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Abstract—The ATLAS experiment is getting ready to observe
collisions between protons at a centre of mass energy of 14 TeV.
These will be the highest energy collisions in a controlled
environment to-date, to be provided by the Large Hadron
Collider at CERN by mid 2008. The ATLAS Trigger and Data
Acquisition (TDAQ) system selects events online in a three level
trigger system in order to keep those events promising to unveil
new physics at a budgeted rate of ∼200 Hz for an event size
of ∼1.5 MB. This corresponds to a reduction of O(105) from
the initial bunch-crossing rate of 40 MHz at nominal operating
conditions. This paper focuses on the data-logging system on
the TDAQ side, the so-called ”Sub-Farm Output” (SFO) system.
It takes data from the Event Filter farm, which is the third
level trigger, and it streams and indexes the events into different
files, according to each event’s trigger path. The data files are
moved to CASTOR, the central mass storage facility at CERN.
The final TDAQ data-logging system has been installed using
6 Linux PCs, holding 24 disks of 500 GB each, managed by three
RAID controllers on each PC. The data-writing is managed in a
controlled round-robin way among three independent filesystems
associated to a distinct set of disks, managed by a distinct RAID
controller. This design allows fast I/O, which together with a high
speed network permits to minimize the number of SFO nodes. We
report here on the functionality and performance requirements
on the system, our experience with commissioning it and on the
performance achieved.

Index Terms—Data acquisition, Data handling, Disks

I. INTRODUCTION

THE ATLAS Trigger and Data Acquisition (TDAQ) sys-
tem is based on three levels of online event selection [1],

[2], [3]. Each trigger level refines the decisions made at
the previous level and, where necessary, applies additional
selection criteria. Starting from an initial bunch-crossing rate
of 40 MHz, corresponding to an interaction rate of ∼109 Hz
at a luminosity of 1034 cm−2s−1, the rate of selected events
must be reduced to O(200) Hz for permanent storage. This
requires an overall rejection factor on the trigger level of 105

against minimum bias events, while retaining the rare new
physics processes, such as Higgs boson decays.
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The LVL1 trigger reduces the event rate to 75 kHz
(upgrade-able to 100 kHz) based on an initial selection using
reduced granularity information from a subset of detectors.
High transverse momentum muons are identified using only
the muon-trigger chambers, resistive-plate chambers (RPCs)
in the barrel, and thin-gap chambers (TGCs) in the end-caps.
The calorimeter selections are based on reduced granularity
information from all the calorimeters (electromagnetic and
hadronic; barrel, end-cap and forward).
The LVL2 trigger reduces the event rate further down to
∼3 kHz based on a selection using the full detector granularity
information inside a small region in pseudorapidity-azimuth
coordinates around the trigger objects identified by the LVL1
trigger. About 2% of the event data volume needs to be
accessed by the LVL2 trigger processing farms.
After LVL2, the event is fully assembled by the Event
Builder [3], [4], [5] and then sent to the last stage of the online
selection, the Event Filter. The Event Filter employs offline
algorithms and methods, adapted to the online environment. It
uses the most up to date calibration and alignment information
and an accurate magnetic field map, to make the final selection
of physics events. The output rate from LVL2 is reduced by
an order of magnitude, giving ∼200 Hz.
From the Event Filter events are sent to the data-logging
system, the so-called ”Sub-Farm Output” (SFO) system. A
data-logger application implemented in C++ and running on
the SFO nodes buffers the events in memory, decodes and
associates them to streams and to Luminosity Blocks. The
streams are classes of events defined by the event’s trigger
path. The Luminosity Blocks are time intervals during which
the instantaneous luminosity can be assumed constant. The
SFO system writes the events into raw data files according
to stream and Luminosity Block information, and sends the
data files to the CERN Advanced STORage system (CASTOR)
for permanent storage. From there, they are retrieved by the
CERN computing center, Tier-0, to perform a full first-pass
reconstruction analysis, whose result is sent to other computing
centres up to local institutes for final analyses.

