both electrons 

and ions) but it is not the case for Coulomb collisions. To avoid ambiguity concerning the 

problem, for the present we will consider a direct current glow discharge. The ionization 

degree in the discharge of this kind does not exceed 10
-5
 (typical value is 10

-7
÷10

-8
) so that the 

Coulomb collisions can be neglected with good reason.  

 So we will describe the velocity of charged particles by two quantities: the 

longitudinal velocity vx and the square of the component of the velocity lying in the plane 

perpendicular to the x direction: 2v⊥ .  The probabilities of particle’s collisions will be defined 

using the total velocity of the particle: 
2 2

tot xv v v⊥= +  

Keeping in mind the main goal, a glow discharge in hydrogen was chosen as an object 

for simulation. The following nine processes having the largest cross-sections were taken into 

consideration for electron-neutral collisions:  

• elastic scattering; 

• rotational excitation; 

• vibrational excitation; 

• electronic excitation of b 3

u

+Σ  state; 

• electronic excitation of B 1

u

+Σ  state; 

• electronic excitation of C 1

uΠ  state; 

• electronic excitation of B’1 u

+Σ  state; 

• electronic excitation of E 1

g

+Σ  state; 

• ionization. 

For ion-neutral collisions only elastic collisions were accounted for because of 

relatively small cross-sections of ionization and excitation. The effect on the neutral gas is not 

calculated.  

To shorten consumption time a 2D table of collision frequencies is generated in the 

beginning of simulation. The m-th column of the table represents the sum of respective 

frequencies 
1

m

i

i

ν
=
∑  for different quantities of particle’s velocities which squares are placed in 

0-th column. The retrieval of necessary value is performed by binary search during the run-

time. The cross-sections of the processes were taken from [Tawara]. The decision as to what 

kind of collisions has occurred is taken in the way described in the previous section. 

The scattering angle and new velocity (or velocities in case of ionization) of the 

particle are determined in the following way.   
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 For elastic collisions of electrons with background molecules (me<<M) the energy of 

scattered electron is defined by equation: 

2
1 (1 cos )e

scat inc

m
E E

M

 = − − Θ 
 

 

where Einc is the incident energy and Θ is the scattering angle. (We do not neglect the small 

quantity of energy loss to describe correctly the electron drift while the energy of electrons is 

below the threshold of neutral excitation.) In hard sphere approximation the velocity of the 

electron after collision is considered to be uniform. Therefore the new longitudinal velocity is 

cosx totv v′ ′= Θ  

where  cosΘ is uniform in the interval (-1,1) and can be obtained from relation: 

cos 1 2RΘ = −  

Hereafter R is a uniform random number in the interval (0,1).  

The term totv′  is the new total velocity corresponding to the new electron energy Escat  . 

Another component of the velocity is  
2 2 2

tot xv v v⊥ = −  

We will use also the same approximation for inelastic electron-neutral collisions with the only 

difference that the energy of scattered electron in case of excitation collisions will be defined 

by equation: 

scat inc excitE E E= −  

where Eexcit is the excitation energy. And for ionization collisions this energy is 

scat inc ion creatE E E E= − −  

Here Eion is the ionization energy. We neglect here the small energies of the neutral and the 

created ion. In addition we consider that the overwhelming contribution into the total 

ionization cross-section is made by collisions in which the transferred energy is small and 

respectively the energy of created electron Ecreat is small too. Therefore Ecreat is regarded as a 

free parameter with typical value ~0.1eV. The velocity of the created electron is considered to 

be uniform. 