II. THE SFO SYSTEM

The SFO system represents the final element in the TDAQ
chain; it receives the selected event data from the Event Filter
system, writes them into raw data files and copies the files to
CASTOR for permanent storage.
The requirements of the system are dictated by the Event
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Filter output rate of ∼200 Hz. For an ATLAS event size of
1.5 MB, the SFO system has to receive and write the events
to local disks at a speed of 300 MB/s, and to feed CASTOR
with at least at the same rate to avoid filling up the disks.
Apart from the steady-state operations, we want to be able
to keep collecting data at the TDAQ site for about 48 hours,
even when the output towards CASTOR is problematic. Thus,
beyond the performance requirements on the writing and
reading speeds, we need at least 52 TB of local disk space
for a 48-hours buffering.
The data handling effort in the Tier-0 reconstruction center
increases with the number of files produced in a given run,
defined by:

Data volume in the run (MB)
Average file size (MB)

We want to allow streaming (see Section II-B4) and to respect
Luminosity Block boundaries of O(min) (see Section II-B3).
The number of files written is proportional to the number of
streams and inversely proportional to the Luminosity Block
duration. Since each SFO node works independently from
each other and serves events from all streams, the number
of files is also proportional to the number of SFO nodes. A
typical file size is given by:

Data rate (MB/s) · Luminosity Block size (s)
Number of SFO nodes · Number of streams

Therefore, to minimize the number of files produced, we need
to minimize the number of SFO machines. Thus we need to
maximize network and a disk I/O per SFO node.
We can define the overall SFO system to be composed of
three main entities, each devoted to address some of the above
requirements/tasks:

• the hardware, i.e. the SFO machines;
• the SFO application, running on each SFO machine;
• the CASTOR client script, running on each SFO machine.

A. SFO Hardware

ATLAS installed 6 SFO PCs; each one is a rack mountable
PC of 5U height and 54 kg weight, equipped with (see Fig. 1):

• an Intel S5000PSL motherboard;
• two Intel E5130 dual-core 2.0 GHz CPUs;
• 4 × 1 GB RAM;
• three 3ware SATA RAID Controllers (one

9550SXU-12MI and two 9650SE-8LPML);
• 24 SATA disks (Hitachi HDS725050KLA360) of 500 GB

each, equally shared among the 3 RAID controllers.
Considering an effective capability of 450 GB per disk,
5 machines should therefore assure about 54 TB of disk
space;

• five Gigabit Ethernet (GE) NICs (Network Interface
Controller); 2 on the motherboard, 2 on an In-
tel EXPI9402PT PCI-e, dual-port Network Card and 1 on
an a Intel EXPI9400PT PCI-e, single-port Network Card.

From the data-flow point of view, each SFO machine has four
1 Gbit/s Ethernet links (see Fig. 2): two links for the input from

Fig. 1. The six final SFO machines, mounted in two racks.

Fig. 2. Network topology with Event Filter nodes (EFDs), SFO nodes and
CASTOR. In the final system there are 6 SFO machines, each connected via
two 1 Gbit/s links to the BackEnd Switch and via two 1 Gbit/s links to the
switch towards CASTOR.

the Event Filter system, towards a switch (called BackEnd
Switch) to which the Event Filter nodes are connected; two
links for the output to CASTOR, towards a second switch to
which CASTOR connects via one 10 Gbit/s link. The Gigabit
Ethernet links will be bonded [6] and should assure sufficiently
high bandwidth.
The fifth link is connected to the control network to handle the
Run Control commands and to allow administering the nodes
remotely, e.g. powering up and down via IPMI (Intelligent



Fig. 3. Sequence of message exchange between EFD and SFO. Three boxes
(labelled 1, 2, 3) indicate three timeout values that allow to determine the
non-reception of the event data, the non-reception of still outstanding event
data and the non-reception of the acknowledgment.

Platform Machine Interface [7]).
Five of the six SFO PCs are used for data-taking at any
given moment; the sixth PC serves as a live-spare. Each SFO
participating in the data-taking has to deal with ∼40 events
per second.

B. SFO Application

The SFO Application software, written in C++, runs on an
SFO machine and is responsible for:

• buffering in memory the event data received from the
Event Filter system;

• organizing the event data in file structures;
• saving files on disk.

1) Event Buffering: The communication between the SFO
and the Event Filter is based on the EFIO protocol using
TCP/IP [8]. The SFO application acts as a server to the
Event Filter Dataflow (EFD) processes. An EFD process
sends a space request to the SFO (see Fig. 3); if sufficient
buffer space is available, the SFO application returns an event
request, to which the EFD process responds by sending the
event; after the complete reception of the event, the SFO
application sends an acknowledge message back to the EFD
process, which then clears the event from its internal buffers.

Multiple EFD processes connect to an SFO application
simultaneously.
The number and the size of the internal buffers used by
the SFO application to store event data are configurable
parameters; each buffer holds one event.

2) Data Saving: The SFO application receives events
from the Event Filter in a “byte stream” format, i.e. a vector
of 32 bit words containing the event information, organized
according to the event format convention [9]. As soon as
an event is stored in an internal buffer, the SFO application
writes the bare “byte stream” data into raw data files [10].