For elastic scattering of ions in hard sphere approximation we have 
2cosscat incE E χ=  

where 2χ = Θ  is the center of mass scattering angle. Respectively 

cosx totv v χ′ ′=  

where 

cos 1 Rχ = −  

We have chosen  for simulation a discharge in a tube 20 cm long filled with hydrogen 

under the pressure of 0.2torr. To initiate the discharge we assumed that the cathode can emit 

electrons with the temperature of filament (~0.1eV) and small current density 10
-7
 A/cm

2
 and 

the voltage of 1200V is applied between the anode and the cathode. The cathode is made of 

material with secondary emission coefficient 8.e-3. All these values are typical for DC glow 

discharges. Since the voltage-current characteristic of the discharge is horizontal in the region 

of interest, i.e. the current of the discharge can spontaneously rise if the applied voltage is 

maintained constant turning the discharge into abnormal one and then – into the arc, it is 

necessary to fix the operating point by simulating an electric circuit. Therefore it was 

considered that the full voltage was applied to the discharge tube through a resistor. After a 

few trial runs its resistance was decide to be of 10
7
 Ohm·cm

2
.  

To get a steady state of the discharge we need to include into consideration a process 

of charge particle destroying. Depending on discharge conditions it can be a volume 

recombination (discharge controlled by recombination) or the recombination on the walls of 
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the discharge tube (discharge controlled by diffusion). In accordance with experimental data 

in the conditions under consideration it is diffusion that controls the discharge. The frequency 

of the recombination (diffusion loss) in case besselian density profile is 
2

da aDν = Λ    ; / 2.4RΛ ≈ , 

where Da is the coefficient of ambipolar diffusion, R – the radius of the discharge tube. We 

used the table value for Da and the radius of the tube was varying value. The decision as to 

which particle suffers a recombination was made by the manner borrowed from [Burger]. We 

calculated the sum of individual probabilities c daP tν= ∆ of the particles in accordance with 

the sequence in which they were recorded. The particle whose probability made  this sum 

larger than 1 suffered the recombination and the summing was restarted with the sum 

decreased by 1. The sums for ions and electrons were saved from step to step to resume the 

process on each step from previous values. 

 Testing of the code was started from the regime of dark discharge: the space charge 

does not disturb the external electric field. In this case the charged particles drift in the 

constant electric field. Following an individual particle gave us a possibility to compare the 

calculation data with the results of analytical solution. The results are shown in figures 41-42. 

 

Fig 41. Position of an electron and its energy verses the time. 

 

 

Fig. 42. Position of an electron and its energy verses the time (Γ=1). 
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For the convenience of comparison all kinds of collisions except elastic ones were “switched 

off”, the cross-section 15( ) 10vσ σ −≡ = cm
2
 and the density of neutrals was increased up to 

100 torr. As may be seen the drift velocity tends to 0.87·10
6
 cm/s. At the same time the mean 

velocity of the electrons is about 5.2·10
7
cm/s. It is in a rather good agreement with the results 

of kinetic theory that give respectively: 

0

d e

tr tr

eE eE
v E

m mn v
µ

ν σ
= = =  

2 2
d

tr

eE
v v

mδ ν δ
= =  

Here 2m Mδ = is the part of energy transferred in one collision; σtr is the transport cross-

section and E – the electric field. In easy to use form 
7

1 4

0

3.52 10
d

tr

v E
n

δ
σ
⋅

≈    cm/s 

(Here E in V/cm). The substitution by numerical quantities gives 60.93 10dv ≈ ⋅ cm/s and 

72 5.6 10dv vδ= ≈ ⋅  cm/s ( 45.487 10δ −≈ ⋅ ). The small discrepancy may be the sequence 

of different interpretation of mean velocity since the calculated value of the ratio 
21.67 10dv v −≈ ⋅ coincides with 22 1.66 10δ −≈ ⋅ to within 1%. (Running a few steps 

forward, it should be noted that 1D3V model gives exactly the same results for drift and mean 

velocities). 

In this test the H-scheme gave also the better accuracy compared with the B-scheme. 