After the data are saved to disk, the buffer is released and
made available for the next event. In case the disks are full,
the SFO application will fill up its buffers and consequently
will ignore further space requests from the Event Filter; this
way back-pressure is propagated to the Event Filter.
The file creation is fully data driven: after the event reception
and buffering, the SFO uses the information contained in the
event header to associate the event to one or more streams,
and eventually to a given Luminosity Block.

3) Luminosity Blocks: Instantaneous luminosity depends
on quantities which are time dependent. One can assume
that this dependence is small enough so that these values
can approximately be considered constant over a short time
period, which we refer to as a Luminosity Block [11]. We
define a Luminosity Block as a time interval for which
the integrated, dead-time-corrected and pre-scale-corrected
luminosity can be determined. A given Luminosity Block
is identified by a unique index, called Luminosity Block
number, which is reported in every event header as a 16 bit
word.
Luminosity Blocks allow to keep the losses to a minimum
in case of failures in the Data Acquisition system, data
production, analysis, detector and machine operation; this can
be done by excluding from the analysis those Luminosity
Blocks in which failures occurred. It has to be possible to
calculate the integrated luminosity of a given data-taking
run even with missing Luminosity Blocks. The amount of
tolerable losses due to such failures sets an upper limit
on the duration of a Luminosity Block. The recommended
Luminosity Block duration is O(min) [11].

4) Streaming: The SFO application writes the data into
streams, which are characterized by:

• a type, that states if an event has been accepted as a
Physics, Calibration or Debug event:
Physics events will be used for reconstruction at Tier-0
and physics analysis in the local research centers and
institutes;
Calibration events are meant to calculate a new set of
calibration constants, such as detector alignment;
Debug events are those that need to be looked at with
special care, as they were identified as problematic;

• a name, that characterize with more precision the streams
of a given type; for instance, Physics streams [12] can be
subdivided into: Electrons&Photons; Muons & B Physics;
Jets; Taus & Missing ET ; Minimum Bias; Express
streams.
The Express stream [13] contains a subset of the physics
data (roughly 10%) that will go with the highest priority
through the offline reconstruction at Tier-0. This allows
for quick feedback whether meaningful results are ob-
tained before the main reconstruction starts;

• a boolean, which tells if the stream obeys Luminosity
Block boundaries.

The main motivation for streaming is extra flexibility for
prioritized reconstruction and re-reconstruction at Tier-0 and
Tier-1 centres [12]. The streaming information is contained



in two C-strings and a boolean, reported in the event header.
A single raw data file corresponds to a unique stream
identified with stream type and stream name. For the streams
which obey Luminosity Block boundaries, the Luminosity
Block number also characterizes the raw data file. Luminosity
Block assignment is necessary for streams meant for use in
physics analyses, and optional for other streams.
As one event can belong to more than one stream, the Physics
stream definitions have to be chosen in such a way that
duplication of the same event in different streams are kept
lower than a few percent, to reduce unnecessary extra storage.

5) Data files: The raw File names obey the following
convention:

daq.<name tag>.<run number>.<stream type>.<stream
name>.LB<luminosity block number>.<SFO ID>. <file
number>.data

for closed files; the name of still open files ends with
a .data.writing suffix. The stream type and name, the run
number and the Luminosity Block number are decoded by
the SFOs from the event header. All the files which belong
to the same run, stream and Luminosity Block are labelled
using a file index number. An example file name is given by:

daq.Cosmics.1532.Physics.Muon.LB0012.SFO-01. 0123.data

For streams which obey Luminosity Block boundaries,
the files are opened and closed at the Luminosity Block
boundaries. Files are also closed and new ones opened when
the maximum size or the maximum number of events per
file (both configurable parameters) are reached. A size limit
of 2 GB is currently used. It will be increased when 64-bit
Linux will be deployed ATLAS wide.
Given a size limit of 2 GB and a required writing speed
of 60 MB/s per SFO, in case of no streaming an SFO
application writes, on average, one file every 34 s. In case
of streaming, the file writing rate depends on the sharing of
events among the various streams; if we suppose a balanced
streaming with 10 streams, i.e. an average rate per stream
of 6 MB/s, then an SFO application completes a file every
340 seconds for streams not obeying Luminosity Block
boundaries. Otherwise the file writing rate is determined
by the Luminosity Block size, currently to one file per O(min).