The reasonable accuracy ~5% can be obtained only for the time step ≤1ps (or ≤2 ps for the H-

scheme). Because the frequency of collisions under this circumstances  
1 12

01 5.8 10trn vν σ− −= ≈ ⋅ s 

we have got thereby the requirement on the time step: 

0.2tν∆ ≤  

 So in the simulation of glow discharge with the density n0=6.6·10
15

 cm
-3
 and total 

collision cross-section ≤2·10
-15
cm

2
 (v≈3·10

8
 cm/s) we can use with certainty the time step 

∆t~20ps. The size of spatial step h can be chosen from the relation: 

excitationE h E⋅ <<  

that gives the number of nodes Ng~1000. To ensure a good statistical accuracy the number of 

particles Np should be 

Np~(100÷500)·Ng=(1÷5)10
5 

Since this value is not fixed directly and is defined by the steady current of the discharge that 

is also unknown in advance some trial runs were required to define the number of electrons 

and ions in the macro particle Ns. This value equals to 2·10
3
 to provide Np≈3·10

5
.   

Before demonstration the results of the simulation it would be well to refresh the main 

properties of DC glow discharge. The particular features are a cathode layer with specific 

structure and a large quasi neutral region filling the space between the cathode and anode 

layers – a positive column. The glow pattern is shown in fig 43. The region with maximum 

glow intensity is the space of Negative Glow. It sharply separated from the cathode dark 

space and than the intensity of glow smoothly decreases towards the anode changing into the 

Faraday Dark Space. Next – the glowing Positive Column. Its intensity is smaller than this of 

the negative glow and sometime has a layer-like structure (stratified). The strata usually move 

in the direction towards the cathode with typical velocity 10
4
÷10

6
 cm/s. The results of 

simulation are presented in figures below. 
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Fig 43. Schematic sketch of DC glow discharge. 

 

The total current discharge is presented in fig 44.  
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Fig. 44 

 

One can see that after 10 µs the discharge becomes settled with the steady state current 

density of about 55 µA/cm
2
. The spatial distribution of total glow usually follows the electron 

density that is shown in fig 45 (the anode is on the left). In the figure one can see the region of 

negative glow and the stratified positive column. The strata are not stable as may be seen in 

the fig. 46. They run towards the cathode with phase velocity of about 2·10
6
 cm/s. The picture 

remains similar during the all time of simulation. The formation of the discharge structure is 

illustrated in fig. 46a-46c. 

It is not possible to resolve the Aston and Cathode Dark spaces in the picture but it can 

be done from the plot of mean electron energy vs the position of electron (Fig 47). Because 

the Astone dark space is caused by low electron energies (below the threshold of excitation of 

the respective levels of the molecule; it is of about ~10eV in our case) and the cathode dark 

space is due to high electron energies (far above the maximum of respective cross-section; it 

is of about 50÷70eV). So one can consider that the dark spaces is positioned in the interval 

(19.8, 20) cm and (18.2, 18.5) cm. The bulk space between them is the cathode glow. 



EU contract number RII3-CT-2003-506395 CARE-Note-2006-015-HIPPI 
 

 - 29 - 

0 4 8 12 16 20

0

20

40

60

80

100

120

140 t=10µs

R=10
7
 Ohm cm

2

U=1200 V

L=20 cm

p
0
=0.2 torr

E
le
c
tr
o
n
 d
e
n
s
it
y
, 
a
.u
.

Position, cm

 
Fig. 45 
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Fig  47. Mean electron energy vs position 
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Fig  47a. Mean electron energy and the number of electrons vs position (zoomed in) 
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The fine structure of the glow on the left side can be seen from Fig 47b. The increase of 

electron energy near the anode is responsible for the anode glow. The electron energy 

distribution function all over the glow discharge at t=20 µs is presented in fig 48. 
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Fig  47b. Mean electron energy  vs position (zoomed in) 
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The spatial distribution of potential, electric field and total charge are presented in 

figures 49-51 respectively. The figure 52 represents the comparative distribution of electrons 

and ions in the discharge. These pictures are qualitatively agree with experimental data 

including the plateau on the voltage distribution in the region of negative glow and the ripple 

on the electric field distribution in the region of positive column. But there is some 

quantitative discrepancy in comparison with experimental data. In the regime of normal 

discharge (the cathode spot occupies the full surface of the cathode) the value of the cathode 

drop Uc and the thickness of cathode layer dc are fixed and defined by the gas properties and 

gas pressure. According to the tabulated experimental data in our conditions they are 

Uc≈280V and dc≈5cm. But now we have respectively Uc≈480V and dc≈3.5cm. Since the 

values are defined by electron swarm in the cathode layer the discrepancy can be result from 

inadequate description of ionization processes in our model. Therefore we put off the final 

establishing the reason of the fact till the comparison with the results of 1D3V model. 
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Fig. 51 
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Fig. 52 

 

The influence of the time step on the result of simulation is demonstrated in fig. 53-54. 

The time consumption for the time steps 20 ps, 50ps, 100 ps and 200 ps were respectively 51h 

15min, 22h 16min, 17h 00min and 12h05 min. It should be noted that all attempts to run the 

program with 500ps and larger time steps were failed.  Nonlinear dependence of the 

consumption time on the number of time steps is accounted for by the increase in the 

discharge current and respective increase in the number of macro particle with the increase in 

time step.   
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Fig 53. 
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Fig. 54. 
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1D3V version of PIC-MCC code 

 
When the hard sphere collision model becomes not adequate or relative velocities of colliding 

particles are not merely defined by projectile particles – it is a good approach for electron-

neutral collisions, but it is not the case for electron-electron or ion-ion collisions, - we need to 

take into consideration the full velocity vector information of colliding particles.   

To deduce the velocity vector transformation in the 3V spherical coordinates let us 

consider an individual collision in the center of mass frame. Let the initial velocity of a 

projectile particle v
r
 be defined by two angles α and P as depicted in fig. 55 below (we will 

use notation of [Birdsall] ): 

 
Fig 55 

 

Here: 

                   2 2 2

x yv v v⊥ = + ,              sin yP v v⊥= ,             cos xP v v⊥=  

        2 2 2

zv v v⊥= + ,              sin v vα ⊥= ,              cos zv vα =  

Let us consider a frame of reference OX'Y'Z' so that the axis OZ' coincide with v
r
 and 

axis OX' lies in the plane OXY. For this reference frame the transformation matrix looks as 

follows: 

sin cos cos cos sin

cos sin cos sin sin

0 sin cos

P P P

P P P

α α

α α
α α

∆ = −

−

 

 

Here we used the property of transformation matrix  

1 2 3

1 2 3

1 2 3

l l l

m m m

n n n

∆ = , where l1…n3 are the respective directional cosines, e.g. the 

directional cosines of axis OZ' with respect to OX, OY, OZ are (l3, m3, n3). 

X 

Y 

Z 

P 

α φ

ψ 

V 
V' 
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The new particle velocity vector will be moved away from old one by the scattering 

angle φ in the deflection cone at angle ψ. The new components of the velocity in OX'Y'Z' are: 

( sin cos , sin sin , cos )v v v vϕ ψ ϕ ψ ϕ′ =
r

 

In OXYZ frame the velocity component are: 

[ ]sin cos sin sin sin cos cos cos cos sinxv v P P Pϕ ψ ϕ ψ α ϕ α′ = + +  

[ ]sin cos cos sin sin sin cos cos sin sinyv v P P Pϕ ψ ϕ ψ α ϕ α′ = − + +  

[ ]0 sin sin sin cos coszv v ϕ ψ α ϕ α′ = − +  

 (It should be noted that there is a misprint in [Birdsall] in this place). 