6) Filesystem writing and reading: Simultaneous writing
to and reading from the same disk can degrade the per-
formance: as writing has usually priority, reading may be
blocked. Moreover, simultaneous writing and reading forces
an excess in mechanical movements of the disk access arms
carrying the read and write heads, which may lead to a faster
ageing. For these reasons, the SFO application organizes the
writing in three different directories, each corresponding to an
independent filesystem using a distinct set of disks, managed
by a distinct RAID controller [14].
The writing to the various directories/filesystems is done in
a round-robin mode and the reading goes on in parallel

Fig. 4. Schema of the communication between the SFO system and
CASTOR.

from those directories/filesystems which are not involved with
writing. The SFO application locks the filesystem in which
it writes by creating a lock file. A reading application, like
the CASTOR client script, simply notices the presence of the
lock file and refrains from accessing the filesystem. After a
configurable time interval or when the available disk space
reaches a configurable threshold, the SFO application changes
the writing filesystem; any new files that need to be opened
are created from now on in the newly-locked filesystem.
The directory change does not take an immediate effect to files
still open in the old directory; these files continue being filled
with event data. Only after a configurable transition timeout,
all the still open files are closed, the old filesystem is unlocked
and file-copying is allowed.
The filesystem rotation mechanism described above allows for
fast I/O, and contributes in minimizing the number of SFO
nodes needed, and in turn the number of files produced (see
Section II-B5). With a proper choice of the transition timeout,
e.g. half of the filesystem rotation period, the transition time
logic allows to minimize the number of files closed due to the
rotation mechanism itself.
The SFO application requires a configurable fraction of free
disk space in order to consider a directory writable. If all
filesystems disk usage is above threshold, the SFO applica-
tion stops writing and no longer responds to space request
messages from the Event Filter.

C. CASTOR client script

A CASTOR client script is responsible for copying the raw
data files from the SFO disks to CASTOR and for deleting
them from the SFO disks. This script runs on each SFO
machine, fully decoupled from the SFO application.
For unlocked filesystems, a handshake mechanism which
assures proper file transmission and deletion is schematized
in Fig. 4. The file transfer is based on the RFIO protocol [15].



Fig. 5. On top, throughput out of the Event Filter-SFO 1 Gbit/s link. On
bottom, throughput out of the SFO-CASTOR 1 Gbit/s link.

III. MEASUREMENTS

The SFO system functionality and performance have been
tested during several ATLAS TDAQ Technical Runs as a
standard procedure of the ATLAS commissioning task. Test
patterns, Monte Carlo and cosmic data have been exercised.
In particular, the communication between Event Filter and
SFO systems and between the SFO system and CASTOR
has been exercised several times, while the file writing ac-
cording to streaming and Luminosity Block boundaries and
the filesystems rotation mechanism were tested in the ATLAS
September 2007 Technical Run for the first time.
The measurements shown in Figs. 5 and 6 refer to a config-
uration in which one SFO node receives simulated events of
1 MB each from one Event Filter node and sends data files
towards CASTOR; differently from the final system, the SFO
node is currently connected by one 1 Gbit/s input link and one
1 Gbit/s output link. The file size limit was set to 1.5 GB, the
filesystem rotation period was set to 30 minutes, the transition
completion timeout was set to 15 minutes.
We were able to exploit ∼99 MB/s and up to ∼113 MB/s
respectively via 1 Gbit/s link for input and 1 Gbit/s link for
output, as shown in Fig. 5. The used bandwidth is plotted as a
function of time. The not stable explotation of the output link
towards CASTOR can be seen in Fig. 6 which is a zoom-in
the lower plot in Fig. 5. This is due to a combination of the
time to wait for the next file becoming available for copying,
and the actual implementation of the CASTOR client script,
which does not allow for concurrent deletion and copying.

IV. CONCLUSION

The SFO system described in this paper satisfies the ATLAS
Data-Logging requirements: we have demonstrated that, even
with only one 1 Gbit/s link in and one 1 Gbit/s out, each SFO
node can receive more than 100 MB/s from the Event Filter
and feed data to CASTOR with roughly the same speed. In
the final system we foresee to deploy two 1 Gbit/s link in

Fig. 6. Zoom-out of the bottom plot in Fig. 5; the deletion and copying
periods are marked.

and two 1 Gbit/s link out for stability and to provide enough
headroom in case of temporary congestions.
Performance improvements can still be achieved by tuning
the SFO machine configuration parameters, especially the
filesystem and RAID controller configurations. A new imple-
mentation of the CASTOR client script is ongoing and will
allow simultaneous copying and deleting of data files.
Studies devoted to understand the scaling properties of the
current SFO-Event Filter communication protocol with many
Event Filter nodes connecting to an SFO machine, are ongo-
ing.
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