After that we should transform the velocity back into the lab frame.  For example, in general 

case of elastic collisions of two particles with masses mα and mβ it is convenient to represent 

their velocities as follows:  

cm

cm

m
v V u

m m

m
v V u

m m

β
α

α β

α
β

α β


= + +


 = −
 +

rr r

rr r
 

Here: 

cm

m v m v
V

m m

α α β β

α β

+
=

+

r r
r

 

is the velocity of the center of mass of colliding particles and  

u v vα β= −
r r r

 

its relative velocity. Because the velocity of the center of mass and u
r
do not change in 

collisions we can write the velocities after collision as: 

m
v v u

m m

m
v v u

m m

β
α α

α β

α
β β

α β


′ = + ∆ +


 ′ = − ∆
 +

r r r

r r r
 

where the components of the vector u u u′∆ = −
r r r

are: 

 

[ ]sin cos sin sin sin cos cos (cos 1)cos sinxu u P P Pϕ ψ ϕ ψ α ϕ α∆ = + + −  

[ ]sin cos cos sin sin sin cos (cos 1)sin sinyu u P P Pϕ ψ ϕ ψ α ϕ α∆ = − + + −  

[ ]sin sin sin (cos 1)coszu u ϕ ψ α ϕ α∆ = − + −  

 

These expressions can be simplified by substitution  

2sin 2 tan 1 tan
2 2

ϕ ϕ
ϕ  = + 

 
 

 

2 21 cos 2 tan 1 tan
2 2

ϕ ϕ
ϕ  − = + 

 
 

Another way is to substitute   

2(cos 1) 2sin
2

ϕ
ϕ − → −  and sin 2sin cos

2 2

ϕ ϕ
ϕ → . 
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It gives: 

2 sin cos cos sin cos sin cos cos sin cos sin
2 2 2 2

xu u P P P
ϕ ϕ ϕ ϕ

ψ ψ α α ∆ = + −  
 

2 sin cos cos cos cos sin sin cos sin sin sin
2 2 2 2

yu u P P P
ϕ ϕ ϕ ϕ

ψ ψ α α ∆ = − + −  
 

2 sin cos sin sin sin cos
2 2 2

zu u
ϕ ϕ ϕ

ψ α α ∆ = − +  
 

If 0u⊥ =  : 

sin cosxu u ϕ ψ∆ =  

sin sinyu u ϕ ψ∆ =  

( )cos 1zu u ϕ∆ = −  

 

The first test of 3V version of the code was performed for the dark discharge mode. 

The results of calculation of the drift of a particle in the electric field are well coincide with 

those for 2V model (Fig. 56): 
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Fig. 56. 

 

Introduction of 3V model in the previous code simulating the DC glow discharge 

gives a possibility to take into consideration the differential cross-section of electron-neutral 

ionization collisions.  

The energy of scattering electron can be found from a simplified form of this cross-

section proposed by [Opal]: 

1tan arctan
2

inc ion
scat

E E
E E R

E

− −  =     
%

%
 

where E%  is a constant which equals to about 8.3eV for 2H . The angle ψ as usual is random 

over 2π and the angle φ now will be defined by equation: 

 

2 2(1 )
cos

R

scat scat

scat

E E

E
ϕ

+ − +
=  
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The distribution of the scattering angle for different Escat is presented in fig. 57. So the 

value of cosφ is uniform in (-1,1) only for Escat →0 and tends to 1 for large Escat .  

 

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

f(
θ)
, 
a
.u
.

θ, rad

 E
scat
=1eV

 E
scat
=10eV

 E
scat
=100eV

 
Fig. 57. 

 

The influence of the modification of the ionization cross-section on the results of 

simulation of the DC glow discharge is shown in figures 58-59. The results obtained are very 

close to those calculated by 2V version. The made modifications improved somewhat an 

agreement with experimental data. The value of dc=4.9 cm well coincides now with tabulated 

value dc=5cm. The remaining discrepancy in the cathode fall voltage appears to result from 

the simplification of ionization-recombination and diffusion processes in the simulation of the 

discharge (in particular, all recombination processes were ignored in calculations).  
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Fig. 58 
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Fig. 59 

 

 

 

Lorentz force simulation 
 

Beside the electric field the described 3V model allows to include into consideration 

the magnetic field. In this case the motion equations to be integrated are  

 

i
i

dx
v

dt
=

r
r
      ( )i

i

dv
m q E v B

dt
= + ×

r
r rr

 

 

and the previous finite-difference approximation  moves to 

 
1 1 2n n n

i i ix x v dt+ +− =
r r r

 

1 2 1 2
1 2 1 2 ( )

( ) ( )
2

n n
n n n ni i
i i i i

q v v
v v E x B x dt

m

+ −
+ −  +

− = + × 
 

r r
r rr r

 

 

In the most popular algorithm [Boris] splitting the electric and magnetic forces is used. 

At first we found  

( )1 2 ( ) 2n n

i i

q
v v E x dt

m

− −= +
rr r

 

 

then perform the rotation in accordance with 

 

( ) ( ) ( )
2

n

i

q
v v dt v v B x

m

+ − + −− = + ×
rr r r r

 

 

and after that, add another part of  electric momentum: 

 

( )1 2 ( ) 2n n

i i

q
v v E x dt

m

+ += +
rr r
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Fig. 60 

 

From the Fig. 60 one can see 

 

tan 2 2 2c

v v qB
dt dt

v v m
θ ω

+ −

+ −

−
= = =

+

r r

r r  

 

To calculate the vector v +r we should increase the vector v −r  so that ( )v v v+ −′ ⊥ −
r r r

 and 

v B′ ⊥
rr
: 

v v v t− −′ = + ×
rr r r
 

where vector t
r
equals to (see fig. 61 below) 

( )2qB
t dt

m
=

r
r

 

Finally, 

v v v s+ − ′= + ×
r r r r

 

where 

( )22 1s t t= +
rr

 

 
Fig. 61 

 

In particular, if (0,0, )B B=
r

 then 
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x yv v v t+ +′= +  

where 

tan 2t θ= −  

( )2sin 2 1s t tθ= − = +  

In case of constant B the value of the time steps dt can be set rather large. So that it 

would be more preferable to use the direct conversation: 

cos sin

sin cos

c cx x

c cy y

dt dtv v

dt dtv v

ω ω
ω ω

+ −

+ −

    
=       −    

 

 

   The particle’s drift in the crossed electric and magnetic fields and the same plasma 

conditions is presented in fig.  62. The magnetic field was assumed to be directed alone X 

axis. The cyclotron frequency 71.76 10 Bω ≈ ⋅ becomes equal to the frequency of electron-

atom collisions 0e n vν σ=  when B is about 10kGs. In the case of B>20kGs all particles are 

magnetized and make a drift in Y direction with the velocity: 

610d

cE
v

B
= ≅  cm/s (for B=10kGs) 
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Fig 62. The drift of electrons along Z direction (across magnet field)  

 

 

Binary collisions in the PIC-MCC code 
 

Up to now our finite-size particle model does not include charged  particle collisions. 

The presented above simulations using Vlasov-Boltzmann equation take into account only 

long-range collective interactions. But to simulate heating processes, transport and relaxation 

phenomena we need to introduce into the model electron-electron and electron-ion binary 

collisions. 

There are two ways to include into consideration the short-range interactions. One of 

them is a hybrid paticle-particle – particle mesh (P
3
M) algorithm developed by [Hockney]. 
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The main point of the technique consists in splitting of long-range forces (e.g. coulombic) 

onto two parts. The first part (short-range) is calculated by direct summation of forces of 

binary interactions of a given particle with neighboring ones (particle-particle method). The 

smooth long-range part of the force is calculated using the particle-mesh approach.   The 

second way is to introduce small-range small-angle binary collisions by Monte Carlo method. 

It is equivalent to consideration of the kinetic equation with the collision term in the Landau 

form [Takizuka]. Due the large number of colliding pairs the direct integration of the equation 

are impractical. Therefore the essential constituent of the algorithm is the rule for selecting of 

representative pairs of colliding particles.  

The last approach is more frequently used in the PIC codes nowadays [Dawson, Ruhl] 

and so it was chosen for the code in progress. This model can be summarized as follows: 

 

1. For the reason of simplicity it is assumed that only those particles that belong to 

the same spatial cell of the mesh have collisional interactions. 

2.Simultaneous interaction of  all possible collision pairs (which total number is 

( 1) 2n n − ) is approximated by the only one randomly selected pair (which total 

number - 2n ). 

3.The post-collision momenta of particles in each selected pair are determined with 

the help of the kinematic relations of binary collisions described in the previous 

section. The distribution of angle φ follows the Spitzer formula for small-angle 

scattering; angle ψ is chosen randomly with uniform distribution in (0,2π).  

4.Collisions between different species are assumed  to occur successively. 

5.Particle acceleration and collisions are considered to be uncoupled. 

 

To realize the algorithm we need at first to determine particles that overlap in a given spatial 

cell. It is easily done using the well known linked-list structure during charge weighting. After 

that it is necessary to select (in a random way) the representative particle pairs from all 

possible collision pairs as illustrated in figure 63: 

 
                 Fig. 63.  
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This selection is performed using indirect addressing and uniformly distributed random 

permutations as shown in fig. 64. Pairing of even number like particles is trivial. In case of 

odd number of particles the first tree of them is combined in three pairs. Because each of them 

undergoes twice as many collisions as other particles the respective collision frequencies are 

divided by two. Due to indirect addressing pairing of unlike particles is very similar. If nα>nβ 

we selected nα pairs filling even addresses with α particles and odd addresses – with β 

particles.  As soon as the β particles are exhausted we repeat scanning β particles from the 

beginning until all vacant odd addresses are filled. For the permutations Fischer’s algorithm is 

used [Knuth].  

 

 

 

 
Fig. 64. The pairing rules 

 

The Spitzer formula defines that the differential probability for scattering of α particle 

on a target β in the angle (φ,φ+dφ) in a time ∆t is:  
2

( ) exp
2

P d d
t tαβ αβ

ϕ ϕ
ϕ ϕ ϕ

ν ν

 
= −  ∆ ∆ 

 

where 

 
2 2

3

4 e e n

m u

α β β
αβ

αβ

π
ν = Λ  

characterizes an angular relaxation rate of a particle α in the field of  β particles. It is 

frequently referenced as a collision frequency. (Here u v vα β= −  is the relative velocity of 

4 9 19 13 25 8 2 12 Like particles (even number) 

Like particles (odd number) 

Cell 

Unlike particles sort α 

Unlike particle sort β 
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colliding particles, eα, eβ - their charges, 
m m

m
m m

α β
αβ

α β

=
+

 - their reduced mass and Λ is the 

Coulomb logarithm). It gives a possibility to choose the scattering angle φ in accordance the 

following equation: 

 

( )2 ln 1t Rαβϕ ν= − ∆ −  

 

It should be noted that using the presented algorithm of particle pairing in case of unlike 

particles min={nα , nβ}is to be used as nβ  in the expression for collision frequency. 

    As an example in figures below one can see scattering of the electron beam with energy 

100 eV in plasma with density n=10
12
cm

-3
 and initial temperature 20 eV due to electron-

electron collision only. Relaxation time under this plasma conditions ταβ=1/υαβ≈12µs. 
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Fig 65 

 

The relaxation of two temperature electron distribution is presented in fig.  66. The plasma 

was considered to be consisted of two groups of the particles with maxwellian velocity 

distribution. The first one has the temperature 8eV, the second one – 32 eV. In this case the 

energy relaxation time is ταβ=1/υαβ≈17µs.  
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Fig. 66. Temperature relaxation.  

       (Dotted line represents Maxwell distribution)  
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